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Abstract 
 
In this paper, we compare different approaches for predicting the quality and usability of 
spoken dialogue systems. The respective models provide estimations of user judgments 
on perceived quality, based on parameters which can be extracted from interaction logs. 
Different types of input parameters and different modeling algorithms have been 
compared using three spoken dialogue databases obtained with two different systems. 
The results show that both linear regression models and classification trees are able to 
cover around 50% of the variance in the training data, and neural networks even more. 
When applied to independent test data, in particular to data obtained with different 
systems and/or user groups, the prediction accuracy decreases significantly. The 
underlying reasons for the limited predictive power are discussed. It is shown that – 
although an accurate prediction of individual ratings is not yet possible with such models 
– they may still be used for taking decisions on component optimization, and are thus 
helpful tools for the system developer. 
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Spoken dialogue system, quality, usability, prediction model, optimization. 
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1. Introduction 
 
Spoken dialogue services (SDSs) with increasingly sophisticated speech and language 
processing capabilities are available on the market offering information, transactions, and 
device control. Examples are train and air timetable information services, telephone 
banking, tourist services, or smart speech-controlled home environments. The underlying 
systems have speech recognition and interpretation capabilties, a dialogue manager which 
maintains the interaction with the user and is capable of meta-communication (e.g. 
feedback, correction, or reference solution), a response generation component, as well as 
a module for the output of concatenated pre-recorded or synthesized speech. Because of 
their interdependence, improvement of these underlying modules is not an easy, but 
necessary task in order to deliver an optimal quality to the human user. 

The quality a user perceives during the interaction with the system is a perceptual event. 
It results from a perception and a judgment process, during which the user compares what 
s/he perceives with what s/he desires or expects, considering the own background 
knowledge as well as the experience with this or other systems (Jekosch, 2005). Because 
of the complexity of the perception process, and because of the inaccessibility of the 
desired or expected reference the perceptual event is compared to, quality can until now 
only be measured by asking the user about his/her percept, e.g. using questionnaires with 
different types of rating scales. 

Hone and Graham (2000, 2001) developed such a questionnaire for systems with speech 
input capability (so-called SASSI questionnaire), based on standard usability evaluation 
tools. The questionnaire has been extended towards systems with speech output 
capability, and is now recommended for evaluating telephone-based SDSs by the 
International Telecommunication Union, ITU-T (ITU-T Rec. P.851, 2003). 

Considering the large effort necessary for carrying out subjective tests under laboratory 
conditions, SDS developers try to limit the need for such tests, and the collection of both 
user- and system-related information herein. System-related diagnostic information can 
be extracted from log-files collected during real or test interactions with their systems. 
This information is captured in so-called interaction parameters which are determined on 
the signal level (number of turns, turn duration, pause duration, speech and noise levels) 
as well as on the symbolic level (number of words, word accuracy, concept accuracy, 
appropriateness of system prompts, etc.). A large number of interaction parameters have 
been developed for this purpose, see e.g. Simpson and Fraser (1993), Fraser (1997), or 
Möller (2005). Recently, an extensive set has been recommended for telephone-based 
systems by the ITU-T in its Suppl. 24 to P-Series Recommendations (2005). Interaction 
parameters describe the performance and the behavior of the system and the user during 
the interaction, but do not necessarily reflect perceived quality. 

Interaction logs can also be annotated to detect and identify interaction problems, and 
thus to determine the usability of a spoken dialogue system. Usability is commonly 
defined as the “extent to which a product can be used by specified users to achieve 
specified goals with effectiveness, efficiency and satisfaction in a specified context of 
use” (ISO 9241-11, 1998). Usability is degraded when interaction problems occur. Such 
problems may be quantified using dedicated classification schemes. For example, 
Bernsen et al. (1998) classified dialogue design and “user errors” according to 
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cooperativity guidelines which have been violated during the interaction. Oulasvirta et al. 
(2006) classified errors on different layers such as goal-level, task-level, command-level, 
and concept level errors, and judged also the consequences (stagnation, regression or 
partial progress) linked to the occurrence of each error. It was shown that especially the 
consequences correlate moderately with user judgments on quality. Constantinides and 
Rudnicky (1999) classified problems along the bows of a fishbone diagram, each bone 
indicating a specific source of errors (recognition, understanding, output, etc.) and thus 
providing direct feedback to the system developer. The frequency of such errors is an 
indication of poor system performance, although it is not necessarily linked to perceived 
quality. 

Several approaches have been made to relate performance metrics to perceived quality. 
The most popular one is the PARADISE framework developed by Walker et al. at AT&T 
(Walker et al., 1997). The idea is to estimate subjective judgments of “user satisfaction” 
(calculated as the arithmetic mean of 8-9 questionnaire judgments) as a linear 
combination of several parameters which can be determined from interaction logs. In this 
way, questionnaires may partly be skipped and the need for subjective testing may 
significantly be reduced during the system design process. It would also become possible 
to estimated user judgments from log data during real-life usage, when the users are not 
accessible to the service operator. 

Parameters used as an input to the PARADISE model relate to task success as well as to 
dialogue costs, the latter being composed of “dialogue efficiency costs” (e.g. the number 
of utterances) and “dialogue quality costs” (e.g. the recognition performance or the 
number of help requests). Different modeling approaches have also been presented, using 
regression tree models (Walker et al., 2000b; Hastie et al., 2002), or neural networks 
(Compagnoni, 2006). 

PARADISE models have been extensively used for system optimization and also “user 
satisfaction” prediction. Usually, the amount of variance of the training data (R2) which is 
captured by a model with 3-4 predictors is around 35-50%, see e.g. Walker et al. (1998) 
and Kamm et al. (1998). However, the models have only rarely been analyzed with 
respect to their predictive power on unseen data. An exception is the analysis by Walker 
et al. (2000) showing that an extrapolation to other systems may be possible, but that a 
change in the user group (namely from novices to experts) significantly reduces R2. In 
contrast to this, Möller (2005a) found that the predictive power was significantly reduced 
when extrapolating from one system to another. 

It is the aim of the present paper to analyze the capacity of models relating performance 
indices to quality judgments, both in interpolating known data and in extrapolating 
towards unknown data. Data from three interaction experiments were available for this 
purpose, addressing two types of systems. The experimental data will be briefly reviewed 
in Section 2. Using these data, different types of models are constructed, based on 
different input parameters, modeling algorithms and target variables, see Section 3. Their 
predictive power is analyzed on distinct training and testing sets, and their extrapolation 
capability towards new system versions and systems is examined in Section 4. The results 
are discussed in Section 5, and in Section 6 it is shown how – despite the observed 
inherent limitations – models can still be very useful for system design and optimization. 
Section 7 summarizes the main findings and gives a perspective for future work. 
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2. Experimental Data 
 
Three databases were available for the analysis. They have been collected with two 
different types of systems, namely a telephone-based system for restaurant information 
(BoRIS) and a spoken dialogue interface to domestic devices (INSPIRE). The latter 
system has been investigated at two different stages of the development process, 
reflecting two system versions differing in their vocabulary, speech understanding 
capabilities, and system prompts. In order to avoid an excessive impact of the speech 
recognition component which was not yet optimized when the experiments were carried 
out, this component has been replaced in all experiments by a transcribing wizard. In two 
of the experiments, speech recognition errors have been generated by introducing 
substitutions, insertions and deletions according to a pre-determined confusion behavior, 
so that the system reflects real-world behavior during these experiments. 

