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Abstract 

 

In this paper, we construct context-independent single-path and multi-path syllable models 

aimed at improved pronunciation variation modelling. We use phonetic transcriptions to 

define the topologies of the syllable models and to initialise the model parameters, and the 

Baum-Welch algorithm for the re-estimation of the model parameters. We hypothesise that 

the richer topology of multi-path syllable models would be better at accounting for 

pronunciation variation than context-dependent phone models that can only account for the 

effects of the left and right neighbours, or single-path syllable models whose power of 

modelling segmental variation would seem to be limited. However, both context-dependent 

phone models and single-path syllable models outperform multi-path syllable models on a 

large vocabulary continuous speech recognition task. Careful analyses of the errors made by 

the recognisers with single-path and multi-path syllable models show that the most important 

factors affecting the speech recognition performance are syllable context and lexical 

confusability. In addition, the speech recognition results suggest that the benefits of the 

greater acoustic modelling accuracy of the multi-path syllable models can only be reaped if 

the information about the syllable-level pronunciation variation can be linked with the word-

level information in the language model.  

 

Keywords: ASR, HMM, topology, syllable, pronunciation variation 
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1. Introduction 

One of the most fundamental characteristics of speech is its variability. In fact, the way a 

word is pronounced is different each time that it is uttered – whether by different speakers or 

by the same speaker (Strik and Cucchiarini, 1999). The inter-speaker variation results from 

differences in the speakers’ vocal tract length, age, gender, accent etc. The intra-speaker 

variation, on the other hand, can be caused by, for instance, coarticulation, prosodic factors, 

articulation rate, and changes in the emotional and physical state of the speaker (Wester, 

2002).  

 

Because of pronunciation variation and the complex acoustic patterns following from it, and 

because of the practical limitations that until recently have prevented the use of exemplar-

based models of speech, speech has conventionally been decomposed into shorter segments 

for the purpose of automatic speech recognition (ASR). Consequently, the same way as 

phonological analysis, most large-vocabulary continuous speech recognisers rely on the 

assumption that speech can adequately be represented as a sequence of discrete phones 

(‘beads on a string’) (Ostendorf, 1999). The most obvious problem with this assumption, i.e. 

the fact that the articulatory and acoustic properties of those ‘beads’ strongly depend on their 

neighbours in the ‘string’, is dealt with by introducing context-dependent phone models, such 

as triphones. With reasonable amounts of training data and state tying to deal with unseen 

triphones, triphones allow for robust training. Detailed analysis of natural speech (Greenberg, 

1999; Johnson, 2004; Saraclar and Khudanpur, 2000) has, however, shown that a single 

string of triphones is often not enough for dealing with pronunciation variation. Therefore, 

‘explicit’ pronunciation variation modelling involves listing multiple alternative phonetic 

representations of words in phonetic lexicons (Wells, 2000), as well as in the lexicons used in 

large vocabulary automatic speech recognisers. In ASR, explicit pronunciation variation 
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modelling has, however, met with limited success because of the increased lexical 

confusability (Kessens et al., 2003). Furthermore, while triphones are able to capture short-

span contextual effects such as phoneme substitution and reduction (Jurafsky et al., 2001b), 

there are complexities in speech that triphones fail to capture. Coarticulation effects, for 

instance, often stretch beyond the left and right neighbouring phones. The corresponding 

long-span spectral and temporal dependencies are not easy to capture with models that have 

as limited a window size as triphones (Ganapathiraju et al., 2001). Moreover, the 

pronunciation variants in the lexicon do not cover all variation in actual speech production 

(McAllaster and Gillick, 1999; Saraclar and Khudanpur, 2000; Saraclar et al., 2000). 

 

To alleviate the problems of the ‘beads on a string’ representation of speech, several authors 

propose modelling the spectral and temporal variation in speech ‘implicitly’ by using longer-

length linguistic units as the basic building blocks of speech (Ganapathiraju et al., 2001; 

Hämäläinen et al., 2007a; Jones et al., 1997; Jouvet and Messina, 2004; Plannerer and Ruske, 

1992; Sethy and Narayanan, 2003; Sethy et al., 2003). For various reasons, most of these 

authors (Ganapathiraju et al., 2001; Hämäläinen et al., 2007a; Jones et al., 1997; Jouvet and 

Messina, 2004; Sethy and Narayanan, 2003; Sethy et al., 2003) suggest using syllable-length 

models. First, using syllables allows for a relatively compact representation of speech, while 

maintaining a manageable level of recogniser complexity. Second, support for syllables (or 

their articulatory and perceptual reality) comes from studies of human speech production and 

perception. Interestingly, Sethy and Narayanan’s (2003) experimental findings also suggest 

that most of the long-span acoustic correlations are limited to the duration of syllables. Third, 

syllables are relatively stable as linguistically relevant units, as illustrated by Greenberg’s 

(1999) finding that the syllable deletion rate of spontaneous speech is as low as 1%, as 

compared with the 12% deletion rate of phones. Johnson (2004) reported a syllable mismatch 
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rate of 7.6% for content words and 5% for function words in a corpus of spontaneous 

interviews. A ‘mismatch’ is a word that has a different number of syllables in its actual 

realisation than in its canonical lexical representation. The large majority of the mismatches 

in Johnson’s corpus were deletions. Although this may cast some doubt on the stability of the 

syllable as a linguistic unit, Johnson also advocates a ‘nonsegmental modelling’ (i.e. implicit) 

approach to pronunciation variation modelling. More specifically, he suggests that modelling 

pronunciation variation with phoneme-based segmental models in the lexicon – whether it is 

with one or more pronunciation variants – is not sufficient to capture the highly detailed 

nature of acoustic variability. Instead, he speaks for nonsegmental multiple-entry models of 

speech that are able to capture this kind of detailed acoustic variability.  

 

The most important challenge of using syllable models in large-vocabulary continuous 

speech recognition is the inevitable sparseness of data in the model training. Many languages 

– including Dutch – have several thousands of syllables, some of which will have very low 

occurrence counts in a medium-sized training corpus (such as the 37-hour corpus used in this 

research) and will therefore not have enough acoustic data for reliable model parameter 

estimation. The data sparseness problem is more severe for syllables than for triphones: on 

average, syllables cover a much longer stretch of speech than triphones and their modelling, 

therefore, requires a much larger number of states. Furthermore, as the syllables comprise 

more phones, increasingly complex types of articulatory variation must be accounted for. 

Because of the large number of syllables and the large number of syllable contexts they may 

appear in, it is very difficult to create context-dependent syllable models. Thus, more accurate 

modelling of the acoustic patterns within the syllable boundaries may go at the cost of 

modelling the effects of the contexts in which the syllables appear. This raises the question 
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whether the advantage of more accurate modelling of within-syllable variation may be 

annihilated by the lack of context modelling.  

 

The solutions suggested for the data sparseness problem are two-fold. First, syllable models 

with a sufficient amount of training data are used in combination with triphones 

(Ganapathiraju et al., 2001; Hämäläinen et al., 2007a; Jouvet and Messina, 2004; Sethy and 

Narayanan, 2003; Sethy et al., 2003). In other words, triphones are backed off to when a 

given syllable does not occur frequently enough for reliable model parameter estimation. 

Second, to ensure that a relatively small amount of training data is sufficient, the syllable 

models are cleverly initialised (Hämäläinen et al., 2007a; Jouvet and Messina, 2004; Sethy 

and Narayanan, 2003; Sethy et al., 2003). Sethy and Narayanan (2003), for instance, suggest 

initialising the single-path syllable models with the parameters of the biphones and triphones 

underlying the canonical transcription of the syllables (see Figure 1). Subsequent Baum-

Welch re-estimation is expected to incorporate the coarticulation- and reduction-related 

spectral and temporal dependencies in speech into the initialised models by adjusting the 

means and variances of the Gaussian components of the mixtures associated with the HMM 

(Hidden Markov Model) states of the syllable models.  

 

FIGURE 1 HERE 

Figure 1: Single-path model for the syllable /har/, with the single path through the model 
initialised with the biphones and triphones underlying the canonical syllable transcription 
(Hämäläinen et al., 2007a; Sethy and Narayanan, 2003). The phones before the minus sign 
and after the plus sign in the notation denote the left and right context in which the context-

dependent phones have been trained. The hashes in the biphones denote the boundaries of the 
context-independent syllable model. 

 

Because of the data sparseness problem mentioned above, most previous studies of implicit 

pronunciation variation modelling with syllable models (Ganapathiraju et al., 2001; 
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Hämäläinen et al., 2007a; Sethy and Narayanan, 2003; Sethy et al., 2003) have used context-

independent single-path syllable models. To the best of our knowledge, only Jouvet and 

Messina (2004) have attempted to build context-dependent single-path syllable models. 

However, the improvements in recognition performance that they achieved on tasks with a 

limited vocabulary size were, overall, comparable with those achieved in studies with 

context-independent single-path syllable models. This may be an indication that the amount 

of training data they had available was not enough to capture all the relevant context effects. 

However, it may also be the case that model topologies with a single path are not able to 

capture the relevant variation, irrespective of the amount of training data available. This is 

because syllable-length speech segments display considerable variation in the identity and 

number of phonetic symbols that best reflect their pronunciation (Greenberg, 1999). In fact, 

our previous work suggests that re-estimating the acoustic observation densities of single-

path syllable models is not sufficient to account for the many different forms that syllable 

pronunciations can assume (Hämäläinen et al., 2007a).  

 

In the early days of ASR based on HMMs, Lee (1989) proposed a multi-path topology for 

phone models, inspired by phonetic knowledge about assimilation and reduction processes. 

The longest path consisted of three states with self loops, whereas two shorter paths were 

aimed at modelling reduced pronunciations. Speech recognition experiments subsequently 

showed that a single-path model consisting of three states was sufficient to capture all the 

variation within a phone. However, for syllable models, which have to capture more complex 

pronunciation variation than phone models, more intricate topologies of the kind proposed by 

Lee might be advantageous. The problem of bootstrapping these more intricate models is the 

price we have to pay for more modelling power. In this study, we decided to use phonetic 

transcriptions to define the topologies and to initialise the model parameters of the parallel 
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paths of multi-path syllable models. More specifically, we used biphones and triphones 

underlying ‘major, distinct transcription variants’ (MDVs) for this purpose. Figure 2 presents 

an example of an MDV-based multi-path syllable model. In a way, re-estimated multi-path 

syllable models correspond to the nonsegmental multiple-entry representations proposed by 

Johnson (2004). 

 

FIGURE 2 HERE 

Figure 2: Multi-path model for the syllable /har/, with the three parallel paths initialised 
with the triphones underlying the ‘major, distinct transcription variants’ /ar/, /har/ and 

/ha/, respectively. 

