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Joint-Sequence Models for

Grapheme-to-Phoneme Conversion

Maximilian Bisani ∗ Hermann Ney

Lehrstuhl für Informatik VI, RWTH Aachen University
Ahornstraße 55, D-52056 Aachen, Germany

Abstract

Grapheme-to-phoneme conversion is the task of finding the pronunciation of a word
given its written form. It has important applications in text-to-speech and speech
recognition. Joint-sequence models are a simple and theoretically stringent proba-
bilistic framework that is applicable to this problem. This article provides a self-
contained and detailed description of this method. We present a novel estimation
algorithm and demonstrate high accuracy on a variety of databases. Moreover we
study the impact of the maximum approximation in training and transcription, the
interaction of model size parameters, n-best list generation, confidence measures,
and phoneme-to-grapheme conversion. Our software implementation of the method
proposed in this work is available under an Open Source license.

Key words: grapheme-to-phoneme, letter-to-sound, phonemic transcription, joint
sequence model, pronunciation modeling

1 Introduction

Alphabetic writing systems are based on the idea that the orthographic form is
a conventional representation of a word’s pronunciation. In a perfectly phono-
logical alphabet there would be a one-to-one correspondence between letters
(graphemes) and phonemes. However, in most natural languages the associ-
ation between letters and sounds is to some extent ambiguous and context
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ACCEPTED MANUSCRIPT 
 dependent. Most languages have continued to evolve after their orthogra-

phies have been canonized, so that the strict correspondence between letters
and sounds has weakened over time. In particular, loanwords often retain the
spelling of their language of origin instead of being adapted to match their
host language’s orthographic conventions.

Grapheme-to-phoneme conversion (G2P) refers to the task of finding the pro-
nunciation of a word given its written form. It has important applications
in human language technologies, especially speech synthesis, but also speech
recognition and sounds-like queries in textual databases.

The main contributions of the present work are:

• A coherent approach to grapheme-to-phoneme conversion is presented that
is well founded on statistical decision theory.

• Several parameters and variations of this method are studied systematically
that have not been addressed comprehensively in previous publications. In
particular, different alignment schemata, model smoothing, as well as the
use of maximum approximations in training and application are studied.
Moreover, we provide details of our implementation, which is freely avail-
able.

• It is demonstrated that the proposed method performs more accurately than
or on par with all previously published results on several test sets.

In this article we will first attempt an overview of the variety of published
grapheme-to-phoneme conversion techniques in section 2. In the remainder
we will focus on an approach using statistical joint-sequence models. After
laying the theoretical foundations of this approach in section 3, we will un-
dertake a detailed exposition of this method in sections 4, 5 and 6. Thereby
we will introduce a novel model estimation technique and will discuss several
implementation aspects which have not been addressed in previous publica-
tions. Section 7 presents experimental results demonstrating the accuracy of
the proposed method, which will be analyzed in the section 8. Finally, in sec-
tion 9 we will discuss some of our experiences with using grapheme-to-phoneme
conversion in practical applications.

2 Review of grapheme-to-phoneme conversion techniques

Automatic grapheme-to-phoneme conversion was first considered in the con-
text of text-to-speech (TTS) applications. After normalization (expanding
abbreviation, numerals, etc.) the input text needs to be converted to a se-
quence of phonemes which is then used to control a speech synthesizer. The
simplest technique is dictionary look-up. While effective, it has serious lim-
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ACCEPTED MANUSCRIPT 
 itations: Making a pronunciation dictionary of significant size (over 100,000

entries) by hand is tedious and therefore costly. Also the storage requirements
of such a database can be problematic for embedded or mobile devices. More
importantly, a finite dictionary will always have limited coverage, while TTS
systems are often expected to handle arbitrary words.

To overcome the limitations of simple dictionary look-up, rule-based conver-
sion systems were developed. These can typically be formulated in the frame-
work of finite-state automata (Kaplan and Kay, 1994). Often rule-based G2P
systems also incorporate a dictionary as an exception list. While rule-based
systems provide good (or even complete) coverage they have two drawbacks:
Firstly, designing the rules is hard and requires specific linguistic skills. Sec-
ondly, natural languages frequently exhibit irregularities, which need to be
captured by exception rules or exception lists. The interdependence between
rules can be quite complex, so rule designers have to cross-check if the out-
come of applying the rules is correct in all cases. This makes development and
maintenance of rule systems very tedious in practice. Moreover, a rule-based
G2P system is still likely to make mistakes when presented with an exceptional
word, not considered by the rule designer.