All experiments have been carried out in a laboratory environment at Ruhr-University 
Bochum, Germany, to ensure stable conditions across subjects. During each experiment, 
the test subjects had to carry out scenario-driven interactions with the system under test. 
Subjective quality judgments were collected on questionnaires designed according to 
ITU-T Rec. P.851 after each interaction. The interactions have been logged, and the log-
files have later been annotated by experts in order to collect performance indices. As the 
interactions have been carried out at different points in time and for different purposes 
(namely system optimization starting from the current state of development), the 
participant group of each experiment was different. 

In the following Sections 2.1 and 2.2, we briefly review the relevant experimental 
characteristics. Section 2.3 gives an overview of the resulting three databases. 

 
2.1 BoRIS Restaurant Information System 
 
With the help of the Bochumer Restaurant-Informations-System (BoRIS), a user can 
obtain information about restaurants in the town of Bochum and its surroundings by 
specifying the desired suburb, the type of food, the day and the time the restaurant should 
be open, as well as the price category. The system is implemented as a finite-state 
machine with the help of the CSLU toolkit (Sutton et al., 1998). Since the speech 
recognition accuracy was foreseen to be too low when the experiment was carried out, 
the speech recognition module was replaced by a transcribing wizard producing a close-
to-perfect transcription of the user speech. On this transcription, errors have been 
generated in a controlled and realistic way, leading to an adjustable recognition 
performance between 60 and 100%. The error generation is based on a confusion matrix 
which has been determined for a commercial recognizer, and then scaled to a given target 
“recognition rate“ (Möller, 2005). With the help of this matrix, some of the transcribed 
words have been replaced by others (substitutions), deleted or inserted, leading to a 
defined “recognition accuracy”. The method has been validated in Möller (2005) and 
showed an acceptable agreement between observed and target recognition accuracy 
(median of the observed values was within 2% of the respective target recognition 
performance). 
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In addition to the simulation of recognition errors, the system could be set to an explicit 
confirmation strategy to avoid misunderstandings, or (in a different version) be used 
without confirmation at all. Speech output was implemented either via pre-recorded 
messages from two non-professional speakers (1 male, 1 female), or via a text-to-speech 
(TTS) system. Different speech output options could be used for the fixed and the 
variable (e.g. restaurant names and addresses) message parts. For the experiment 
described here, the individual system options have been combined in order to generate 10 
system configurations differing in speech recognition performance, speech output, and 
confirmation strategy, see Table 1. 

 

Table 1: Different configurations of the BoRIS system used in experiment 1. 

Speech output Target 
recognition rate Fixed Variable 

Confirmation 
strategy 

100 female female no 
100 male female no 
100 female TTS no 
100 TTS TTS no 
70 female female no 
100 female female explicit 
90 female female explicit 
80 female female explicit 
70 female female explicit 
60 female female explicit 

 

40 participants (11 f, 29 m) interacted five times with the BoRIS system through a 
simulated telephone line in an office environment. They were between 18 and 53 years 
old, with a mean of 29 years, and were paid for their service. The majority of subjects did 
not have any experience with spoken dialogue services, but most of them knew the town 
of Bochum and some of the local restaurants. 

Test participants had to follow four scenarios which provided criteria for a restaurant 
search; in the fifth interaction, the participants were asked to define criteria on their own 
before interacting with BoRIS. After each interaction, the participants had to fill in a 
questionnaire with 26 items relating to different aspects of the system, including its 
overall quality. The interactions were logged, and log-files were transcribed and 
annotated by a human expert after the experiment. Details on the experimental design, the 
questionnaire and the annotation procedure are given in Möller (2005). On the basis of 
the annotation, 52 interaction parameters were extracted for each dialogue, quantifying 
user and system behavior and performance. In a second step, interaction problems and 
consequences have been annotated according to the classification scheme of Oulasvirta et 
al. (2006). This resulted in another 6 problem frequencies and 3 consequence frequencies 
per dialogue which have been annotated and counted. The parameters used for this 
investigation are listed in Section 3.1. 
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2.2 INSPIRE Smart-home System 
 
The INSPIRE smart-home system gives a spoken-dialogue access to domestic devices 
such as lamps, blinds, fans, TVs, video recorders, electronic program guides, and 
answering machines. It has been set up in the frame of the EU-funded IST project 
INSPIRE (INfotainment management with SPeech Interaction via REmote microphones 
and telephone interfaces; IST 2001-32746) in a living-room environment at Ruhr-
University Bochum. The system is implemented with the help of generic dialogue nodes 
(Rajman et al., 2003) associated with each attribute to be provided by the user in order to 
carry out a specific task. Dialogue nodes contain standard meta-communication 
capabilities (misunderstanding, non-understanding, help) and are connected through a 
global branching logic. 

As in the BoRIS system, the speech recognizer has been replaced by a transcribing 
wizard. Whereas the wizard’s transcriptions have been kept unchanged in the first 
experiment, controlled amounts of recognition errors have been generated in the second 
one to simulate realistic speech input behavior, as it is described in Trutnev et al. (2004). 
On the system output side, speech has been generated by concatenating pre-recorded 
phrases. In the first experiment, the system was embodied either in terms of an avatar 
displayed on a screen in the living room (talking-head metaphor), via loudspeakers 
mounted close to the devices to-be-operated (intelligent devices metaphor), or via ceiling 
loudspeakers generating a more-or-less diffuse sound field (ghost metaphor). In the 
second experiment, only the ghost metaphor was used. A more detailed analysis of the 
effect of the system metaphor can be found in Möller et al. (2005d). 

The two experiments had been carried out in two different states of the system 
development process, reflecting two system versions. Apart from the metaphor, system 
versions differed with respect to the vocabulary (which was extended and improved from 
the first to the second experiment), the speech understanding capabilities (optimized 
keyword-matching), and the system prompts (shorter and less ambiguous prompts in 
some nodes). In addition, the system was extended with a ‘macro function’, i.e. 
combinations of actions could now be triggered with a single command (e.g. “everything 
off” to switch off all devices). This function was explained to the participants before the 
experiment. 

During the first experiment (INSPIRE 1), each of 24 participants (10 f, 14 m) carried out 
three scenario-guided interactions with the system. Each interaction consisted of 9-11 
tasks which were linked in a kind of short story, combining all devices to create 
interactions of comparable length and complexity. Test participants were mostly students 
or employees of the university and were between 19 and 29 years old (mean: 23.7 years). 
The majority had some prior knowledge of SDSs. The second (INSPIRE 2) experiment 
followed mainly the same test protocol and involved 28 participants (14 f, 14 m, 19-50 
years, mean 26.4 years). Participants were paid for their service. 

Participants had to compile questionnaires with 37 items after each interaction. The 
questionnaires were adapted from the respective BoRIS questionnaires and contained 
some additional items to reflect functionality differences of the INSPIRE system 
compared to BoRIS. The interactions were logged, transcribed and annotated, resulting in 
53 interaction parameters, 6 interaction problem frequencies and 3 consequence 
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frequencies describing each dialogue. Details on the experimental set-up and the 
questionnaire are given in Möller et al. (2007). 

 
2.3 Resulting Databases 
 
All data have been processed for statistical analysis in SPSS (Statistical Package for the 
Social Sciences, SPSS Inc). For each experiment, data obtained with different system 
versions have been merged, except in Section 4.5 where individual systems versions are 
explicitly addressed. For the BoRIS experiment, the data includes 26 quality judgments 
and 52 interaction parameters for each of 197 dialogues from 40 test subjects; 3 dialogues 
had to be stopped due to system breakdowns. For INSPIRE 1, the set contains 37 quality 
judgments and 53 interaction parameters for each of 68 dialogues carried out by 24 
subjects; 4 dialogues could not be annotated due to logging problems. Unfortunately, not 
all subjects answered all questions, leading to slightly less ratings (66) in some cases in 
the INSPIRE 1 experiment. The database of the INSPIRE 2 experiment contains 37 
quality judgments and 51 interaction parameters for each of the 84 dialogues from 28 test 
subjects. 