 

Many of the earlier studies on syllable models (Ganapathiraju et al., 2001; Jouvet and 

Messina, 2004; Sethy and Narayanan, 2003; Sethy et al., 2003) present speech recognition 

results without in-depth analysis of the aspects of pronunciation variation that the models are 

actually able to capture. The goal of this paper is to fill that gap. We aim to investigate the 

effects of within-syllable pronunciation variation and syllable context from the point of view 

of speech recognition performance. We attempt to interpret our findings in the context of 

segmental (explicit) versus nonsegmental (implicit) modelling of pronunciation variation. To 

reach our goal, we construct single-path and multi-path models for a set of 94 frequent ‘target 

syllables’. We use these syllable models to represent monosyllabic words, constituent 

syllables of polysyllabic words, or both. In the final ‘mixed-model’ recognisers, the syllable 

models are combined with triphone models that cover the other syllables in a Dutch read 

speech recognition task. In addition, for a baseline, we build a word-internal triphone 

recogniser. To obtain insights into the factors under investigation, we study the evolution 

from untrained to retrained syllable models. First, we compare the speech recognition 

performance of the mixed-model recognisers with untrained and retrained syllable models 

with each other and with the performance of the baseline triphone recogniser. Second, we 
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analyse the word-level and sentence-level errors made by the most revealing mixed-model 

recognisers both before and after the Baum-Welch re-estimation. 

 

This paper is further organised as follows. In Section 2, we describe the speech material used 

in the study, and discuss the issues concerning the selection of model topologies and 

parameter initialisation techniques. We also introduce the concept of MDVs, and describe 

their selection process. In Section 3, we detail the experimental set-up, including the acoustic 

model training. We present the results from the recognition experiments in Section 4, and 

analyse and discuss the speech recognition results in Section 5. We further discuss the issues 

at hand in Section 6, and suggest possible directions for future research in Section 7. In 

Section 8, we present our conclusions. 

 

2. Method 

2.1.Speech Material 

We used read speech extracted from the Spoken Dutch Corpus (Corpus Gesproken 

Nederlands; CGN) (Oostdijk et al., 2002), consisting of novels read out loud for a library for 

the blind. We divided a total of 41 hours of speech into three non-overlapping sets comprising 

fragments from 303 speakers: a set for training the acoustic models, a development set for 

optimising the language model scaling factor, the word insertion penalty and the optimal 

number of Baum-Welch re-estimation rounds, and a test set for evaluating the acoustic 

models. Table 1 presents the main statistics of the speech material, and Table 2 the syllabic 

structure of the word tokens in the corpus. 

 

Table 1: Main statistics of the speech material. 

TABLE 1 HERE 
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Table 2: The syllabic structure of the word tokens in the corpus. 

TABLE 2 HERE 

 

A 6.5-hour subset of the training data contained manually verified broad phonetic 

transcriptions and word-level segmentations of the speech. We obtained a list of plausible 

transcription variants for all the syllables in the manually verified subset by aligning the 

manual phonetic transcriptions of word tokens with their canonical counterparts. For the 

alignment process, we used a dynamic programming algorithm that computes the optimal 

alignment between two strings of phonetic symbols, taking into account the distances between 

the symbols in terms of articulatory features and using a fixed penalty for deletions and 

insertions (Elffers et al., 2005). To ensure syllable-level alignment, we utilised the syllable 

boundaries that were available for the canonical transcriptions in the CGN lexicon and 

CELEX (Baayen et al., 1995) in the alignment process.  

 

Using the transcription variants retrieved for the target syllables and canonical transcriptions 

for the rest of the syllables, we performed a forced alignment of the training data with 8-

Gaussian triphones (see Section 3.3.1) to determine which transcription variants best 

represented the target syllables in the part of the corpus that only came with orthographic 

transcriptions. For instance, the canonical transcription of the bisyllabic word ‘nadruk’ 

(‘emphasis’) is /nadrYk/. As the first syllable /na/ belonged to the set of target syllables 

because of its high frequency, we fed the forced alignment process with all the four 

transcription variants observed in the manually verified subset (corresponding to the 

following sequences of biphones: /#-n+a n-a+#/, /#-n+@ n-@+#/, /#-n+A n-A+#/ and /#-N+a 

N-a+#/) and were, therefore, able to ascertain which variants acoustically best matched the 

relevant stretches of the speech signal. Since the second syllable /drYk/ did not belong to the 

set of target syllables, it was always labelled as the canonical sequence /#-d+r d-r+Y r-Y+k Y-
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k+#/. To ensure that the complete training corpus was consistently handled in the same 

manner, we also applied the forced alignment procedure to the manually transcribed part of 

the data.  

 

When building the single-path and multi-path mixed-model recognisers, we concentrated our 

modelling efforts on a set of 94 most frequent syllables found in the manually verified subset 

(Hämäläinen et al., 2007a). All of the target syllables appeared as part of polysyllabic words, 

and 71 of them also appeared as monosyllabic words. The target syllables covered 57% of all 

the syllable tokens in the training data, the least frequent of them occurring 850 times and the 

most frequent 35 000 times. 50% of all the target syllable tokens in the training data 

corresponded to monosyllabic words and, when modelled with context-independent syllable 

models, did not lose any context information as compared with the baseline word-internal 

triphone recogniser. An example of such a target syllable is /har/ (see Figures 1 and 2), which 

corresponds to the monosyllabic word ‘haar’ (the possessive pronoun ‘her’ or the noun 

‘hair’). 17% of the target syllable tokens occurred as the first syllable and 24% as the last 

syllable of a polysyllabic word. The last phone of the word-initial syllables lost right context 

information, whereas the first phone of the word-final syllables lost left context information. 

Examples of such cases are the target syllables /x@/ and /d@/, which appear, for instance, as 

the first and the last syllable of the words ‘geleerd’ (the past participle form of the verb ‘to 

learn’) and ‘belde’ (the singular imperfect form of the verb ‘to call’), respectively. 9% of the 

target syllable tokens appeared word-internally and lost both left and right context 

information. An example of such a case is the target syllable /ni/, which appears, for example, 

as the third syllable of the word ‘anonimiteit’ (‘anonymity’). The target syllables had an 

average of 8.7 transcription variants per syllable, with the actual number of variants differing 

from 1 to 27. Since the manually verified subset is representative of the whole corpus, we are 



 

 

 

ACCEPTED MANUSCRIPT 

 

 12 

confident that the transcription variants that we retrieved cover all reasonable transcriptions of 

the target syllables. 

 

Our corpus contained read speech. Even though read speech is not representative of all the 

problems that are typical of spontaneous speech (hesitations, restarts, repetitions etc.), the 

kinds of fundamental issues related to articulation that this paper addresses are present in all 

speech styles. In fact, using spontaneous speech would have added complexity into the 

recogniser that would have made it more difficult to isolate the effects of the kinds of 

articulatory issues we were interested in. An alternative for using syllable transcription 

variants derived from the manually verified subset of training data would have been to 

generate transcription variants using phonological rules for Dutch (e.g. Booij, 1999) and then 

perform a forced alignment with these transcription variants to determine which transcription 

variants best represented the target syllables in the training data. Yet, for our experiments, 

which were to test the validity of our method, we wanted to have as accurate transcription 

variants and as reliable information about their frequency as possible. We did not want to take 

the risk of omitting transcription variants or generating noise by using automatically derived 

transcription variants. Therefore, we decided to use the manually verified phonetic 

transcriptions available in CGN.  

 

2.2.Selection of major, distinct transcription variants for the initialisation of multi-path 
syllable models 

 
If the amount of data available for the re-estimation of the acoustic observation densities of 

single-path syllable models is already an issue (see Section 1), the situation is only more 

difficult for multi-path models. Therefore, the optimal initialisation of the parallel paths is of 

utmost importance. To accomplish this, we decided to initialise each path using the 
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parameters of the sequence of triphones that is most representative of the path in question. We 

obtained these representative sequences of triphones using the concept of ‘major, distinct 

transcription variants’ (MDVs). The identification of MDVs was guided by two principles. 

First, we wanted the MDVs to be as frequent as possible (‘major’), while at the same time as 

different from each other as possible (‘distinct’). Second, we had a preference for MDVs 

containing fewer symbols than the canonical variant. This preference stemmed from the high 

frequency of phone deletions reported in the literature (Greenberg, 1999; Johnson, 2004).  

 

Except for the fact that one probably should not exceed the number of transcription variants 

observed amongst the manually verified phonetic transcriptions, it is not a priori evident how 

many different paths one should include in the topologies of multi-path syllable models. 

There are at least two criteria that should be taken into account: 

(1) To reliably re-estimate the acoustic observation densities of the multi-path syllable 

models, a minimum number of training tokens is needed. A good estimate would be 

the minimum number of training tokens needed for the robust training of single-path 

syllable models multiplied by the number of the parallel paths in the multi-path 

syllable model. 

(2) To add an extra path, it must be possible to initialise it with a sequence of triphones 

that guarantees a sufficiently large distance to the paths that are already present in the 

model. 

 

To avoid an unnecessarily complex procedure, we decided to use all the transcription variants 

for building parallel paths for the syllables that only had up to three transcription variants (10 

% of all the target syllables). For the syllables that had more than three transcription variants, 

we used the concept of MDVs to select the variants that best represented three maximally 
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different pronunciation variants. Three parallel paths per syllable appeared a good 

compromise between too little training data and too small a distance between the triphone 

sequences used to initialise the paths. Our assumption about the optimal number of paths 

could later be verified by carrying out a forced alignment of the training data with the syllable 

models; the majority of the paths were frequently entered (Hämäläinen et al, 2007b). In 

addition, removing the paths that were rarely used during the forced alignment showed that 

the recognition performance remained virtually unchanged (Hämäläinen et al, 2006). 

 

We devised the following steps for selecting the optimal MDV triplet for each target syllable: 

(1) Count the frequency of each transcription variant of the target syllable in the training 

data.  

(2) Compute a matrix with articulatory distances between all transcription variant pairs 

for the target syllable. To compute the distances, we used the same feature-based 

algorithm as we did when aligning the manual and canonical transcriptions to find the 

transcription variants for the syllables (see Section 2.1).  