In contrast to the knowledge-based approach outlined above, the data-driven
approach to grapheme-to-phoneme conversion is based on the idea that given
enough examples it should be possible to predict the pronunciation of unseen
words purely by analogy. The benefit of the data-driven approach is that it
trades the intellectually challenging task of designing pronunciation rules, for
the much simpler one of providing example pronunciations. For native speak-
ers it is much easier to judge the correctness of a pronunciation or to write
down the pronunciation of a specific word, than to formulate general spelling
rules. The crucial question in data-driven G2P is how analogy should be im-
plemented algorithmically. Starting with the work of Sejnowski and Rosenberg
(1987), various machine learning techniques have been applied to this problem
in the past. Before we try to give an overview in the following, we note that
there are two partly competing goals in data-driven G2P, namely lexicon com-
pression and generalization. Lexicon compression aims to minimize the storage
(and computational) requirements by minimizing the error on seen data using
a compact model. Generalization aims to overcome the limited coverage of a
given dictionary by minimizing error on unseen data.

It is worth noting that the pronunciations used to train a data-driven G2P
model ought to exemplify the pronunciation rules of the language. This is
contrary to the exception list used by rule-based systems which only need to
cover the atypical pronunciations. Training a model using only words with ex-
ceptional pronunciations would clearly defy any analogy-based approach. In
practice, available pronunciation dictionaries which typically cover the most
frequent words of the language are often used to train data-driven G2P mod-
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ACCEPTED MANUSCRIPT 
 els. While such dictionaries usually do contain atypical words, the patterns

found in the more frequent, exemplary words will normally prevail. In fact,
the data-driven approach mitigates the distinction between rules and excep-
tions. Ultimately, training data should be representative of the application
domain.

2.1 Techniques based on local classification

A large group of G2P methods presuppose an alignment of the training data
between letters and phonemes or create such an alignment in a separate pre-
processing step. The alignment is typically construed so that each alignment
item comprises exactly one letter. The number of corresponding phonemes
can be zero (epsilon, or “null phoneme”), one, or greater than one, as in the
following example. We call this type of alignment 1-to-n.

“mixing”
[mIksIN]

=
m
[m]

i
[I]

x
[ks]

i
[I]

n
[N]

g
—

Alignments can be created using hand-crafted rules, by (dynamic program-
ming) search using predefined alignment constraints or costs, or by an iterative
estimation of alignment probabilities in the spirit of the approach described
in section 3.2. In any case, the alignment problem is in this approach not part
of the actual transcription method.

Typically the input sequence is processed sequentially (e.g. from left to right).
For each input character, a (possibly empty) sequence of phonemes is chosen
from a small set of allowables. The prediction of the output phoneme (or
phoneme group) is based on the context of the current letter. Since the decision
for each position is taken before proceeding to the next, we call this family
of techniques local classification. The most popular techniques used to do
this prediction are neural networks and decision trees. Taking decisions about
each phoneme locally is clearly not optimal from a decision theoretic point of
view. However, this strategy avoids the need to use a search algorithm that is
generally necessary to find the globally optimal solution.

Sejnowski and Rosenberg (1987) as well as McCulloch et al. (1987) applied
neural networks to this classification problem. They use a three-layer neural
network. The input of the network is a context window of plus/minus three
letters. The input layer uses an orthogonal representation, i.e. one input for
each type of letter. The output layer represents the predicted phoneme by
means of articulatory features. Jensen and Riis (2000) and Häkkinen et al.
(2003) have improved this approach by using a more sophisticated letter code-
book representations in the input layer.
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 Torkkola (1993) uses a technique called dynamically expanding context which

generates a decision tree that takes an asymmetrical window around the cur-
rent letter into account. Daelemans and van den Bosch (1996) propose the use
of decision trees trained using the information gain criterion (IG-Tree). Ques-
tions are used only about the surrounding letters and the information gain
is computed only once for each attribute. Andersen et al. (1996) grow binary
decision trees using the Gini criterion. They allow questions about letters five
positions to the left and to the right of the current letter. In addition to ques-
tions for individual letters, tests for membership in 10 graphemic classes are
allowed. Pagel et al. (1998) also grow decision trees using the information gain
criterion but recompute the information gain for each node split. In addition
to the three preceding and following letters, they allow the algorithm also to
take the three following phonemes into account. This requires the word to be
processed in reverse order from right to left, since the phonemes are considered
to be the result of decisions taken previously. They also report improvements
from adding questions about the part-of-speech (POS) of the word considered.
Suontausta and Häkkinen (2000); Häkkinen et al. (2003) also employ infor-
mation gain derived decision trees. The set of possible questions includes up
to four preceding and four following letters, the preceding phonemes and their
phonemic classes.