The subjective ratings have been transformed into numbers between -2 and +2, the latter 
corresponding to the most positive (shortest, quickest) rating. All judgments and 
interaction parameters have been z-score-normalized to show a mean of zero and unity 
variance. 

 
3. Prediction Models 
 
From the described databases, prediction models have been calculated using different sets 
of input parameters, target variables, as well as modeling algorithms. The variants of each 
of these parts of the model are outlined in Section 3.1 to 3.3. Section 3.4 defines criteria 
for assessing the prediction performance for such models. 

 
3.1 Input Parameters 
 
Input parameters quantify the interaction behavior and performance of user and system, 
as well as any problems occurring during the interaction. Four sets of parameters have 
been used here to predict subjective quality ratings: 

� Set 1 contains interaction parameters which are defined in ITU-T Suppl. 24 to P-
Series Rec. (2005) and which could be collected with the BoRIS and INSPIRE 
systems. From the full set of 53 (BoRIS) and 51 (INSPIRE) parameters, parameters 
which showed zero-values in more than 95% of all cases were eliminated, as well as 
parameters which are correlated with each other by their definition. For example, the 
number of turns (#Turns), the number of system turns (#System Turns) and the 
number of user turns (#User Turns) were correlated because of the strict alternation 
of turns in our system. The final set includes 27 parameters for the experiment with 
the BoRIS system, and 30 parameters for both experiments carried out with the 
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INSPIRE system. These parameters are listed in Table 2, and exact definitions can be 
found in Möller (2005) and ITU-T Suppl. 24 to P-Series Rec. (2005). 

� Set 2 is a restricted set of interaction parameters, namely those which were used by 
Walker et al. (1997) in the definition of PARADISE, provided that they could be 
measured in our experiments, see Table 2. In addition to these “dialogue cost” 
parameters, two options were used for describing task success: 

o Set 2a: Expert annotation of task success, in terms of TSw and κ. κ is determined 
on the basis of attribute-value pairs provided at the end of the dialogue, and 
corrected for chance agreement. TSw has been calculated by classifying task 
success according to Fraser (1997) into succeed, succeed with constraint 
relaxation by the system or by the user or both, succeed in spotting that no 
answer exists, or failure due to system or user behavior, and then weighting the 
individual task success labels as described in Möller (2005). 

o Set 2b: User judgment on task success, i.e. the rating on the statement “the 
system provided the desired information” for BoRIS, or the statement “the 
system did not always do what I wanted” for INSPIRE 1 and 2. 

Despite being in contrast to the idea of quality prediction models – namely to get 
independent of direct user judgments – subjective ratings on task success have 
frequently been used with PARADISE models. We include Set 2b for comparison 
with the figures cited in Section 1. 

� Set 3 contains interaction problem classes annotated according to the scheme 
described by Oulasvirta et al. (2006), and modified by Engelbrecht (2006) to form the 
following classes: Goal-level errors (i.e. the system does not posses the function or 
capability assumed in the user’s request), task-level errors (i.e. the user does not 
understand how to reach the goal in the interaction with the system), representation-
level errors (i.e. the user issues a command that would be valid if the system 
represented the “world” in a different way), command-level errors (i.e. the user 
makes use of linguistic variations like synonyms or grammar which are not 
understood by the system), technical errors (interaction failures which even a 
completely cooperative user cannot influence, e.g. ASR errors), as well as other errors 
not captured by these classes. In addition to the errors, the consequences of each error 
(stagnation, regression, partial progress despite the error) have been counted, leading 
to a set of 9 input parameters. 

� Set 4 contains both the full set of interaction parameters and the error and 
consequence frequencies, i.e. the joint Set 1 and Set 3. 
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Table 2: Input parameters available in the BoRIS and INSPIRE experiments. 

Variable Available in 
experiment 

Used in 
parameter 

set 

Abbreviation Description Unit BoRIS INSPIRE 1 2 

DD Dialogue duration ms X X X X 

STD/UTD System/user turn duration ms X X X  

SRD/URD System/user response delay ms X X X  

#Turns Number of turns 1 X X X X 

WPST/WPUT Words per system/user turn 1 X X X  

%Barge-Ins Percentage of user barge-in attempts 1[%] X X X X 

%System Error 
Messages 

Percentage system error messages 1[%] X X X  

%System Questions Percentage system questions 1[%] X X X  

%User Questions Percentage user questions 1[%] X X X  

%PA:CO Perc. correctly parsed user utterances 1[%] X X X  

%PA:PA Perc. partially parsed user utterances 1[%] X X X  

%PA:PA Perc. failed-to-be-parsed user 
utterances 

1[%] X X X  

SCR / UCR Perc. system /user correction turns 1[%] X X X  

%CA:AP Perc. appropriate system prompts 1[%] X X X  

%CA:IA Perc. inappropriate system prompts 1[%] X X X  

IR Perc. of implicitly recovered problems 1[%] X X X  

IC Understanding accuracy on a concept 
level 

1[%] X X X X 

UA Understanding accuracy on an 
utterance level 

1[%] X X X  

WA Word accuracy 1[%] X X X  

NEU Number of errors per utterance 1 X X X  

WEU Word error per utterance 1 X X X  

κ Task success measure kappa 1 X   X 

TSw Weighted task success per dialogue 1 X X X X 

%ASR Rejections Perc. speech recognizer rejections 1[%]  X X  

%System Help 
Messages 

Percentage system help messages 1[%]  X X  

%Help Requests Percentage help request from the user 1[%]  X X  

%Cancel Attempts Perc. cancel attempts from the user 1[%]  X X  

 
 
3.2 Target Variables 
 
The prediction models estimate user judgments related to perceived quality and usability. 
A large number of judgments have been collected in both experiments, which evidently 
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are not uncorrelated to each other. In fact, a factor analysis of the BoRIS data reveals 5 
underlying perceptual dimensions (Möller, 2005; Engelbrecht, 2006), and for the 
INSPIRE 1 data, 8 dimensions could be extracted. These dimensions are not identical, but 
a large-scale comparison of different systems described in Möller (2005c) shows that 
overall acceptability, communication efficiency and cognitive effort are amongst the ones 
explaining most of the overall variance in the judgments. 

While the use of individual ratings may introduce a significant amount of noise in the 
prediction, averaging over different ratings may lead to a loss of information. As a 
compromise, it was decided to use different prediction target variables: 

� The arithmetic mean of all positively- and negatively-aligned user judgments in the 
respective questionnaire (AM). 

� The user’s direct judgment on overall quality, obtained at the beginning of the 
questionnaire on a continuous rating scale (OQ). 

� The perceptual dimensions “overall acceptability” (ACC), “efficiency” (EFF) and 
“cognitive effort” (COE), calculated by averaging the subjective ratings of the 
questionnaire items which loaded higher than 0.6 on the respective factor. 

 
3.3 Prediction Algorithms 
 
Considering the complex interdependence of system components and the dependency of 
the input parameters, a simple linear modeling approach like in PARADISE may not be 
an optimum way to predict perceived quality and usability. However, more complex 
modeling algorithms may increase the likelihood that the model optimizes on the specific 
set of training data, and is less reliable in predicting new – unseen – data (overfitting of 
the model). 

A first analysis of non-linear relationships carried out by Compagnoni (2006) did not 
reveal any clear relationship between input parameters and target variables which might 
have been used for a non-linear regression. Neural networks, in particular multi-layer 
perceptron nets, showed a prediction performance similar to the one of linear regression 
models; however the resulting model cannot be checked for plausibility because the 
underlying rules are not accessible. 