(3) Compile a ranked list of transcription variant triplets, each variant of which optimally 

serves as a centroid of variant clusters, given the distances between and the 

frequencies of all the variants. The criterion for optimality is the overall distance of all 

variants to their closest centroid, multiplied with the frequency of the variant. This 

means that variants are more likely to be part of a high-ranking triplet if the variant is 

more frequent and/or more distinct from the other variants. For instance, the triplet 

/hAt/-/hat/-/At/ ranked the highest for the syllable /hAt/, whereas the triplet /Ad/-/jAt/-

/jA/ ranked the lowest – mainly because of the low frequencies of the variants in 

question. 
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(4) Post-process the list produced in Step 3 to take into account the preference for 

transcription variants shorter than the canonical: in case the canonical transcription is 

not mono-phonemic, pick the highest-ranking triplet that contains at least one variant 

with at least one symbol less than the canonical. When none of the triplets satisfies the 

length criterion, select the highest-ranking triplet. The variants included in the selected 

triplet are the MDVs used in the initialisation of the HMM paths. 

 

In practice, one of the MDVs for all of the target syllables was the canonical transcription 

itself. 85% of the bi- and triphonemic target syllables (81% of all the target syllables) had 

one or two MDVs with fewer phones than the canonical, whereas 39% of all the target 

syllables had one MDV with more phones than the canonical.   

    

3. Experimental set-up  

3.1.Feature extraction  

We carried out the feature extraction at a frame rate of 10 ms using a 25-ms Hamming 

window and applied first order pre-emphasis to the signal using a coefficient of 0.97. For a 

total of 39 features, we calculated 12 Mel Frequency Cepstral Coefficients (MFCCs) and log-

energy with first and second order derivatives. We applied channel normalisation using 

cepstral mean normalisation over complete recordings, and then chunked the recordings to 

sentence-length entities for creating the language model and carrying out the recognition 

experiments. 

 

3.2. Lexicon and language model 

The recognition lexicon comprised a single pronunciation for each of the 29 700 words in the 
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recognition task. In the case of the baseline triphone recogniser, this single pronunciation 

comprised a string of canonical phones from the CGN lexicon. In the case of the mixed-

model recognisers, it consisted of the following: 

a) syllable units,  

b) canonical phones, or 

c) a combination of a) and b). 

To use the bisyllabic word ‘wereld’ (‘world’) as an example, the possible pronunciations 

were the following: 

a) /we   r@lt/,  

b) /#-w+e   w-e+r   e-r+@   r-@+l   @-l+t   l-t+#/, 

c1) /we   #-r+@   r-@+l   @-l+t   l-t+#/, or 

c2) /#-w+e   w-e+#   r@lt /.  

The syllable /we/ belonged to the list of 94 target syllables, whereas the syllable /r@lt/ did 

not. Therefore, c1) was the actual representation in the lexicon. 

 

One of the issues to consider when building syllable models is ambisyllabic consonants, i.e. 

consonants at syllable boundaries that belong, in part, to both the preceding and the following 

syllable. Unlike Ganapathiraju et al. (2001), who assigned ambisyllabics to both syllables, we 

decided to assign them to the following syllable only. We had two main motivations to do so. 

First, one of the main issues that we wanted to address with the syllable models was 

reduction, which often manifests itself as durational reduction. Hence, we did not want to add 

any more states into the syllable models by assigning the ambisyllabics to both the preceding 

and the following syllable. Second, assigning the ambisyllabics to both syllables would have 

resulted in a larger set of syllable models. This would have inevitably resulted in a decrease 

in the amount of data available for training each syllable model. Therefore, our choice can be 
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seen as a trade-off between the (linguistic) accuracy of the models and the amount of the data 

available for training them. 

 

We built a word-level bigram network for the task using the data in the training, test and 

development test sets. The purpose of this seemingly unconventional choice was to allow us 

to study changes in acoustic modelling only, without the risk of language modelling issues 

masking the effects. As a consequence of this choice, the out-of-vocabulary (OOV) rate was 

zero. The test set perplexity, computed on a per-sentence basis using HTK (Young et al., 

2002), was 92.  

 

3.3. Acoustic modelling 

We used HTK (Young et al., 2002) as the speech recognition platform. Because of the large 

number of contexts that the target syllables appeared in, building context-dependent syllable 

models would have exploded the number of models in the recogniser. This would have 

necessitated the use of state tying between different syllable models and the parallel paths of 

these syllable models. As there is no straightforward way to implement this with HTK, we 

built context-independent single-path and multi-path syllable models for our mixed-model 

recognisers.  

 

Both in terms of context modelling and the total number of states in the recognisers, a word-

internal triphone recogniser was the most comparable conventional phone-based recogniser to 

compare the context-independent syllable models with. To facilitate the analysis of our 

results, we took a word-internal triphone recogniser as the starting point and took carefully 

controlled steps to build the experimental recognisers. First, we built an “impaired” triphone 

recogniser in which context information was removed at the boundaries of the target syllables 
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within polysyllabic words (see Section 3.3.2). Second, we constructed single-path mixed-

model recognisers in which context-independent syllable models were included for the target 

syllables in monosyllabic or polysyllabic words only, or in both monosyllabic and 

polysyllabic words (see Section 3.3.3). Third, we repeated the exercise with multi-path 

syllable models (see Section 3.3.4).     

 

To study the stepwise changes from untrained to retrained single-path and multi-path syllable 

models, we evaluated the performance of the single-path and multi-path mixed-model 

recognisers both before and after the Baum-Welch re-estimation. In addition, we analysed the 

word-level and sentence-level recognition errors of the single-path and multi-path mixed-

model recognisers that could teach us the most about the different factors playing a role in 

pronunciation variation modelling with syllable models. We also compared the performance 

of the single-path and multi-path mixed-model recognisers with that of the baseline triphone 

recogniser. This section details the acoustic model training procedures used in building the 

recognisers. 

 

3.3.1. Baseline triphone recogniser 

We used a standard procedure with decision tree state tying to train the word-internal triphone 

recogniser. The procedure was based on asking yes/no questions about the left and right 

contexts of each triphone; the decision trees attempted to find the contexts that made the 

largest difference to the acoustics and that should, therefore, distinguish clusters. The 

questions at each node of the decision trees were chosen to locally maximise the likelihood of 

the training data given the final set of state tyings (Young et al., 2002).  
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We first trained initial 32-Gaussian monophones for 37 ‘native’ Dutch phones using linear 

segmentation of canonical transcriptions within automatically generated word segmentations. 

After that, we used the monophones to perform a forced alignment of the training data, and 

bootstrapped the triphones using the resulting phone segmentations. When carrying out the 

state tying, the minimum occupancy count that we used for each cluster resulted in 

approximately 3 500 distinct triphones in the recogniser. Table 3 presents the recogniser 

complexity in terms of the total number of distinct states in the recogniser. We trained 

triphone recognisers with up to 128 Gaussians per state, and optimised the values for the 

language model scaling factor and the word insertion penalty. The 64-Gaussian triphone 

recogniser was the best performing triphone recogniser, and was therefore used as the 

baseline triphone recogniser. 

 

Table 3: The complexities for the following recognisers: baseline triphone recogniser 
(TR), single-path mixed-model recogniser with the target syllables covered with 

syllable models in monosyllabic words (SPM), single-path mixed-model recogniser 
with the target syllables covered with syllable models in polysyllabic words (SPP), 
single-path mixed-model recogniser with the target syllables covered with syllable 
models in both monosyllabic and polysyllabic words (SP), multi-path mixed-model 

recogniser with the target syllables covered with syllable models in monosyllabic words 
(MPM), multi-path mixed-model recogniser with the target syllables covered with 

syllable models in polysyllabic words (MPP), and multi-path mixed-model recogniser 
with the target syllables covered with syllable models in both monosyllabic and 

polysyllabic words (MP). There was no state tying for syllable models. To facilitate a 
fair comparison, the complexity of the syllable models was estimated with the same 

tying ratio as that used in building the triphone models. 

TABLE 3 HERE 

 

3.3.2. Impaired triphone recogniser 

Before building context-independent syllable models for the mixed-model recognisers, we 

wanted to test the effect of removing the same context information from the baseline triphone 

recogniser described in Section 3.3.1. In practice, this meant replacing the triphones at the 
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boundaries of the target syllables within polysyllabic words by biphones. For instance, the 

word ‘behandeling’ (‘handling’) was represented by the following string of triphones in the 

baseline triphone recogniser: /#-b+@ b-@+h @-h+A h-A+n A-n+d n-d+@ d-@+l @-l+I l-

I+N I-N+#/. As the first syllable /b@/ and the third syllable /d@/ belonged to the set of 94 

target syllables, they were to lose context in the mixed-model recognisers. This loss of context 

at the boundaries of these syllables was simulated by using the following pronunciation in the 

impaired triphone recogniser: /#-b+@ b-@+# #-h+A h-A+n A-n+# #-d+@ d-@+# #-l+I l-I+N 

I-N+#/. Whenever biphones needed for the impaired triphone recogniser did not exist in the 

baseline triphone recogniser, we synthesised them (i.e. tied them to existing triphones) using 

the decision trees described in Section 3.3.1 (Young et al., 2002).  

 

We tested impaired triphone recognisers with up to 64 Gaussians per state. We carried out the 

tests both with optimised values for the language model scaling factor and the word insertion 

penalty, and with the values that were optimal for the baseline triphone recogniser.  

 

3.3.3. Single-path mixed-model recognisers 

When building the single-path mixed-model recognisers, we employed a procedure similar to 

that used in Hämäläinen et al. (2007a). We initialised the context-independent models for the 

target syllables by picking the initial syllable state parameters from the biphones and 

triphones corresponding to the canonical syllable transcriptions (see Figure 1). Some of the 

biphones necessary for building the syllable models did not exist in the baseline triphone 

recogniser. These unseen biphones were identical to the unseen biphones in the impaired 

triphone recogniser, and were tied to existing triphones in exactly the same way. To represent 

the syllables that were not covered with syllable models, we used the original triphones. 
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We built three types of single-path mixed-model recognisers: 

a) A single-path mixed-model recogniser with the target syllables covered with syllable 

models in monosyllabic words (SPM). As the baseline triphone recogniser (see Section 

3.3.1) did not contain cross-word context information, the untrained version of this type 

of mixed-model recogniser was essentially identical to it. The only difference was that 

the biphones and triphones constituting the monosyllabic words in question appeared as 

separate models in the case of the baseline triphone recogniser, whereas they were 

bound to the context-independent syllable models in the case of the mixed-model 

recogniser. 

b) A single-path mixed-model recogniser with the target syllables covered with syllable 

models in polysyllabic words (SPP). As compared with the baseline triphone 

recogniser, the untrained version of this type of mixed-model recogniser had lost 

context at the boundaries of the target syllables within polysyllabic words. However, it 

was essentially identical to the impaired triphone recogniser (see Section 3.3.2). The 

only difference was that the biphones and triphones constituting the target syllables in 

the polysyllabic words appeared as separate models in the case of the impaired triphone 

recogniser, whereas they were bound to the context-independent syllable models in the 

case of the mixed-model recogniser. 

c) A single-path mixed-model recogniser with the target syllables covered with syllable 

models in both monosyllabic and polysyllabic words (SP). As compared with the 

baseline triphone recogniser, the untrained version of this type of mixed-model 

recogniser had also lost context at the boundaries of the target syllables within 

polysyllabic words. However, it was essentially identical to the impaired triphone 

recogniser and the single-path mixed-model recogniser with the target syllables covered 
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with syllable models in polysyllabic words. The only difference was that some or all of 

the biphones and triphones constituting the target syllables in both the monosyllabic 

and the polysyllabic words appeared as separate models in the case of the impaired 

triphone recogniser and in the single-path mixed-model recogniser with the target 

syllable covered with syllable models in polysyllabic words. 