2.2 Pronunciation by analogy

The term pronunciation by analogy (PbA) would be appropriate for all data-
driven grapheme-to-phoneme conversion techniques, but typically it is used
more specifically for approaches that could be described as nearest-neighbor-
like. The common theme among PbA techniques is that they scan the training
lexicon for words or parts of words that are in some sense similar to the word
to be transcribed. The output pronunciation is then chosen to be analogous
(in some sense) to these retrieved examples. By considering each word as a
whole, PbA goes beyond local classification, but is generally not founded on
a probabilistic model.

The method proposed by Dedina and Nusbaum (1991) examines every word
in the lexicon and builds a pronunciation lattice structure using the phonetic
representations of the words that match the input string. In this pronunciation
lattice, each node represents a candidate phoneme, and each path through the
lattice represents a possible pronunciation. Marchand and Damper (2000) ex-
tend and improve this approach by combining different path scoring strategies.
Yvon (1996) constructs the lattice representing all potential pronunciations of
a word by extracting overlapping chunks from words in the training lexicon.
The transcription is obtained by determining the best path through the lattice
based on maximum chunk overlap and chunk frequency.
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 The method described by Bagshaw (1998) operates with a set of hand-specified

grapheme phoneme correspondences (GPC, cf. sec. 3.2) and induces context
dependent rules over these units (with a context size of two GPC positions in
both directions). The final transcription is obtained by a global search over
the lattice of competing segmentations with scores based on rule weights and
rule violation penalties.

Bellegarda (2005) uses latent semantic analysis to define a global similarity
measure for words. To transcribe an unknown word, first a set of similar lexicon
entries is compiled, then all sequences in this list are aligned and for each
aligned position the most frequent phoneme is chosen.

2.3 Probabilistic approaches

A number of authors have approached the G2P problem from a probabilis-
tic perspective. Lucassen and Mercer (1984) create 1-to-n alignments of the
training data using a context independent channel model. The prediction of
the next phoneme is based on a symmetric window of letters and left-sided
window of phonemes. To this end they induce binary feature functions using
a mutual information criterion and then construct a regression tree. The leafs
of this tree carry probability distributions over the set of phonemes. Jiang
et al. (1997) presented an improved regression tree approach, using a refined
entropy weighting scheme, smoothing of leaf distributions, bagging and rescor-
ing with a phoneme trigram. One of the two models studied by Chen (2003)
uses a similar set of feature functions but uses a conditional maximum entropy
model for predicting phonemes.

Meng et al. (1994) model word pronunciations by morphological parse trees
using a layered bigram as the statistical parsing approach. Besling (1994)
obtains 1-to-n alignments by dynamic programming using a predefined and
uniform distribution. He uses Bayes’ formula to decompose the probability of
candidate pronunciations into a phonotactic model, which in this case is a 7-
gram on phonemes, and a matching model, which is the conditional probability
of the current letter given the current phoneme as well as the previous letter
and phoneme.

Some authors have proposed joint-sequence models. These models, which are
central to this article, are discussed in the next section.
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 3 Joint-sequence models

3.1 Statistical problem formulation

An orthographic form is given as a sequence of letters, also referred to as char-
acters or graphemes. We denote the set of graphemes as G. A pronunciation is
represented in terms of a phonemic transcription, i.e. a sequence of phoneme
symbols. The set of phonemes is denoted as Φ. The task of grapheme-to-
phoneme conversion, or phonetic transcription, can be formalized using Bayes’
decision rule as

ϕ(g) = argmax
ϕ′∈Φ∗

p(g, ϕ′) (1)

This means, for a given orthographic form g ∈ G∗ we seek the most likely
pronunciation ϕ ∈ Φ∗. Here V ∗ denotes the set of all strings over symbols in
V (Kleene star). It should be noted that this decision strategy is optimal with
respect to word error, i.e. the risk of not getting the correct pronunciation is
minimized.