As a consequence, it was decided to consider the following types of models for the 
analysis:    

� LR: A multivariate linear regression (LR) model as in the PARADISE framework. 
The respective input parameters (see Section 3.1) were z-score-normalized, and if a 
Poisson distribution was detected for an individual parameter, the square root was 
taken instead of the parameter value. Relevant parameters were selected with a 
stepwise (forward-backward) inclusion algorithm, and missing values were replaced 
by the overall means in the analysis.  

� Decision trees: Such trees allow simple and interpretable rules to be derived from 
training data, and then being tested on independent data. Two different approaches 
were used: Classification And Regression Trees (CARTs) and Chi-squared Automatic 
Interaction Detection (CHAID). Both procedures aim at splitting the original sample 
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in as homogenous subgroups as possible. With CART, each split results in two 
children nodes, whereas CHAID allows for multiple children nodes, i.e. non-binary 
splits. To avoid overfitting, the minimum terminal node size was set to 6 cases. 
Additionally, pruning (removal of meaningless nodes) was done manually based on 
plausibility considerations once the trees were calculated. As for the LR model, input 
parameters were z-score-normalized, and the square root was taken in case of Poisson 
data distribution. 

� MLP: Neural networks allow classifiers to be built without requiring knowledge 
about the meaning of the respective input parameters. We opted for a very simple 
Multi-Layer Perceptron (MLP) model which has proven successful in speech 
recognition. The network consists of one hidden layer, compound of twelve neurons 
with log-sigmoid transfer function, and one output neuron with a linear transfer 
function. The network was trained with a feed-forward backpropagation training 
function. In order to prevent overfitting, a MATLAB (The MathWorks Inc.) routine 
was used which smoothens the prediction function by employing Bayesian 
regularization (MacKay, 1992), keeping the weights and biases in the network small. 
In order to determine the optimum model, a stepwise inclusion method has been 
implemented: The first training is done for each single parameter separately; in the 
next iteration, the parameter showing the highest correlation remains fixed and the 
best additional parameter is determined by trying each of the remaining ones1. Input 
parameters were z-score-normalized; however, no parameters were square-rooted, 
because the neural network can cope with both versions of the parameter equally well. 

3.4 Performance Evaluation 
 
Both within-data (interpolation) performance and out-of-data (extrapolation) performance 
have been analyzed. As the amount of data is limited due to the effort required in 
carrying out subjective tests, three cases have been distinguished: 

� All cases (ALL): Training and test sets are identical, i.e. the performance related to 
the coverage of the training data. 

� Leave-one-out (L1O): Data from one user is omitted in the training, and the 
respective data is taken for testing a model trained on the remaining n-1 users. This 
procedure is repeated for all n users in order to make optimum use of the available 
data, and the obtained performance indices are averaged over all analyses. Because 
we assume that the interaction behavior and subjective judgments may be very user-
specific, we prefer to omit a user completely instead of just omitting individual 
interactions. 

� Cross-experiment extrapolation (CEE): A model is trained on all data from one 
experiment, and then used to predict the data obtained in a different experiment. This 
may lead to a cross-system extrapolation between BoRIS and INSPIRE. 

                                                 
1  Because the calculations for the leave-one-out case (L1O, see Section 3.4) with a large number of 
predictors results in very long processing times, the set was restricted in this case to parameters which had 
proven useful in the ALL case as a first sub-set (Set ALL), and parameters included in the respective LR 
model as a second subset (Set LR). 
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The performance of the obtained models has been evaluated by means of the Pearson 
correlation coefficient r and by the prediction error Ep: 
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In these equations, Xi is the subjective (target) judgment or the combination of judgments 
for dialogue i, Yi is the estimated (predicted) judgment for dialogue i, X  the arithmetic 
mean over all target variables, Y  the arithmetic mean of all predictions, N the number of 
considered dialogues, and d the degree of freedom of the model (d = 1 in our case). 

For the LR models, the amount of covered variance R2 is more common to indicate the 
model performance, where R2 = r2 in our case. R2 can be adjusted for the number of 
predictors k in the model: 
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In this way, the performance of a model with many predictors – which is likely to better 
cover the training data, but increases the risk of overfitting – is made comparable to the 
R2 of a model with fewer predictors. We have not analyzed the individual predictors here, 
but only cite the overall performance of the models; the interested reader is referred to 
Möller (2005) for an in-depth analysis of LR predictors for the BoRIS system. 

 
4. Prediction Results 
 
In order to compare the performance of our models to the standard PARADISE approach, 
a baseline has been established for each experiment in Section 4.1. We then varied the 
input parameter set, the target variable, as well as the modeling algorithm, see Sections 
4.2, 4.3 and 4.4. We also checked the performance of the models for extrapolating across 
system versions and across systems in Sections 4.5 and 4.6.  

 
4.1 Baseline Performance 
 
The PARADISE framework proposes the use of a limited number of interaction 
parameters (Set 2) to predict an averaged quality judgment (AM) using an LR model. 
Whereas the original formula of PARADISE suggests the use of κ as an expert-derived 
measure of task success as an input to the model (Walker et al., 1997), most of the 
performance indicators cited in Section 1 are based on a user judgment on task success. 
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Consequently, we use both Set 2a and Set 2b for the comparison. The performance for 
each experiment is given in Table 3.  

 

Table 3: Baseline performance on training (ALL) and independent test data (L1O) with 
Set 2 input parameters, AM target variables, and LR models. Maximum values of r, R2 
and R2

adj and minimum values of Ep are marked in bold. 

Configuration Model performance 
Experiment Input Training r R2 R2

adj
* Ep 

BoRIS Set2a ALL 0.468 0.219 0.207 0.892 
BoRIS Set2b ALL 0.663 0.440 0.434 0.758 
INSPIRE 1 Set2a ALL 0.704 0.496 0.464 0.720 
INSPIRE 1 Set2b ALL 0.753 0.567 0.532 0.666 
INSPIRE 2 Set2a ALL 0.558 0.311 0.302 0.849 
INSPIRE 2 Set2b ALL 0.668 0.446 0.430 1.007 
BoRIS Set2a L1O 0.412 0.170 0.157 0.913 
BoRIS Set2b L1O 0.637 0.406 0.400 0.775 
INSPIRE 1 Set2a L1O 0.474 0.225 0.183 0.936 
INSPIRE 1 Set2b L1O 0.576 0.332 0.282 0.853 
INSPIRE 2 Set2a L1O 0.451 0.203 0.193 0.924 
INSPIRE 2 Set2b L1O 0.557 0.310 0.294 0.859 

* To compute the adjusted R2
adj for L1O, k in Formula (3) was set to the average number 

of variables used in the individual regressions. 

For the training data (ALL), R2 is in the range 0.22…0.50 for Set 2a, and 0.44…0.57 for 
Set 2b. The latter values are slightly higher than the ones cited in Section 1 for a 
comparable model setting. In all cases, using a subjective rating of task success (Set 2b) 
provides better performance than using an expert-derived one (Set 2a). However, this 
requires subjective ratings to be collected from the test participants, which is contrary to 
the aim of a prediction model – namely to get independent of direct user judgments and 
assess quality in advance of a user test. The adjusted R2

adj values are slightly lower, but 
still comparable to the uncorrected ones. The prediction error is usually in the range 
0.7…0.9, which is comparable to the variance observed in the subjective ratings; only for 
the INSPIRE 2 experiment and Set 2b it is slightly higher. 

When testing the models on unseen test data (L1O), the performance of the model 
decreases in all cases. This shows that the models are better in interpolating the training 
data than in extrapolating to unseen test data. The degradation is slightly smaller for 
BoRIS compared to INSPIRE 1 and 2. 