 

We carried out recognition experiments on the development test set to define the optimal 

number of Baum-Welch re-estimation rounds for the mixed-model recognisers; one round of 

Baum-Welch re-estimation resulted in the best performance in all cases. In addition, we 

optimised the language model scaling factor and the word insertion penalty both before and 

after the retraining. We trained and tested single-path mixed-model recognisers with up to 64 

Gaussians per state. The syllable models were initialised using biphones and triphones with 

the same number of Gaussians per state as in the final mixed-model recognisers. Table 3 

presents the complexity of the single-path mixed-model recognisers in terms of the total 

number of states.  

 

3.3.4. Multi-path mixed-model recognisers 

We followed the steps described in Section 2.2 to select the MDVs for each of the 94 target 

syllables, and initialised the parallel paths of the corresponding context-independent multi-

path models by picking the initial state parameters from the biphones and triphones 

corresponding to these MDVs (Hämäläinen et al., 2007a; Sethy and Narayanan, 2003). The 

previously unseen biphones were again synthesised using the decision trees described in 

Section 3.3.1. Before applying the Baum-Welch algorithm to capture within-syllable 

coarticulation and reduction effects, we combined the initialised paths into multi-path syllable 

models such as that shown in Figure 2. In practice, this meant that we did not assign specific 
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training tokens for the re-estimation of the model parameters of specific parallel paths. 

Instead, we left the Baum-Welch algorithm to take care of the weighted assignment of the 

training tokens during the re-estimation. In other words, the Baum-Welch algorithm used each 

training token to update the model parameters of each parallel path. In addition, the Baum-

Welch algorithm updated the transition probabilities of entering the different parallel paths. 

As a consequence, in the final multi-path syllable models, the probability of entering the path 

associated with the most common pronunciation was the highest. We chose to use the Baum-

Welch algorithm instead of Viterbi training in order to better model the gradual character of 

pronunciation variation phenomena (such as reduction). While the use of Viterbi training 

would have entailed the assumption that only one of the parallel paths is ‘correct’ for each 

training token, the Baum-Welch algorithm updated the model parameters of each parallel path 

using each training token. In practice, this means that the result of the Baum-Welch algorithm 

offers a better match between individual syllable tokens and the multi-path syllable models. 

The result of the Viterbi training does converge to the result of the Baum-Welch algorithm 

but for a very large number of training tokens only.  

 

We built three types of multi-path mixed-model recognisers: 

a) A multi-path mixed-model recogniser with the target syllables covered with syllable 

models in monosyllabic words (MPM). As the baseline triphone recogniser (see Section 

3.3.1) did not contain cross-word context information, the fundamental difference 

between it and the untrained version of this type of mixed-model recogniser was that 

adding the parallel paths to the syllable models essentially translated into adding 

pronunciation variants for the monosyllabic words involved. 

b) A multi-path mixed-model recogniser with the target syllables covered with syllable 

models in polysyllabic words (MPP). As compared with the baseline triphone 
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recogniser, the untrained version of this type of mixed-model recogniser had lost 

context at the boundaries of the target syllables within polysyllabic words. In addition, 

adding the parallel paths to the syllable models again meant adding pronunciation 

variants for the polysyllabic words involved.  

c) A multi-path mixed-model recogniser with the target syllables covered with syllable 

models in both monosyllabic and polysyllabic words (MP). As compared with the 

baseline triphone recogniser, the untrained version of this type of mixed-model 

recogniser had lost context at the boundaries of the target syllables within polysyllabic 

words. In addition, adding the parallel paths to the syllable models meant adding 

pronunciation variants for both the monosyllabic and the polysyllabic words involved. 

 

To define the optimal number of Baum-Welch re-estimation rounds for the mixed-model 

recognisers, we carried out recognition experiments on the development test set; one round of 

Baum-Welch re-estimation resulted in the best performance in all cases. Both before and after 

the retraining, we also optimised the language model scaling factor and the word insertion 

penalty. We trained and tested multi-path mixed-model recognisers with up to 64 Gaussians 

per state. The parallel paths of the syllable models were initialised using biphones and 

triphones with the same number of Gaussians per state as in the final mixed-model 

recognisers. Table 3 presents the complexity of the multi-path mixed-model recognisers in 

terms of the total number of states. 

 

4. Speech recognition results 

Figure 3 presents the most relevant speech recognition results in terms of word error rate 

(WER). 64 Gaussians per state resulted in the best recognition performance for all recogniser 
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types. The figure shows the performance of the single-path and multi-path mixed-model 

recognisers both before and after the Baum-Welch re-estimation for two conditions:  

a) with the same language model scaling factor and word insertion penalty as used for 

the baseline triphone recogniser.  

b) with the language model scaling factor and the word insertion penalty optimised for 

the best possible speech recognition performance. 

Table 4 presents the corresponding numbers of insertion, deletion and substitution errors, as 

well as the corresponding recognition parameter values. Varying between 14 and 18, the 

language model scaling factor remained stable for all the experimental conditions. On the 

contrary, the behaviour of the word insertion penalty (modelled in HTK as a word entrance 

probability) is more interesting. The higher the value of this parameter, the more favourable it 

becomes to enter a word. In effect, high values of the word insertion penalty lead to word 

insertions, whereas low values result in word deletions. The fact that the word insertion 

penalty usually had to be decreased for optimal performance in the case of the recognisers 

with lost context information (ITR, SPP, SP, MP) and the recognisers with parallel paths 

(MPM, MP) suggests that the addition of multi-path syllable models into a recogniser affects 

the weighting between the acoustic and the linguistic models of the recogniser. Qualitatively, 

it is straightforward to understand this; the introduction of syllable models will, in general, 

improve the match of the affected words with the signal. Since this improvement only holds 

for a subset of the words in the lexicon, the entire word competition regime is skewed. 

Retuning the word entrance penalty and the language model scaling factor can, apparently, 

only partially compensate for this change. 
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FIGURE 3 HERE 

Figure 3: WERs with a 95% confidence interval for the following recognisers with 64 
Gaussians per state: baseline triphone recogniser (TR), impaired triphone recogniser 

(ITR), single-path mixed-model recogniser with the target syllables covered with 
syllable models in monosyllabic words (SPM), single-path mixed-model recogniser 
with the target syllables covered with syllable models in polysyllabic words (SPP), 
single-path mixed-model recogniser with the target syllables covered with syllable 
models in both monosyllabic and polysyllabic words (SP), multi-path mixed-model 

recogniser with the target syllables covered with syllable models in monosyllabic words 
(MPM), multi-path mixed-model recogniser with the target syllables covered with 

syllable models in polysyllabic words (MPP), and multi-path mixed-model recogniser 
with the target syllables covered with syllable models in both monosyllabic and 

polysyllabic words (MP). The subscript “def” indicates that the language model scaling 
factor (-s) was kept at 16 and that the word insertion penalty (-p) was kept at 25. The 

subscript “opt” indicates that the recognition parameters had been optimised for the best 
possible performance. The dark grey bars for the mixed-model recognisers represent the 

untrained and the light grey bars the retrained recognisers. 

 

Table 4: The number of insertion, deletion and substitution errors corresponding to the 
WERs in Figure 3. The subscript “bt” refers to the untrained recognisers (see the dark 
grey bars in Figure 3) and the subscript “at” to the retrained recognisers (see the light 
grey bars in Figure 3). -s and -p are the corresponding language model scaling factors 

and word insertion penalties, respectively. 

TABLE 4 HERE 

 
Figure 3 and Table 4 show that, before the recognition parameter optimisation, the speech 

recognition results are identical for the baseline triphone recogniser and the untrained single-

path mixed-model recogniser with the target syllables covered with syllable models in 

monosyllabic words (SPMdef, bt). Similarly, the results are identical for the impaired triphone 

recogniser (ITRdef) and both the untrained single-path mixed-model recogniser with the target 

syllables covered with syllable models in polysyllabic words (SPPdef, bt) and the untrained 

single-path mixed-model recogniser with the target syllables covered with syllable models in 

both monosyllabic and polysyllabic words (SPdef, bt). This proves that it does not make a 

difference for the speech recognition performance whether or not the biphones and triphones 
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constituting the target syllables are “loose”, or bound to the context-independent syllable 

models before training the mixed-model recognisers further. 

 

From the confidence intervals in Figure 3, one can see that most of the untrained single-path 

mixed-model recognisers (SPMdef, bt, SPMopt, bt, SPdef, bt, SPopt, bt) significantly outperformed 

the corresponding untrained multi-path mixed-model recognisers (MPMdef, bt,  MPMopt, bt, 

MPdef, bt, MPopt, bt) both before and after the recognition parameter optimisation. The only 

exception was the untrained mixed-model recognisers with the target syllables covered with 

syllable models in polysyllabic words; the recognition results did not differ from each other 

significantly whether single-path (SPPdef, bt, SPPopt, bt) or multi-path  (MPPdef, bt, MPPopt, bt) 

syllable models were used.  

 

Before the recognition parameter optimisation, most of the re-trained single-path mixed-

model recognisers (SPMdef, at, SPdef, at) again outperformed the corresponding re-trained multi-

path mixed-model recognisers (MPMdef, at, MPdef, at). The only exception was the re-trained 

mixed-model recognisers with the target syllables covered with syllable models in 

polysyllabic words; the recognition results (SPPdef, at and MPPdef, at) were identical. After the 

recognition parameter optimisation, the re-trained single-path mixed-model recogniser 

outperformed the re-trained multi-path mixed-model recogniser both in the case of the mixed-

model recognisers with the target syllables covered with syllable models in monosyllabic 

words (SPMopt, at vs. MPMopt, at), and in the case of the mixed-model recognisers with the 

target syllables covered with syllable models in both monosyllabic and polysyllabic words 

(SPopt, at vs. MPopt, at). However, the difference in the recognition performance was significant 

only in the first case.  In the case of the mixed-model recognisers with the target syllables 
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covered with syllable models in polysyllabic words, the recognition results (SPPopt, at and 

MPPopt, at) were still identical after the recognition parameter optimisation. 

 

As we can see from Figure 3, the retraining usually improved the performance of a recogniser 

significantly. The only exception was the single-path mixed-model recogniser with the target 

syllables covered with syllable models in monosyllabic words (SPMdef, bt vs. SPMdef, at and 

SPMopt, bt vs. SPMopt, at). In this case, the re-training did improve the performance of the 

recogniser but this improvement was very small (0.1 percentage points). It is interesting to 

notice that the mixed-model recognisers that essentially started off as being identical to the 

baseline triphone recogniser (SPMdef, bt) and the impaired triphone recogniser (SPPdef, bt and 

SPdef, bt) outperformed the corresponding triphone recognisers after the retraining. On the 

other hand, the recognition parameter optimisation affected the recognition results 

significantly only in the case of the untrained multi-path mixed-model recogniser with the 

target syllables covered with syllable models in monosyllabic words (MPMdef, bt vs. MPMopt, 

bt) and in the case of the untrained multi-path mixed-model recogniser with the target syllables 

covered with syllable models in both monosyllabic and polysyllabic words (MPdef, bt vs. MPopt, 

bt).  

 

The best-performing recogniser was the re-trained single-path mixed-model recogniser with 

the target syllables covered with syllable models in monosyllabic words (SPMopt, at). Except 

for the baseline triphone recogniser, it significantly outperformed all other types of 

recognisers. Even though the baseline triphone recogniser outperformed the re-trained multi-

path mixed-model recogniser with the target syllables covered with syllable models in 
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monosyllabic words (MPMopt, at), the difference in the recognition performance was not 

significant.  

 

5. Discussion of the speech recognition results 

The speech recognition results reported in Section 4 confirm our previous finding that the 

introduction of syllable models does not necessarily result in better speech recognition 

performance (Hämäläinen et al., 2007a). In the following subsections, we discuss the speech 

recognition results with respect to the different factors playing a role in pronunciation 

variation modelling with syllable models. These issues include the following: syllable 

context, lexical confusability, word-specific pronunciation variation, and long-span spectral 

and temporal dependencies in speech. We also discuss the effect of the Baum-Welch re-

estimation in the context of the aforementioned factors.  

 

5.1.Syllable context 

Using context-independent syllable models in the untrained mixed-model recognisers 

essentially meant sacrificing some or all context information at the syllable boundaries in the 

case of syllables embedded in polysyllabic words (see Sections 3.3.3 and 3.3.4). From the 

recognition results, it immediately becomes clear that syllable context is the single most 

important factor in successful pronunciation variation modelling with syllable models. The 

effect of losing syllable context information is insulated in the case of the impaired triphone 

recogniser and the untrained single-path mixed-model recogniser with the target syllables 

covered with syllable models in polysyllabic words. This is because the loss of syllable 

context information at the boundaries of the target syllables within polysyllabic words is the 

only fundamental difference between the baseline triphone recogniser and these two 
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recognisers. In terms of recognition performance, this loss of syllable context information 

translated into a drastic 2.7 percentage point deterioration before the recognition parameter 

optimisation (ITRdef, SPPdef, bt) and a 2.4 percentage point deterioration after the recognition 

parameter optimisation (ITRopt, SPPopt, bt) as compared with the baseline triphone recogniser. 

 

Apart from the recognition results, we can illustrate the effect of the lost syllable context 

information, as well as the impact of the retraining and the recognition parameter 

optimisation, using a detailed analysis of the word-level recognition errors made by the 

optimised single-path mixed-model recogniser with the target syllables covered with syllable 

models in polysyllabic words both before and after the retraining (SPPopt, bt and SPPopt, at). For 

this analysis, we treated the recognition output of the baseline triphone recogniser as the 

reference transcriptions. This is because we wanted to show why the mixed-model recogniser 

performed worse than the baseline triphone recogniser and were, therefore, not so interested 

in the errors made by both the triphone recogniser and the mixed-model recognisers. We first 

compared the output of the optimised untrained mixed-model recogniser with the output of 

the baseline triphone recogniser. To analyse the effect of the retraining in the recognition 

output, we also compared the output of the optimised retrained mixed-model recogniser with 

the output of the baseline triphone recogniser. Using the output of the baseline triphone 

recogniser as the reference, 108 (10%) of all the 1122 ‘errors’ made by the optimised 

untrained single-path mixed-model recogniser with the target syllables covered with syllable 

models in polysyllabic words (SPPopt, bt) were insertions, 274 (24%) deletions and 740 (66%) 

substitutions1. Of the total of 668 errors made by the optimised retrained recogniser (SPPopt, 

at), 107 (16%) were insertions, 99 (15%) deletions and 462 (69%) substitutions1. Therefore, 

substitutions were by far the most important type of errors from the WER point of view.  
                                            
1 As the output of the triphone recogniser was used as the reference in the analysis, these figures cannot 
straightforwardly be related to the figures in Table 4. 
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Figures 4 and 5 present the numbers of substitution errors before and after the retraining. As 

we can see from the figures, most of the substituted words contained syllable models both 

before and after the retraining. There are two reasons why one would expect most of the 

substitution errors to originate from monosyllabic words. First, monosyllabic words cover 

65% of the corpus (see Table 2). Second, polysyllabic words generally exhibit a relatively low 

WER (Greenberg and Chang, 2000). However, Figure 4 shows that bisyllabic words 

containing syllable models were the most problematic type of words before the retraining. 

This finding supports the conclusion we were already able to make based on the speech 

recognition results; the loss of syllable context information at the boundaries of the target 

syllables within polysyllabic words is detrimental for the speech recognition performance. 

The fewer syllables the polysyllabic words have, the more serious the problem (see Figure 4).  

 

FIGURE 4 HERE 

Figure 4: The number of substitution errors for words with varying numbers of 
syllables in the optimised untrained single-path mixed-model recogniser with the target 
syllables covered with syllable models in polysyllabic words (SPPopt, bt)1. The errors are 
shown separately for words that include one or more syllable models and for words that 

are entirely modelled as a sequence of triphones. 

 

FIGURE 5 HERE 

Figure 5: The number of substitution errors for words with varying numbers of 
syllables in the optimised retrained single-path mixed-model recogniser with the target 
syllables covered with syllable models in polysyllabic words (SPPopt, at)1. The errors are 
shown separately for words that include one or more syllable models and for words that 

are entirely modelled as a sequence of triphones. 
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The retraining had the largest effect on polysyllabic words containing syllable models (see 

Figures 4 and 5). The number of substitution errors reduced as much as 50% (from 313 to 158 

errors), and 51% (from 61 to 30 errors) for bisyllabic and trisyllabic words, respectively. The 

same figure was only 28% (from 263 to 189 errors) for monosyllabic words represented by 

syllable models. These figures suggest that the retraining was able to reintroduce some of the 

context information that was lost during the initialisation. In fact, the retraining and the 

recognition parameter optimisation resulted in a 1.7-percentage-point decrease in the WER 

(see Figure 3). Nevertheless, even after the retraining, the single-path mixed-model recogniser 

with the target syllables covered with syllable models in polysyllabic words yielded a 

significantly higher WER than the baseline triphone recogniser.  

 
We looked further into the substitution errors to check for any potential error patterns, and 

were indeed able to find systematic errors in the case of polysyllabic words containing one or 

more syllable models. These errors illustrate exactly how the lost context information affects 

the recogniser output. There were two main types of systematic errors. First, we saw 

polysyllabic words with syllable models being substituted by words that were identical to the 

original word except for the deletion of a syllable (e.g. weg-ge-legd � ge-legd; ge-had � 

had). In some cases, the deleted syllable had been inserted into the sentence as a separate 

word. In other cases, it had been deleted altogether. Second, we saw polysyllabic words with 

syllable models being substituted by words corresponding to a part of the original word, 

rather than a syllable or several syllables of the original word (e.g. ja-ren � jaar). 161 errors 

exemplified these two types of substitution errors before the retraining. After the retraining, 

the same figure was 71. In other words, the retraining was able to reduce these systematic 

errors by 56%. 
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An example of a case in which a polysyllabic word with a syllable model had erroneously 

been substituted by two words, can be seen in the following sentence pair. The word 

‘weggelegd’ (the past participle form of the verb ‘to lay aside’) had been substituted by the 

word ‘gelegd’ (the past participle form of the verb ‘to place’) but the word ‘weg’ (‘away’) had 

been inserted as a word on its own. 

 

Baseline triphone recogniser: die al is  weggelegd voor ‘t zout en de specerijen 

in de pap  

Mixed-model recogniser: die al is weg gelegd  voor ‘t zout en de specerijen 

in de pap 

 

As the word ‘weggelegd’ was modelled with the model sequence /#-w+E w-E+# G@ #-l+E l-

E+x E-x+t x-t+#/ (i.e. context information was lost between the last phone of the syllable 

‘weg-’ and the first phone of the syllable ‘-ge-’ during the initialisation), this seemed to be a 

case of the lack of context information affecting the recogniser output. However, these types 

of errors are – of course – also related to the value of the word insertion penalty. As this 

particular error occurred both before and after the retraining, the retraining or the recognition 

parameter optimisation had not been able to correct it.  

 

An example of a case in which a polysyllabic word with a syllable model had been substituted 

by a word that is identical to the original word except for the deletion of a syllable, and in 

which the deleted syllable had completely been deleted, can be seen in the following sentence 

pair. The pronominal adverb ‘erop’ had been substituted by the locative adverb ‘er’. The 

preposition ‘op’ (‘on’) had been deleted altogether. 
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Baseline triphone recogniser: wat stond erop  

 Mixed-model recogniser: wat stond er 

 

The word ‘erop’ was modelled with the two syllable models /Er/ and /Op/, with context 

information lost at the syllable boundary. In this case, the sentence was correctly recognised 

after the retraining. This suggests that the retraining had reintroduced the lost context 

information. Considering the fact that ‘erop’ is a frequently occurring word, i.e. that both of 

the syllables frequently appeared in each other’s context in the training data, this is not 

surprising. 

 

More often than the above type of cases, however, we saw polysyllabic words with syllable 

models being substituted by a word corresponding to a part of the original word. For example, 

before the retraining, the word ‘jaren’ (‘years’) was substituted by the word ‘jaar’ (‘year’) 

four times. The word ‘jaren’ was modelled with the two syllable models /ja/ and /r@/, 

whereas the word ‘jaar’ was modelled with the triphone sequence /#-j+a j-a+r a-r+#/. 