 
4.2 Impact of Input Parameters 
 
The selection of input parameters determines which type of information is available for 
the prediction, and should therefore be crucial to model performance. Table 4 indicates 
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the performance for the BoRIS and the INSPIRE 1 experiment; INSPIRE 2 has been 
omitted here to save space, but shows a similar picture as INSPIRE 1. 

Table 4: Performance on training (ALL) and independent test data (L1O) with different 
input parameter sets, AM target variables, and LR models.  

 

Configuration Model performance 
Experiment Input Training r R2 R2

adj Ep 
BoRIS Set 1 ALL 0.712 0.507 0.471 0.881 
BoRIS Set 2a ALL 0.468 0.219 0.207 0.892 
BoRIS Set 2b ALL 0.663 0.440 0.434 0.758 
BoRIS Set 3 ALL 0.509 0.259 0.243 0.861 
BoRIS Set 4 ALL 0.712 0.507 0.477 0.866 
INSPIRE 1 Set 1 ALL 0.749 0.561 0.525 0.672 
INSPIRE 1 Set 2a ALL 0.704 0.496 0.464 0.720 
INSPIRE 1 Set 2b ALL 0.753 0.567 0.532 0.666 
INSPIRE 1 Set 3 ALL 0.617 0.381 0.341 0.799 
INSPIRE 1 Set 4 ALL 0.748 0.583 0.549 0.673 
BoRIS Set 1 L1O 0.439 0.193 0.168 0.977 
BoRIS Set2a L1O 0.412 0.170 0.157 0.913 
BoRIS Set2b L1O 0.637 0.406 0.400 0.775 
BoRIS Set 3 L1O 0.463 0.214 0.198 0.888 
BoRIS Set 4 L1O 0.450 0.203 0.209 0.970 
INSPIRE 1 Set 1 L1O 0.480 0.230 0.172 0.991 
INSPIRE 1 Set2a L1O 0.474 0.225 0.183 0.936 
INSPIRE 1 Set2b L1O 0.576 0.332 0.282 0.853 
INSPIRE 1 Set 3 L1O 0.300 0.090 0.046 1.002 
INSPIRE 1 Set 4 L1O 0.430 0.185 0.117 1.029 

 

The comparison of input parameter sets for each experiment shows that the prediction 
performance on the training data (ALL) increases when augmenting the set of input 
parameters from Set 2a to Set 1, in that r and R2

adj increase and the prediction error 
decreases. For the INSPIRE 1 experiment, a model with Set 1 input parameters nearly 
reaches the performance of a Set 2 model, but here without relying on a subjective 
judgment of task success. For independent test data (L1O), r and R2

adj still increase, 
however Ep also increases from Set 2a to Set 1. Here, the performance of the Set 1 model 
is significantly lower than the one of a Set 2b model. 

On the basis of information on error and consequence frequencies alone (Set 3), the 
performance of the LR model is slightly better than with Set 2a input parameters for the 
BoRIS experiment, but considerably worse for the INSPIRE 1 experiment. Adding this 
information to the interaction parameters (Set 4) increases the performance on the 
training data of the BoRIS experiment, but not of the INSPIRE 1 experiment. On the test 
data, these models do not perform significantly better than Set 1 or Set 3 models alone. 
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Overall, Set 1 and Set 4 seem to be the best combinations of input parameters not 
including subjective judgments (as in Set 2b). However, the extension of the input 
variables by the error and consequences classes in Set 4 does not cause a considerable 
improvement for the prediction. Therefore, to reach an optimum prediction performance, 
we have considered only the Set 1 input parameters for the subsequent experiments. 

 

4.3 Impact of the Target Variable 
 
The PARADISE framework estimates “user satisfaction” which is defined as the 
arithmetic mean of 8-10 user judgments on items as diverse as task completion, TTS 
performance, ASR performance, task ease, interaction pace, or system transparency. Still, 
there is no reason to assume that these items contribute equally to the user’s overall 
satisfaction. The latter might also be quantified on a global scale labeled “overall quality” 
(OQ), as it has been included at the beginning of our questionnaires. Taking a single item 
response as a prediction target may however be disadvantageous, as single responses may 
contain more judgment-noise than averaged items. As an alternative, factor analyses of 
the subjective judgments have been carried out, and the three factors “overall 
acceptability” (ACC), “efficiency” (EFF) and “cognitive effort” (COE) have been used as 
prediction targets. The results for predictions of different target variables in the BoRIS 
and INSPIRE 1 experiments are listed in Table 5. 

It can be seen that the prediction performance varies largely for the different target 
variables. The general tendency is that targets which are calculated as means from several 
judgments can be predicted with a higher correlation than the single questionnaire item 
OQ. R2

adj follows r in this tendency. Interestingly, however, the Ep for the predictions of 
the perceptual dimensions is higher in some cases despite a higher r. Thus, it is not the 
reduction in spread caused by averaging across items that is responsible for the increased 
correlation.  

The common finding across all evaluation metrics is that for both systems, using the L1O 
as well as the ALL method, the mean of all judgments (AM) could better be predicted 
than all other targets. Considering the perceptual dimensions, acceptability (ACC) seems 
to be better predictable (in terms of a higher R2) than efficiency (EFF) and cognitive 
effort (COE), an exception being BoRIS predicted with the L1O method. It has to be 
noted that acceptability is the most important factor found in the BoRIS as well as the 
INSPIRE 1 judgments, and in both cases it was the factor with the highest number of 
correlated judgments. As the target values of the perceptual dimensions have been 
calculated by averaging the correlated judgments, ACC is more similar to AM than the 
factors EFF and COE. The similarity to AM might be the reason why we observed the 
dimension predictions getting better the more judgments are averaged in a target. 

From the data, it is clear that AM provides an optimum prediction target. Therefore, only 
AM is retained as the prediction target for the subsequent analyses. 
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Table 5: Performance on training (ALL) and independent test data (L1O) with Set 1 input 
parameters, different target variables, and LR models. 

 

Configuration Model performance 
Experiment Output Training r R2 R2

adj Ep 
BoRIS AM ALL 0.712 0.507 0.471 0.881 
BoRIS OQ ALL 0.475 0.226 0.208 0.960 
BoRIS ACC ALL 0.676 0.457 0.425 0.869 
BoRIS EFF ALL 0.571 0.326 0.302 0.962 
BoRIS COE ALL 0.627 0.393 0.364 0.892 
INSPIRE 1 AM ALL 0.749 0.561 0.525 0.672 
INSPIRE 1 OQ ALL 0.583 0.340 0.308 0.820 
INSPIRE 1 ACC ALL 0.662 0.439 0.403 0.886 
INSPIRE 1 EFF ALL 0.574 0.329 0.287 0.910 
INSPIRE 1 COE ALL 0.513 0.263 0.228 0.948 
BoRIS AM L1O 0.439 0.193 0.168 0.977 
BoRIS OQ L1O 0.219 0.048 0.039 1.025 
BoRIS ACC L1O 0.310 0.096 0.072 1.060 
BoRIS EFF L1O 0.324 0.105 0.090 0.982 
BoRIS COE L1O 0.400 0.160 0.143 0.948 
INSPIRE 1 AM L1O 0.480 0.230 0.172 0.990 
INSPIRE 1 OQ L1O 0.149 0.022 -0.02 1.091 
INSPIRE 1 ACC L1O 0.291 0.085 0.033 1.137 
INSPIRE 1 EFF L1O 0.093 0.009 0.046 1.083 
INSPIRE 1 COE L1O 0.121 0,015 0.102 1.113 

 

4.4 Impact of the Modeling Algorithm 
 
So far, only multivariate linear regression models were considered. A linear approach, 
however, presupposes that each parameter contributes in a “the-more-the-better” or “the-
less-the-better” way to perceived quality. Obviously, this is not always true. For example, 
one can expect that the number of turns exchanged between user and system for reaching 
a specified goal has a non-zero optimum value, at least for a novice user: If the dialogue 
is too short, something might have gone wrong or some information might be missing, 
while a large number of utterances may be closely linked to problems occurring during 
the interaction. The most natural (in the sense of human-like) interaction will have an 
optimum value in-between these extremes. 