Similarly, the word ‘hadden’ (the plural imperfect form of the verb ‘to have’) was substituted 

by the word ‘had’ (the singular imperfect form of the same verb) four times before the 

retraining. The word ‘hadden’ was modelled with the model sequence /#-h+A h-A+# d@/, 

whereas the word ‘had’ was modelled with the syllable model /hAt/.  These errors are related 

to resyllabification. The singular form ‘jaar’ corresponds to a syllable with a CVC structure, 

whereas the bisyllabic plural form ’jaren’ corresponds to a CV-CV structure. This raises the 

question whether all CV syllables are born equal. It might be that CkVi syllables resulting 

from CkViCm-Va words, with Va being an affix starting with a vowel, should not be clustered 
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with ‘genuine’ CkVi syllables. The fact that a large part of these errors disappeared in the 

retraining supports this hypothesis; the retraining was able to reintroduce some of the context 

information lost at the initialisation stage. 

 

To summarise, our findings show that syllable context information is crucial for any attempt 

to model pronunciation variation with syllable models. From the point of view of human 

speech production and perception, syllables may have fewer interdependencies than 

phonemes. However, inter-syllable dependencies are clearly essential for automatic speech 

recognition.  

 

5.2.Lexical confusability  

Adding parallel paths to the syllable models essentially translates into adding pronunciation 

variants into the search space (see Section 3.3.4). It is well known that modelling 

pronunciation variation by adding transcription variants in the lexicon is not straightforward 

because of the resulting increase in lexical confusability (e.g. Kessens et al., 2002). Similarly, 

the parallel paths of the untrained multi-path syllable models are obviously increasing the 

lexical confusability. Going from the baseline triphone recogniser to the untrained multi-path 

mixed-model recogniser with the target syllables covered with syllable models in 

monosyllabic words, the only fundamental difference was increasing the number of 

pronunciation variants for monosyllabic words in terms of parallel paths in the multi-path 

syllable models. Therefore, this type of mixed-model recogniser was the most appropriate 

recogniser to pinpoint the effect of the increased lexical confusability in the case of 

monosyllabic words. From the point of view of recognition performance, the increased 

confusability meant a 1.4 percentage point deterioration before the recognition parameter 
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optimisation (MPMdef, bt) and a 0.9 percentage point deterioration after the recognition 

parameter optimisation (MPMopt, bt) as compared with the baseline triphone recogniser. It is 

interesting to notice that the increased lexical confusability deteriorated the recognition 

performance less than the loss of syllable context information in the case of polysyllabic 

words.  

 

The significance of the lexical confusability issue in the case of monosyllabic words becomes 

clear when one considers the fact that 91% of the monosyllabic words represented with multi-

path syllable models were function words. Function words typically carry less information 

than content words and are often pronounced in a highly reduced fashion (Bell et al., 2003; 

Greenberg, 1999; Jurafsky et al., 2001a; Pluymaekers et al., 2005; Van Son and Pols, 2003). 

Consequently, our initialisation approach produced short, easily confusable model paths 

particularly in the case of monosyllabic function words. For instance, the transcription variant 

/d/ was one of the MDVs for both of the Dutch definite articles ‘de’ and ‘het’. In cases where 

a definite article is directly followed by a noun, the bigram language model should be able to 

help. However, if there is an adjective between the article and the noun, the bigram language 

model is left powerless. In other words, all the confusability that the parallel paths caused in 

such cases translated into confusability on the word-level, and – when the language model 

could not assist in solving the problem – could have a direct impact on the WER. 

 

It is interesting to notice that adding parallel paths to the syllable models in the case of 

polysyllabic words apparently does not cause problems with lexical confusability – nor does it 

improve the recognition performance. These conclusions can be drawn by comparing the 

recognition performance of the single-path mixed-model recogniser with the target syllables 
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covered with syllable models in polysyllabic words (SPPdef, bt, SPPopt, bt, SPPdef, at and SPPopt, 

at) and the multi-path mixed-model recogniser with the target syllables covered with syllable 

models in polysyllabic words (MPPdef, bt, MPPopt, bt, MPPdef, at and MPPopt, at, respectively), as 

well as the corresponding number of insertion, deletion and substitution errors. The 

comparable recognition results are virtually identical, and the numbers of errors – in 

particular, the number of substitution errors – are remarkably similar. In general, a word is 

less susceptible to recognition errors the more syllables it has (Greenberg and Chang, 2000; 

Hämäläinen et al., 2007a). It, therefore, appears that the other syllables and the language 

model are able to save the polysyllabic words from being misrecognised due to the increased 

number of pronunciation variants resulting from the addition of parallel paths in the multi-

path syllable models. 

 

To get further support for our hypothesis that initialising model paths with MDVs containing 

fewer symbols than the canonical variant was increasing the lexical confusability, we checked 

if the shorter paths were indeed contributing to misrecognitions more often than the other 

paths. To this end, we analysed the sentences with syllables modelled with multi-path syllable 

models in the case of the mixed-model recognisers. For these sentences, we calculated the 

total number of states visited during recognition by the baseline triphone recogniser and the 

optimised untrained and retrained multi-path mixed-model recognisers. We then checked how 

these numbers compared across the recognisers. The reason for us to calculate the total 

number of states on the sentence-level rather than on the word-level was that one speech 

recognition error typically causes recognition errors elsewhere in the sentence, as well. We 

carried out the analysis for four conditions: 

a) for sentences that had been recognised correctly by both the baseline triphone 

recogniser and the optimised multi-path mixed-model recogniser.  
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b) for sentences that had been recognised correctly by the baseline triphone recogniser 

but incorrectly by the optimised multi-path mixed-model recogniser. 

c) for sentences that had been recognised incorrectly by the baseline triphone recogniser 

but correctly by the optimised multi-path mixed-model recogniser. 

d) for sentences that had been recognised incorrectly by both the baseline triphone 

recogniser and the optimised multi-path mixed-model recogniser. 

Tables 5, 7 and 9 show the results of the analysis for the three types of multi-path mixed-

model recognisers before the retraining, and Tables 6, 8 and 10 after the retraining. Condition 

b) is particularly revealing. Whenever the output of the multi-path mixed-model recogniser 

contained errors and the output of the baseline triphone recogniser did not, the total number of 

states visited by the mixed-model recogniser was smaller than the total number of states 

visited by the baseline triphone recogniser in most of the cases, both before and after 

retraining. On the contrary, when both recognisers were correct (condition a)), the total 

number of states visited was equal between the two recognisers in the vast majority of the 

cases. These results support our statement that paths shorter than the canonical cause 

misrecognitions. On the other hand, in particular condition a) shows that paths shorter (and 

longer) than the canonical can also be beneficial for the recognition results; their use often 

resulted in 100% recognition accuracy, too. Paths longer than the canonical were, however, 

the least helpful in the case of the multi-path mixed-model recogniser with the target syllables 

covered with syllable models in monosyllabic words (see condition a) in Tables 5 and 6). This 

is in line with the high reduction rates of monosyllabic words (Bell et al., 2003; Greenberg, 

1999; Jurafsky et al., 2001a; Pluymaekers et al., 2005; Van Son and Pols, 2003).  
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Table 5: Comparison of the total number of states visited by the baseline triphone 
recogniser and the optimised untrained multi-path mixed-model recogniser with the 

target syllables covered with syllable models in monosyllabic words (MPMopt, bt). The 
analysis only included sentences with syllables modelled with multi-path syllable 

models in the case of the mixed-model recognisers. 

TABLE 5 HERE 

Table 6: Comparison of the total number of states visited by the baseline triphone 
recogniser and the optimised retrained multi-path mixed-model recogniser with the 

target syllables covered with syllable models in monosyllabic words (MPMopt, at). The 
analysis only included sentences with syllables modelled with multi-path syllable 

models in the case of the mixed-model recognisers. 

TABLE 6 HERE 

Table 7: Comparison of the total number of states visited by the baseline triphone 
recogniser and the optimised untrained multi-path mixed-model recogniser with the 
target syllables covered with syllable models in polysyllabic words (MPPopt, bt). The 
analysis only included sentences with syllables modelled with multi-path syllable 

models in the case of the mixed-model recognisers. 

TABLE 7 HERE 

Table 8: Comparison of the total number of states visited by the baseline triphone 
recogniser and the optimised retrained multi-path mixed-model recogniser with the 
target syllables covered with syllable models in polysyllabic words (MPPopt, at). The 
analysis only included sentences with syllables modelled with multi-path syllable 

models in the case of the mixed-model recognisers. 

TABLE 8 HERE 

Table 9: Comparison of the total number of states visited by the baseline triphone 
recogniser and the optimised untrained multi-path mixed-model recogniser with the 
target syllables covered with syllable models in both monosyllabic and polysyllabic 
words (MPopt, bt). The analysis only included sentences with syllables modelled with 

multi-path syllable models in the case of the mixed-model recognisers. 

TABLE 9 HERE 

Table 10: Comparison of the total number of states visited by the baseline triphone 
recogniser and the optimised retrained multi-path mixed-model recogniser with the 
target syllables covered with syllable models in both monosyllabic and polysyllabic 
words (MPopt, at). The analysis only included sentences with syllables modelled with 

multi-path syllable models in the case of the mixed-model recognisers. 

TABLE 10 HERE 
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To summarise, while parallel paths make the syllable models acoustically more accurate 

(because the Gaussian mixtures along the parallel paths are able to capture the acoustic 

variation observed in the training data in much greater detail than a single path can do with 

the same number of Gaussians per state), they are increasing lexical confusability during 

recognition. Based on our findings, it may be particularly dangerous to add paths shorter than 

the canonical. This can, of course, also be explained by the well-known bias towards the use 

of shorter paths; the frame-state assignment is n-to-1 with n ≥ 1. So, while unreduced syllable 

tokens may be modelled with shorter state sequences, the short, reduced syllable tokens 

cannot be modelled by longer state sequences. 