In order to take such non-linearities into account, decision trees and neural networks have 
been considered as an alternative to LR models. The models have been calculated for the 
Set 1 input parameters, using AM as the prediction target, as this set and prediction target 
turned out in Sections 4.2 and 4.3 to be most promising. The results are summarized in 
Table 6. While linear regression (LR) and decision trees (CART, CHAID) yield 
comparable correlations in many cases, neural nets (MLP) achieve very high correlations 
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when predicting the same data they were trained on, but that fit may be restricted to that 
specific data set. For leave-1-out prediction (L1O), the predictive power of all classifiers 
decreases. Here again, neural networks appear to provide the best results. However, the 
risk of over-specialization still persists for neural networks in particular. For that reason 
we adhere to linear regression for the following analyses. The capability of neural 
networks to extrapolate to completely unseen data is further examined in Section 4.6. 

Unpruned versions of decision trees obtain good results, but this is also most likely due to 
overfitting i.e. representing the data in an oversized tree which incorporates peculiarities 
of the specific data set. At the same time, the prediction quality does not increase after 
manual pruning for L1O testing. 

 

Table 6: Performance on training (ALL) and independent test data (L1O) with different 
modeling algorithms, Set 1 input parameters and AM target variable. LR = Linear 
Regression, CART= Classification And Regression Trees, CHAID = Chi-squared 
Automatic Interaction Detection (tree), MLP = Multi-Layer Perceptron networks. 

Configuration Model performance 
Experiment Model Note Training r R2 Ep 
BoRIS LR -- ALL 0.712 0.507 0.881 
BoRIS CART unpruned ALL 0.626 0.392 0.780 
BoRIS CART pruned ALL 0.439 0.193 0.898 
BoRIS CHAID unpruned ALL 0.571 0.326 0.821 
BoRIS MLP -- ALL 0.922 0.849 0.157 
INSPIRE 1 LR -- ALL 0.749 0.561 0.672 
INSPIRE 1 CART unpruned ALL 0.753 0.567 0.666 
INSPIRE 1 CART pruned ALL 0.678 0.460 0.735 
INSPIRE 1 CHAID unpruned ALL 0.578 0.334 0.827 
INSPIRE 1 MLP -- ALL 0.981 0.962 0.041 
BoRIS LR -- L1O 0.439 0.193 0.977 
BoRIS CART unpruned L1O 0.276 0.076 1.038 
BoRIS CART pruned L1O 0.277 0.077 1.024 
BoRIS CHAID unpruned L1O 0.283 0.080 1.004 
BoRIS MLP Set LR L1O 0.443 0.197 0.804 
BoRIS MLP Set ALL L1O 0.500 0.250 0.753 
INSPIRE 1 LR -- L1O 0.480 0.230 0.991 
INSPIRE 1 CART unpruned L1O 0.498 0.248 0.940 
INSPIRE 1 CART pruned L1O 0.471 0.222 0.962 
INSPIRE 1 CHAID unpruned L1O 0.072 0.005 1.129 
INSPIRE 1 MLP Set LR L1O 0.628 0.394 0.617 
INSPIRE 1 MLP Set ALL L1O 0.322 0.104 0.939 
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4.5 Impact of System Configuration 
 
So far, the models have been tested on data collected with the same system and system 
version. In real-live use, however, the models should be able to perform predictions from 
one system version to another, e.g. when predicting the impact of a change in a system 
module. 

In the BoRIS experiment, ten system versions were tested, differing with respect to the 
speech recognizer (simulated recognition performance), the speech output module 
(naturally-produced vs. synthesized speech), and the dialogue manager (confirmation 
strategy), see Table 1. For estimating the extrapolation performance in case of such 
system changes, we trained LR models for all system versions with one setting of these 
modules, and tested them on the remaining settings. The results are given in Table 7. 

 

Table 7: Performance of LR models when extrapolating across BoRIS system versions. 
Set 1 input parameters, AM target variable. 

Training  Testing 
System configuration R2 Ep System configuration R2 Ep 
All 0.507 0.881 All (L1O) 0.193 0.977 

WA = 90% (ALL) 0.085 1.020 
WA = 80% (ALL) 0.312 0.938 
WA = 70% (ALL) 0.068 0.986 

WA = 100% (ALL) 0.681 0.531 

WA = 60% (ALL) 0.490 0.929 
TTS (ALL) * 1.661 Natural voice (ALL) 0.542 0.532 
Mixed( ALL) 0.011 0.798 

Confirmation (ALL) 0.621 0.540 No confirmation (ALL) 0.258 0.865 

* R2 has not been computed because the correlation is negative.  

In accordance with our expectations, the prediction of test data resulted in poorer R2s than 
calculated for the training data. However, it turned out that some predictions across 
system configurations were more accurate than those calculated with the L1O method on 
the complete data set. Surprisingly, relatively high R2s were achieved when predicting the 
rating of dialogs with either 60% or 80% WA, while for WA = 70% or WA = 90% the 
R2s are very low. There is no reasonable explanation for this finding except that the 
training as well as the calculation of R2 was performed on only 20 cases each. This 
number is too small to guarantee a valid model (in this case, only the percentage of 
partially correctly parsed user utterances was taken into the model as a predictor) and the 
correlation coefficient is more sensitive to small changes in the data structure. 
Considering Ep of the predictions, it can be noted that they follow the general tendency of 
the R2s, but the values do not differ as clearly. 

A further high R2 was found for the prediction of dialogs without confirmation of 
acquired information with an equation trained on dialogs with explicit confirmation. In 
contrast to that, worst results were obtained when predicting dialogs with different 
system voices. Obviously, the effect of the system voice is not covered by the interaction 
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parameters which form the input for quality prediction; in turn, the effect of a 
confirmation strategy might well be reflected by the interaction parameter values, and can 
thus be taken into account by the model. 

We also tried to predict judgments of a newer system version with an equation trained on 
data from an earlier experiment. For this, we took advantage of the INSPIRE system 
having been tested at two different points in its development cycle. Between the first and 
the second test, the system was mainly improved with respect to the vocabulary and the 
speech understanding component, as well as the system prompt wording. Table 8 
provides performance values when different models are trained on one of the 
experimental databases and tested on the other one. 

 

Table 8: Performance of different models when extrapolating across INSPIRE 
experiments. Set 1 input parameters, AM target variable. LR = Linear Regression, 
CART= Classification And Regression Trees, CHAID = Chi-squared Automatic 
Interaction Detection (tree), MLP = Multi-Layer Perceptron networks. 

Training  Testing 
Experiment Model R2 Ep Experiment R2 Ep 

INSPIRE 1 (L1O) 0.230 0.991 LR 0.561 0.672 
INSPIRE 2 (ALL) 0.026 1.126 
INSPIRE 1 (L1O) 0.248 0.940 CART, 

unpruned 
0.567 0.666 

INSPIRE 2 (ALL) 0.145 1,026 
INSPIRE 1 (L1O) 0.221 0.962 CART, pruned 0.460 0.735 
INSPIRE 2 (ALL) 0.141 0.981 
INSPIRE 1 (L1O) 0.005 1.129 CHAID 0.578 0.827 
INSPIRE 2 (ALL) 0.220 0.895 

MLP, Set LR 
(L1O) 

0.394 0.617 INSPIRE 2 (ALL) 0.001 1.237 

INSPIRE 1 
Set 1 

MLP, Set ALL 
(L1O) 

0.104 0.939 INSPIRE 2 (ALL) 0.174 0.832 

INSPIRE 1 (L1O) 0.225 0.936 INSPIRE 1 
Set 2a 
parameters 

LR 0.496 0.518 
INSPIRE 2 (ALL) 0.008  

INSPIRE 1 (L1O) 0.332 0.853 INSPIRE 1 
Set 2b 
parameters 

LR 0.567 0.693 
INSPIRE 2 (ALL) 0.098  

 

Considering the Set 1 input parameters, the prediction performance decreases 
significantly when moving from one system version to the other. Best predictions for 
INSPIRE 2 data were obtained with the CHAID trees and the MLP trained on the 
parameter set from the ALL method. However, in both CHAID and MLP cases, 
prediction accuracy on INSPIRE 2 data was better than on INSPIRE 1 data with the L1O 
method. This indicates that the good values are somewhat accidental, as generalizability 
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towards another system (configuration) can hardly be guaranteed without validity of the 
model on the corpus it was trained on. 

For the remaining models, the R2s do not reach a level which would justify the model to 
be used for predictions. This finding is in opposition to what was found by Walker et al. 
(2000), who could predict test cases from other systems equally well as the training data 
themselves, reaching R2s up to 0.55 on the test cases. We became suspicious that the big 
amount of input parameters of Set 1 might result in too specialized models and therefore 
repeated the procedure with the same method as utilized by Walker et al. (2000), which 
corresponds to LR modeling with Set 2 input parameters. As can be seen in the last two 
rows of Table 8, we found that the poor generalizability of our models is not due to the 
enriched parameter Set 1. Even if a subjective judgment on task success is included in the 
model (Set 2b), prediction accuracy on test data from another system (configuration) is 
considerably lower than the one reported by Walker or achieved by us on the test data. 
Thus, these values seem to represent the limit of cross-configuration prediction for the 
INSPIRE experiments, and not a bias specific for the classifier or input parameter set. 

It should be noted that – besides the system version – also the participant group changed 
between INSPIRE 1 and 2. As the two system versions have not been tested with the 
same participant group, it cannot be decided whether the system changes or the changes 
in the user group affect the prediction results most. 

 
4.6 Cross-system Prediction 
 
An ideal prediction model would be applicable to a large number of SDSs. As there are 
three databases available which have been annotated according to the same principle, a 
cross-system prediction – from BoRIS to INSPIRE and vice-versa – becomes possible. 
However, as it has already been observed in the previous section, the data has been 
obtained from different test participants, casting doubt on whether any differences stem 
from the tested system or the participant group. Table 9 summarizes results for models 
trained on the INSPIRE 1 and the BoRIS datasets and applied to all other data. 

 

Table 9: Performance of LR models when extrapolating across systems, AM target 
variable. 

Training  Testing 
Experiment Input R2 Ep Experiment R2 Ep 

INSPIRE 1 (L1O) 0.230 0.991 Set 1 0.561 0.672 
BoRIS 0.029 1.134 
INSPIRE 1 (L1O) 0.225 0.936 Set 2a 0.496 0.720 
BoRIS (ALL) 0.077 1.073 
INSPIRE 1 (L1O) 0.332 0.853 Set 2b 0.567 0.666 
BoRIS (ALL) 0.132 1.013 
INSPIRE 1 (L1O) 0.090 1.002 

INSPIRE 1 

Set 3 0.381 0.799 
BoRIS (ALL) 0.032 1.292 

BoRIS Set 1 0.507 0.881 BoRIS (L1O) 0.193 0.977 
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Training  Testing 
Experiment Input R2 Ep Experiment R2 Ep 

INSPIRE 1 (ALL) 0.004 1.810 
INSPIRE 2 (ALL) 0.092 1.687 
BoRIS (L1O) 0.170 0.913 
INSPIRE 1 (ALL) 0.120 0.970 

Set 2a 0.219 0.892 

INSPIRE 2 (ALL) 0.263 0.879 
BoRIS (L1O) 0.406 0.775 
INSPIRE 1 (ALL) 0.321 0.843 

Set 2b 0.440 0.758 

INSPIRE 2 (ALL) 0.377 0.821 
BoRIS (L1O) 0.214 0.888 
INSPIRE 1 (ALL) 0.072 1.021 

Set 3 0.259 0.861 

INSPIRE 2 (ALL) 0.116 0.964 
 

In all cases, the prediction performance decreases significantly when moving from one 
system to the other. The decrease is slightly less strong when using Set 2b input 
parameters, i.e. the set including the subjective judgment on task success. Nevertheless, it 
can be stated that a cross-system extrapolation is not possible with the existing models. 

 
 
5. Discussion 
 
In the previous section, we analyzed different model configurations with respect to their 
performance in describing both known training and unknown test data. Test data was 
either taken from the same experiments, using a leave-one-user-out approach, or from a 
different system configuration or system (i.e. experiment). 

The performance of our baseline model on the training data fulfilled or even surpassed 
the expectations set by the literature (e.g. R2 = 0.41 in Kamm et al., 1998; R2 = 0.47 in 
Walker et al, 1998; R2 = 0.39…0.56 in Walker et al., 2000; R2 = 0.51 in Larsen, 2003), as 
long as a subjective judgment on task success is included in the input parameter set. This 
approach – although frequently followed in the literature – is however prohibitive if real 
prediction of user judgment is of interest. Such predictions are important for operating 
services when interactions can be logged easily, but when service operators are not 
willing to ask their customers about their impression. Therefore, we extended the set of 
input parameters and reached a similar performance (R2 = 0.30…0.58) even when 
omitting subjective judgments at the input to the models. Either a large set of standard 
interaction parameters (e.g. the ones recommended in ITU-T Suppl. 24 to P-Series Rec., 
2005) or a combination of interaction parameters and error frequencies turned out to be 
best. 

The prediction performance on unseen training data is in all cases significantly lower 
than the one on the training data. This is not in accordance with the findings of Walker et 
al. (2000), who were able to predict independent test data (even taken from other 
experiments) with a similar accuracy as the training data. However, the systems 
examined in this study came in several configurations, differing significantly in the 
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(simulated) recognition performance, speech output, and/or in the metaphor represented 
to the user. Thus, we expected a lower performance on the testing data. Still, whereas the 
general tendency of this finding was expected, the amount of the decrease was not: R2 
dropped to 0.09…0.23 when omitting subjective judgments at the input to the model. 
This shows that the models have significant problems in predicting unseen data.  

The situation did not change when using different target variables, e.g. a single-item 
overall quality judgment, or perceptual quality dimensions derived by a factor analysis. 
Other model algorithms have been investigated which do not presuppose a linear 
relationship between input and output variables, namely Classification And Regression 
Trees (CART), Chi-squared Automatic Interaction Detection (CHAID), and Multi-Layer 
Perceptron networks (MLP). The results were very similar to the ones obtained with the 
linear regression models. 

When changing the system configuration (e.g. individual system modules in the BoRIS 
system, or developmental changes of the INSPIRE system), prediction accuracy 
decreased once again. This seems to be a significant limitation, because prediction 
models often are meant to provide estimations of perceived quality and usability for 
unknown system configurations. The ultimate aim, namely to provide valid and reliable 
predictions for new systems, seems to be far out of reach of the modeling approaches 
used here. 