 

5.3. Word-specific pronunciation variation 

Previous research on syllable models (Ganapathiraju et al., 2001; Hämäläinen et al., 2007a; 

Jouvet and Messina, 2004; Sethy and Narayanan, 2003; Sethy et al., 2003) does not discuss 

the appropriateness of using the same syllable models for syllables appearing in both 

monosyllabic and polysyllabic words. Based on the current recognition results, this might not, 

indeed, be an important issue in the case of single-path syllable models. The results gained 

with the single-path mixed-model recogniser with the target syllables covered with syllable 

models in both monosyllabic and polysyllabic words (SPdef, at or SPopt, at) can be explained by 

combining the results achieved with the single-path mixed-model recogniser with the target 

syllables covered with syllable models in monosyllabic words (SPMdef, at or SPMopt, at) and the 

single-path mixed-model recogniser with the target syllables covered with syllable models in 

polysyllabic words (SPPdef, at or SPPopt, at). However, using the same syllable models for 

syllables appearing in both monosyllabic and polysyllabic words does seem to be an issue in 
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the case of multi-path syllable models. There are at least two pieces of evidence pointing to 

this direction. First, one would not expect the performance of the multi-path mixed-model 

recogniser with the target syllables covered with syllable models in both monosyllabic and 

polysyllabic words (MPdef, at or MPopt, at) to be worse than the performances of both the multi-

path mixed-model recogniser with the target syllables covered with syllable models in 

monosyllabic words (MPMdef, at or MPMopt, at) and the multi-path mixed-model recogniser 

with the target syllables covered with syllable models in polysyllabic words (MPPdef, at or 

MPPopt, at). Second, the fact that the optimal value for the word insertion penalty for the multi-

path mixed-model recogniser with the target syllables covered with syllable models in both 

monosyllabic and polysyllabic words was so deviant from the other two multi-path mixed-

model recognisers (see Table 4), suggests that it is difficult to find a word insertion penalty 

that would be suitable for both the monosyllabic and the polysyllabic words. 

 

The importance of having different multi-path syllable models for canonically equivalent 

syllables appearing in monosyllabic and polysyllabic words makes sense intuitively. After all, 

the parallel paths are based on segmental variation. The segmental variation exhibited by the 

highly reduced monosyllabic function words is different from the segmental variation 

exhibited by a canonically equivalent syllable occurring in a polysyllabic word. Even if some 

of the segmental variants are the same, the probabilities of these variants are most likely to 

differ considerably between monosyllabic and polysyllabic words. The experiments carried 

out for this paper do not, however, allow us to draw any conclusions about the importance of 

more detailed information (e.g. which polysyllabic word the syllable appears in, which 

position the syllable appears in in the polysyllabic word) for the construction of multi-path 

syllable models. 
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5.4.Long-span spectral and temporal dependencies 

In the literature (Ganapathiraju et al., 2001; Sethy and Narayanan, 2003; Sethy et al., 2003), 

the difficulty of capturing long-span spectral and temporal dependencies in speech with 

phoneme-length acoustic models has been cited as an important reason for using syllable 

models. According to Sethy et al. (2003), for instance, units of syllabic duration or longer are 

much more effective in capturing the cross-phone correlations and temporal dependencies 

than units of phonemic duration. In this subsection, we discuss this issue in more detail. 

 

As explained in Section 3.3.3, the untrained version of the single-path mixed-model 

recogniser with the target syllables covered with syllable models in monosyllabic words 

(SPMdef, bt) was essentially identical to the baseline triphone recogniser. Therefore, this type 

of mixed-model recogniser is the most appropriate recogniser to pinpoint the effect of 

incorporating the long-span dependencies into the syllable models by means of retraining. As 

we can see in Figure 3, the retraining led into an insignificantly small improvement in the 

recognition performance. This indicates that, for a single-path system, coarticulation- and 

reduction-related spectral and temporal dependencies in speech that make a significant 

difference for speech recognition performance are already well covered by triphones – let 

alone context-dependent phone models with +/-2 phone context. Such long-span 

dependencies may, however, be slightly more important in the case of spontaneous speech. 

When compared with the performance of a phoneme-based recogniser, the absolute 

improvement that Sethy et al. (2003) obtained with mixed models on a particularly 

challenging database of spontaneous speech was 0.5%. However, some of their improvement 

can certainly be attributed to the fact that they used both a mixed syllabic-phonetic and a pure 

phonetic pronunciation variant for each word in the recognition lexicon. In any case, our 

results show that modelling syllable context is far more important for speech recognition 
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performance than modelling the long-span dependencies. The modelling of long-span spectral 

and temporal dependencies with syllable models may become more beneficial as the size of 

speech databases increases and as the number of syllables with a sufficient number of training 

tokens becomes larger. 

 

6. General discussion 

Thus far, explicit pronunciation variation modelling by adding pronunciation variants in the 

lexicon has made a disappointing contribution to improving speech recognition performance 

(Hain, 2005). Therefore, our research was focussed on the question whether implicit 

pronunciation variation modelling within the HMMs could yield better results. The problem 

of pronunciation variation is at the very heart of ASR since it is directly related to the 

question how observed continuous acoustic variation can successfully be modelled by a more 

discrete framework (e.g. distinct variants in the lexicon or distinct paths in an HMM). Of 

course, there are many different ways of attempting implicit modelling. The focus of the 

present study was on implicit modelling of long-span coarticulation and reduction effects 

with syllable-length acoustic models. More specifically, we studied a number of factors that 

may affect the performance of syllable-based recognisers.  

 

First and foremost, we must conclude that implicit pronunciation variation modelling with 

syllable models does not per se lead to significant improvements in recognition performance 

as compared with explicit modelling with context-dependent phone models. In our 

experiments on TIMIT and a smaller set of read speech from CGN (Hämäläinen et al., 

2007a), the performance of retrained single-path mixed-model recognisers with the target 

syllables covered with syllable models in both monosyllabic and polysyllabic words did not 

differ significantly from the performance of triphones. However, in the current study, 
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triphones (with a larger number of Gaussian mixtures) significantly outperformed a similar 

retrained single-path mixed-model recogniser. The performance of the baseline triphone 

recogniser was only reached and slightly improved upon by a mixed-model recogniser in 

which the most common monosyllabic words were covered with syllable models. Our results 

are comparable with other studies (Ganapathiraju et al., 2001; Jouvet and Messina, 2004; 

Sethy et al., 2003) in which single-path syllable models did not yield considerable 

improvements in recognition performance. In Hämäläinen et al. (2007a), we hypothesised 

that the lack of improvement in recognition performance was caused by the fact that the 

many different forms that syllable pronunciations can assume cannot be accounted for with a 

single path through the syllable model. We still believe that this is part of the reason for the 

disappointing recognition performance. However, our current study also shows that the loss 

of context information at some syllable boundaries puts the single-path mixed-model 

recognisers (as well as the multi-path mixed-model recognisers) with context-independent 

syllable models in polysyllabic words at a disadvantage as compared with a well-engineered 

triphone recogniser.  

 

We expected that the richer topology of multi-path syllable models would be better at 

accounting for pronunciation variation than triphone models, or single-path syllable models 

that merely have their parameters adjusted on the basis of dedicated syllable tokens. In a way, 

untrained multi-path models initialised with MDVs re-introduce explicit pronunciation 

variation modelling. Such models correspond to the segmental multiple-entry models of 

auditory word recognition (Johnson, 2004). However, we assumed that re-estimating multi-

path syllable models initialised with MDVs would ‘specialise’ the model paths to such an 

extent that a potential increase in lexical confusability would not be a problem. Such models 

would be in line with Johnson’s nonsegmental multiple-entry models of auditory word 
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recognition. In reality, the Baum-Welch re-estimation turned out not to be as powerful as we 

had expected. The re-estimation may have adjusted the probabilities of entering the different 

parallel paths and taken us some distance from the symbolic level to the subsymbolic level 

but this was not enough to avoid the problem of lexical confusability. In fact, some of the 

retrained parallel paths were still closely related to the MDVs used to initialise them. In 

Hämäläinen et al. (2007b), we carried out a forced alignment of the training data with the 

multi-path mixed-model recogniser and analysed the training tokens assigned to each path of 

the syllable models. Our analysis showed that the token-to-path assignment was clearly 

related to the articulatory similarity – or dissimilarity – between the transcriptions of the 

training tokens and the MDVs used to initialise the parallel paths. In Hämäläinen et al. 

(2007c), on the other hand, we investigated the Kullback-Leibler distance (KLD) between the 

initial and the retrained model paths. It appeared that the KLDs between the initial and the 

retrained distributions for the states of the paths corresponding to the canonical transcriptions 

were relatively minor. The distances between the initial and the retrained paths for non-

canonical paths were often (much) larger. The error analysis described in this paper showed 

that, to a large extent, the problem of lexical confusability could be attributed to parallel paths 

that were shorter than the canonical.  

 

Properly trained parallel paths make syllable models acoustically more accurate because the 

Gaussian mixtures along the parallel paths are able to capture the acoustic variation observed 

in the training data in much greater detail than a single path can do with the same number of 

Gaussians per state. However, the greater acoustic accuracy comes at the cost of increased 

lexical confusability. To be able to benefit from the greater acoustic accuracy and to reduce 

the problem of the increased lexical confusability during recognition, the pronunciation 

variation modelled by the parallel paths should be linked to specific verbal contexts. After all, 
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some of the paths may represent pronunciation variants that only occur in certain words or – 

in particular in the case of monosyllabic function words – in certain cross-word contexts. 

However, the architecture of a conventional HMM decoder, such as HTK (Young et al., 

2002), does not provide hooks for controlling which paths can be used with which words and 

contexts. One is left to do with the probabilities of words (and n-grams) as defined in the 

language model, and the “loose” transition probabilities of entering the different parallel paths 

of the syllable models that remain unchanged in all verbal contexts. Our speech recognition 

results with multi-path mixed-model recognisers show that this is not sufficient to achieve 

improved recognition performance. 

 

The kinds of long-span coarticulation and reduction effects that we attempted to model are 

arguably more common in spontaneous speech than in read speech. As syllables are more 

stable than phones as basic units of speech (Greenberg, 1999), one might intuitively expect a 

greater gain from a syllable-based modelling approach in the case of spontaneous speech than 

in the case of read speech (Ganapathiraju et al., 2001). We do not, however, expect this to be 

the case in reality. This is because of the greater amount of variation in spontaneous speech. 

To model this variation, one would expect more parallel paths to be necessary. More parallel 

paths would, however, result in more confusion – as shown by our experimental results on 

read speech. 

 

Based on the similarity between our and other researchers’ (Ganapathiraju et al., 2001; Jouvet 

and Messina, 2004; Sethy et al., 2003) results with single-path syllable models, we also 

expect our results with multi-path syllable models to generalise to other tasks and to other 

languages of a similar syllabic composition. The approach may hold more promise in the case 

of languages that have much fewer syllables and a more constrained syllable structure (e.g. 
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Chinese). For such languages, it may be easier to build context-dependent multi-path syllable 

models. 