The poor extrapolation performance of our models compared to the ones given in Walker 
et al. (2000) may have several underlying reasons. Firstly, our models did not contain any 
user judgment on task success. The absence of a user-derived predictor – which seems to 
be well correlated with the to-be-predicted quality judgment – may have a detrimental 
effect on the generalizability of a model. Apparently, the larger set of input parameters 
could not provide the same general information as user-derived parameters can. This 
result however cannot be generalized: there might be other interaction parameters 
capturing the same type of general information as user judgments do, but we simply did 
not find them. Secondly, because our models could select from a larger set on input 
parameters (Set 1 or Set 4), they may have become more tailored to the system they have 
been trained on. However, the cross-system extrapolation results with the Set 2a and Set 
2b input parameters in Table 8 show that this was not decisive in our case. 

 

6. Application Examples 

Nevertheless, we decided to reconsider the aim of our investigation: In order to estimate 
the usability of a system, it is not necessary to provide valid and reliable estimations of 
quality judgments for individual interactions or individual users. On the contrary, system 
developers optimize the system for a large group of potential users, taking into account 
mean values or the distribution of judgments. Thus, it may be sufficient to be able to 
estimate an average user judgment for a set of dialogues, e.g. in order to take decisions in 
the system design process. 

An analysis of scatter-plots showed that indeed there is a relationship between some 
parameters and overall user judgments, however not in the form of a 1-to-1 mapping: 
While for extremely “poor” (i.e. very high or very low) values of a parameter the 
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judgment can often be predicted to be negative, for average and “good” values of the 
parameter judgments spread across a broad range. Despite this large spread, there seems 
to be an interpretable relationship between several parameters and overall user judgments. 
Thus, it may be possible to estimate the average ratings for different system 
configurations.  

We investigated the capability of our prediction models to estimate average judgments 
taking a typical system design problem. A critical point in the development of most SDSs 
is the question of whether the recognition performance of the system is good enough to 
allow for high-quality interactions. Because we varied the recognition performance in the 
INSPIRE 2 experiment in a controlled way, we are able to compare the subjective and the 
predicted averaged quality judgments for the system configurations differing in 
(simulated) ASR performance. 

Figure 1 shows the comparison between the subjective data and the predictions with the 
ALL and L1O method. The predictions have been multiplied by the ratings’ standard 
deviation, and the mean value of the ratings was added, in order to reverse the z-
transformation performed on the target variable before the training. While the 
distributions of the predictions are considerably narrower than in the subjective data, the 
medians show the same relation to the ASR performance. Therefore, for decisions made 
on the basis of the median, the predictions can be of use. In our example, the developer 
might draw the same conclusions from the predictions as from the subjective data, 
namely that ASR performance matters for the perceived quality, however, even with 
100% recognition accuracy the system is rated only average. She could further read from 
the graph, that the system was judged better than average (3.0) only for recognition rates 
higher than 86%.  
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Figure 1: Subjective and predicted OQ values for the INSPIRE 2 experiment, LR 
prediction model with ALL and with L1O training, Set 1 input parameters. Indicated are 
the median (thick line), the 25-75% quartile, and the 5-95% range. 
 
It is particularly remarkable that the quality of the predictions does not decrease for 
predictions from unseen test data as compared to predictions of the training data. In the 
figure, medians predicted with the L1O method are very similar to those predicted with 
the ALL method, and less accurate only in case of the 73% median. Generalizability, 
which is a key requirement for practical applications of the prediction model, seems to be 
sufficient for the application shown here. 
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7. Final Conclusions and Future Work 
 
The prediction performance which we determined in our experiments is significantly 
lower that the one known from other application areas. For examples, the PESQ model 
recommended in ITU-T Rec. P.862 (2001) for predicting the quality of telephone-
transmitted speech on the basis of a comparison of two signals showed a correlation with 
subjective judgments (single-item judgments as for OQ, but obtained on a slightly 
different scale) of 0.935 on 22 training databases, and the same correlation on 8 unknown 
test databases (Rix et al., 2006). The correlation for the P.563 model on predicting speech 
transmission quality on the basis of an individual degraded signal – a more difficult task 
– is still 0.88 on 24 training databases (Rix et al., 2006). The same model may be used to 
estimate the quality of synthesized speech, by automatically generating a reference signal 
with the help of a vocal tract analysis and integrating several perceptual dimensions to 
form an overall quality judgment. For this task, correlations range between 0.59 and 0.74 
on two test databases which are definitely outside the original scope of the model (Möller 
and Heimansberg, 2006). 

In this study, the training correlations of our baseline LR model are between 0.47 and 
0.70 for BoRIS and between 0.62 and 0.75 for INSPIRE 1, when omitting subjective 
ratings at the input to the model. Correlations for the unknown test data were even lower 
with between 0.41 and 0.46 for BoRIS, and between 0.30 and 0.48 for INSPIRE 1. In 
other terms, we can cover approximately half of the variance in the training data, and a 
significantly lower amount of the test data variance. 

Still, the models seem to do a good job in estimating mean overall quality judgments 
instead of ratings for individual users and dialogues. Such mean values may be taken as 
decision criteria in the system design process. For example, we showed that the decision 
for the minimum required word accuracy in order to reach an acceptable level of system 
performance can be determined with the help of such models, i.e. without directly asking 
test participants about their opinion. In this way, it is possible to just log interactions – 
carried out e.g. with remote participants – and not require participants to come to a test 
lab, or to answer surveys. 

In order to improve the prediction accuracy of the presented models, it may be necessary 
to identify better – i.e. more informative – input parameters. For example, no parameters 
are yet available for describing speech output quality. First approaches are described in 
Möller and Heimansberg (2006) and in ITU-T Contr. COM 12-47 (2007), but they are 
not yet satisfying, in the sense of a too low correlation (see above). Further information 
may be derived from the user’s speech signal, e.g. with respect to his/her emotional state 
(which may be linked to the speech level, or to prosodic features), or from system 
characteristics (e.g. a confusable vocabulary or grammar may lead to more 
misunderstandings in the dialogue). Work in this direction is underway to provide 
additional input parameters for PARADISE-style or other types of models. 

From the described experiments, it is not yet clear whether a larger improvement of 
prediction performance can be achieved by selecting better input parameters, or by using 
better modeling algorithms. Non-linear models, including the ones used here, may 
incorporate relationships between input parameters. In addition, threshold effects can be 
modeled, in the sense that a certain parameter matters for overall quality if it is above a 
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threshold, but that it does not matter any more if it is below that threshold. Unfortunately, 
it is difficult to design experiments exploring such relationships, because the parameter 
values are largely influenced by the (spontaneous) behavior of the user. 

In a similar vein, the choice of an appropriate target variable has also to be considered as 
a potential way of improving prediction models and their utility for system design. We 
tried to account for this from a modeling point-of-view, see Section 4.3. The results 
obtained here suggest that the mean of all subject ratings is superior to predicting a single 
overall quality rating or perceptual dimensions underlying the corresponding 
questionnaires. Still, other combinations, e.g. a weighted sum of individual answers, are 
conceivable. From a system design perspective, it has to be checked whether the target 
variables we proposed are informative for the purpose of the evaluation; this can be 
decided only in a particular evaluation situation. 

In the future, quality prediction models may form a part of (semi-) automatic system 
development tools. With the help of such tools, a system developer is able to estimate the 
quality and usability of his system during the development process without a direct 
involvement of human test participants. For example, user behavior may be modeled to 
simulate interactions between user and system, as described in the MeMo workbench 
(Möller et al., 2006). Prediction models like the ones described here can be used in 
conjunction with such tools, as long as they provide valid and reliable estimations of 
average (not necessarily individual) user judgments. 
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