 

HTK (Young et al., 2002) exemplifies a conventional HMM decoder. Therefore, one would 

expect our findings to generalise across all HMM-based recognisers. However, it is clear that 

a bigram language model is not the strongest possible language model. Using a higher-order 

language model would certainly help in the kind of scenario where the two Dutch definite 

articles ‘de’ and ‘het’ are confused with each other when there is an adjective between the 

article and the noun (see Section 5.2). Yet, a higher-order language model would be 

beneficial for all the different kinds of recognisers. Hence, even if the multi-path mixed-

model recogniser had more to gain from a higher-order language model (because of the added 

confusability caused by the parallel paths), the effect of such a local improvement would be 

unlikely to fundamentally change our findings. When it comes to comparing WERs, one must 

also not forget that other types of recognisers with context-dependent phone models (e.g. 

context-dependent phone models with +/-2 phone context, context-dependent phone models 

with pronunciation variants in the lexicon) are known to outperform the type of baseline 

recogniser that we used. For our experimental set-up, a word-internal triphone recogniser 

with a single canonical pronunciation per word in the lexicon was the most suitable baseline 

recogniser. The goal of our experiments was not necessarily to look for the best performing 

recogniser. After all, it is not the reduction of WER alone that is important; for long-term 

development in the field, it is equally – if not more important – to really understand the issues 

that we are battling with (Bourlard et al., 1996). The experiments reported in this paper 

increase our understanding about the potential and the limitations of syllable-based models.   
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7. Directions for future research 

In a nutshell, our results – supported by the results of others (Ganapathiraju et al., 2001; 

Jouvet and Messina, 2004; Sethy et al., 2003) – indicate that a successful approach to deal 

with pronunciation variation with syllable-length models must be based on a procedure that 

meets the following four conditions. First, one must account for the observed phonetic 

variation. Second, one must model syllable context information. Third, one must take the 

possible increase in lexical confusability into account if creating alternative model paths. 

Fourth, because of word-specific pronunciation variation, one must not use the same multi-

path syllable models for both monosyllabic and polysyllabic words. 

 

Even if there were no data sparseness issues when building multi-path syllable models, we 

would essentially be faced with two challenges: context modelling and lexical confusability. 

Jouvet and Messina (2004) employed a parameter sharing method that allowed them to build 

context-dependent syllable models. The improvements in recognition performance that they 

achieved with single-path syllable models were small and depended heavily on the 

recognition task: for telephone numbers, the performance even deteriorated. This may be an 

indication that the amount of training data they had available was not enough to capture all 

the relevant context effects. However, as the context modelling led to improvements in most 

of their tasks, one might expect a similar approach to be more fruitful in combination with a 

large amount of training data and properly initialised multi-path syllable models.  

 

As the retrained parallel paths of the multi-path syllable models are still closely related to the 

MDVs used to initialise them (Hämäläinen et al., 2007b; Hämäläinen et al., 2007c), one 

might argue that we could alleviate the problem of lexical confusability by refining our MDV 

selection approach. Based on discriminative training methods (Lin and Yvon, 2007; Markov 
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and Nakamura, 2007) or existing methods to detect confusable words (Anguita et al., 2005; 

Roe and Riley, 1994), we could devise ways of avoiding MDVs that would result in 

overlapping pronunciations with other words in the lexicon. However, it is difficult to see 

how pronunciation variants could be added without increasing the confusability of the 

lexicon. Perhaps, the additional confusability should not be an insurmountable problem. After 

all, humans seem to be dealing with the problem with such ease that it often goes completely 

unnoticed. Staying within the probabilistic framework of mainstream ASR, the question then 

becomes how humans manage to obtain context-dependent local estimates of the prior 

probabilities of the words and their possible pronunciation variants. While it may be possible 

to embed single-path syllable models explicitly in the probabilistic decoding machinery of a 

speech recogniser, it is much less clear how the same could be accomplished with multi-path 

models. As explained in Section 6, in a conventional HMM decoder, the probabilities of the 

parallel paths can only be modelled as transition probabilities of entering the different parallel 

paths. These probabilities cannot directly be linked with the language model. One option 

would, of course, be to replace the non-emitting first and last states of the multi-path syllable 

models by three independent non-emitting states. Doing so would not only offer a solution 

for linking language model scores to pronunciation variants but also for specifying that a 

specific path is much more likely if the syllable occurs as part of a polysyllabic word. 

However, this would be a step back in the direction of the conventional multiple-entry 

representations.   

 

MDV-based multi-path syllable models seem to suffer from the same kinds of problems as 

explicit pronunciation variation modelling in the recognition lexicon. It is difficult to see how 

other initialisation approaches could altogether avoid these problems. Still, we can maintain 

that straightforward left-to-right HMM topologies are not able to capture the relevant 



 

 

 

ACCEPTED MANUSCRIPT 

 

 50 

pronunciation variation on the syllable-level. Therefore, we must conclude that multi-path 

syllable models, however they may be initialised and trained, may not be the way towards 

solving the pronunciation variation problem in ASR. Using the acoustic variation in speech as 

the basis for constructing parametric models of speech (Deng et al., 2006; Han et al., 2007; 

Zen et al., 2007) will not solve the context modelling problem either. It may well aggravate 

the problem because it is difficult to link bottom-up acoustic variation to the lexicon and the 

language model. Therefore, it may be necessary to altogether abandon parametric models and 

to move on to exemplar-based models (Aradilla et al., 2006; de Wachter, 2007), even if this 

approach will also need to come to grips with the proper integration of acoustic, lexical and 

linguistic probabilities.  

 

8. Conclusions  

The goal of our paper was to investigate the importance of within-syllable pronunciation 

variation and syllable context from the point of view of speech recognition performance. To 

this end, we constructed context-independent single-path and multi-path models for frequent 

syllables in a large vocabulary continuous speech recognition task. Our hypothesis was that 

the multi-path syllable models would be better at accounting for pronunciation variation than 

the single-path syllable models. We incorporated the single-path and multi-path syllable 

models into speech recognisers in which the other syllables in the task were covered with 

triphones. Comparing the recognition performance and recognition errors of the resulting 

mixed-model recognisers against the performance and errors of a baseline triphone recogniser 

allowed us to draw conclusions about the importance of the factors under investigation. Our 

study showed that the greater acoustic accuracy of multi-path syllable models comes at the 

cost of increased lexical confusability. This effect is particularly pronounced in the case of 

monosyllabic function words, which usually are some of the few syllables that have a 
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sufficient amount of training data available for the training of parallel paths. In fact, 

modelling within-syllable pronunciation variation with parallel paths in a conventional HMM 

decoder does more harm than good for the speech recognition performance. At least part of 

the reason is that the architecture of a conventional HMM decoder does not provide hooks for 

controlling which paths can be used with which words and with which cross-word contexts. 

Using the transition probabilities of entering the different parallel paths, which remain 

unchanged in all lexical contexts, obviously is not enough. In addition to highlighting the 

unfavourable imbalance between the greater acoustic accuracy of the multi-path syllable 

models and the lexical confusability caused by the parallel paths, our results showed the 

importance of context modelling at syllable boundaries. The main contribution of this paper, 

then, is to add to our understanding of speech modelling by providing insights into the 

complex issues that are of importance when modelling pronunciation variation with syllable 

models.  
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Train Test Dev. test

Word tokens 396 187 22 289 22 100

Word types 28 164 5 154 5 074

Syllable tokens 604 211 33 921 33 588

Syllable types 6 146 2 722 2 623

Duration (hh:mm:ss) 37:00:20 02:04:21 02:03:33

Table 1
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Number of syllables Proportion (%)

1 65.0

2 22.5

3 8.7

4 3.0

 5 0.9

Table 2
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Total number of states

TR 1 535

SPM 1 605

SPP 1 621

SP 1 603

MPM 1 726

MPP 1 782

MP 1 764

Table 3
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-s -p Ins Del Subs

TR 16 25 163 350 1184

ITRdef 16 25 359 317 1626

ITRopt 18 15 167 520 1534

SPMdef, bt 16 25 163 350 1184

SPMdef, at 16 25 168 299 1201

SPMopt, bt 16 25 163 350 1184

SPMopt, at 16 25 168 299 1201

SPPdef, bt 16 25 359 317 1626

SPPdef, at 16 25 238 310 1305

SPPopt, bt 18 15 167 520 1534

SPPopt, at 16 20 195 374 1271

SPdef, bt 16 25 359 317 1626

SPdef, at 16 25 234 290 1299

SPopt, bt 18 15 167 520 1534

SPopt, at 16 20 183 351 1280

MPMdef, bt 16 25 322 293 1391

MPMdef, at 16 25 277 254 1241

MPMopt, bt 14 10 150 438 1312

MPMopt, at 16 25 277 254 1241

MPPdef, bt 16 25 315 361 1609

MPPdef, at 16 25 239 317 1298

MPPopt, bt 18 25 225 440 1583

Table 4
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MPPopt, at 16 25 239 317 1298

MPdef, bt 16 25 523 298 1926

MPdef, at 16 25 336 255 1370

MPopt, bt 16 5 161 657 1702

MPopt, at 14 10 185 383 1302
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Number of States Triphone correct; 

multi-path correct

Triphone correct; 

multi-path wrong

Triphone wrong; 

multi-path correct

Triphone wrong; 

multi-path wrong

Triphone = multi-path 731 38 23 437

Triphone > multi-path 113 69 17 268

Triphone < multi-path 36 23 12 132

Table 5
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Number of States Triphone correct; 

multi-path correct

Triphone correct; 

multi-path wrong

Triphone wrong; 

multi-path correct

Triphone wrong; 

multi-path wrong

Triphone = multi-path 692 23 21 445

Triphone > multi-path 162 24 18 189

Triphone < multi-path 67 45 36 179

Table 6
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Number of States Triphone correct; 

multi-path correct

Triphone correct; 

multi-path wrong

Triphone wrong; 

multi-path correct

Triphone wrong; 

multi-path wrong

Triphone = multi-path 472 38 5 332

Triphone > multi-path 125 73 14 245

Triphone < multi-path 180 45 14 198

Table 7



 

 

 

ACCEPTED MANUSCRIPT 

 

Number of States Triphone correct; 

multi-path correct

Triphone correct; 

multi-path wrong

Triphone wrong; 

multi-path correct

Triphone wrong; 

multi-path wrong

Triphone = multi-path 440 12 8 315

Triphone > multi-path 155 32 17 179

Triphone < multi-path 264 26 26 262

Table 8
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Number of States Triphone correct; 

multi-path correct

Triphone correct; 

multi-path wrong

Triphone wrong; 

multi-path correct

Triphone wrong; 

multi-path wrong

Triphone = multi-path 523 55 13 282

Triphone > multi-path 160 153 22 378

Triphone < multi-path 156 47 7 189

Table 9
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Number of States Triphone correct; 

multi-path correct

Triphone correct; 

multi-path wrong

Triphone wrong; 

multi-path correct

Triphone wrong; 

multi-path wrong

Triphone = multi-path 500 14 19 298

Triphone > multi-path 213 67 27 269

Triphone < multi-path 246 56 28 250

Table 10