3.2 Co-segmentations and graphones

The fundamental idea of joint-sequence models is that the relation of input
and output sequences can be generated from a common sequence of joint units
which carry both input and output symbols. In the simplest case, each unit
carries zero or one input and zero or one output symbol. This corresponds
to the conventional definition of finite state transducers (FST). When units
may carry multiple input and output symbols, the terms co-sequence and joint
multigram (Deligne et al., 1995) are used. While the approach is applicable to
any monotonous translation problem, it is formulated here in the context of
grapheme-to-phoneme conversion. As in our previous study (Bisani and Ney,
2002) we refer to joint units here as graphones. Other terms used to refer to
joint units in the context of grapheme-to-phoneme conversion are grapheme-to-
phoneme correspondences (GPC) (Galescu and Allen, 2001) and graphonemes
(Vozila et al., 2003).

A grapheme-phoneme joint multigram, or graphone for short, is a pair q =
(g, ϕ) ∈ Q ⊆ G∗×Φ∗ of a letter sequence and a phoneme sequence of possibly
different length. We use the expressions gq and ϕq to refer to the first and
second component of q respectively. We call a graphone singular, if it has at
most one letter and at most one phoneme. The inventory of graphones Q can
be inferred automatically from training data (cf. sec. 4) or it can be specified
by hand. In the joint multigram model it is assumed that for each word its
orthographic form and its pronunciation are generated by a common sequence
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 of graphones. For example, the pronunciation of “mixing” may be regarded as

a sequence of four graphones:

“mixing”
[mIksIN]

=
m
[m]

i
[I]

x
[ks]

ing
[IN]

The letter and the phoneme sequences are grouped into an equal number of
segments. Such a grouping is called a joint segmentation, or co-segmentation.
The more general term alignment is often used interchangeably. We refer to
this particulary type of alignment as m-to-n. For a given pair of input and
output strings, the segmentation into graphones may not be unique. Com-
pared to the methods described in section 2.1, which may also have alignment
ambiguity, m-to-n alignments have the additional freedom of how input let-
ters are grouped. For example the following segmentation into seven singular
graphones is equally valid. We refer to this as an 01-to-01, or FST-type align-
ment.

“mixing”
[mIksIN]

=
m
[m]

i
[I]

x
[k]

—
[s]

i
[I]

n
—

g
[N]

Because of this ambiguity the joint probability p(g, ϕ) is determined by sum-
ming over all matching graphone sequences:

p(g, ϕ) =
∑

q∈S(g,ϕ)

p(q) (2)

where q ∈ Q∗ is a sequence of graphones and S(g, ϕ) is the set of all co-
segmentations of g and ϕ:

S(g, ϕ) :=

q ∈ Q∗

∣∣∣∣∣∣∣
gq1^ · · ·^gqK

= g

ϕq1^ · · ·^ϕqK
= ϕ

 (3)

Here ^ denotes sequence concatenation and K = |q| is the length of the
graphone sequence q. The joint probability distribution p(g, ϕ) has thus
been reduced to a probability distribution p(q) over graphone sequences
q = q1, . . . , qK , which can be modeled using a standard M -gram approxi-
mation:

p(qK
1 ) ∼=

K+1∏
j=1

p(qj|qj−1, . . . , qj−M+1) (4)

Positions i < 1 and i > K are understood to hold a special boundary symbol
qi = ⊥ which allows modeling of characteristic phenomena at word starts and
ends. In the following sections we present a novel estimation method for this
type of model and continue with an experimental assessment.
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 3.3 Related work

Deligne et al. (1995) introduced the maximum likelihood procedure for in-
ferring many-to-many alignments using the EM algorithm. They study two
models for grapheme-to-phoneme conversion based on this. One uses a joint
unigram model on multigrams, the other uses a Bayes decomposition in to a
phonotactic bigram and a context independent matching model. In a previ-
ous study the multigram approach was combined with a joint trigram model
(Bisani and Ney, 2002). Galescu and Allen (2002) and Vozila et al. (2003) use
a very similar approach with a joint 4-gram model and a different alignment
method.

In contrast to these “chunk”-based methods, it is also possibile to build a
joint model with only singular graphones. Caseiro et al. (2002) use FST-type
alignments which they derive by a minimum edit cost criterion with manually
specified costs. A joint 8-gram model is built and converted to an FST. Chen
(2003) reports very good results with a structurally similar model. He uses
a maximum entropy 8-gram with Gaussian priors and obtains alignments by
EM training of the model.

4 Model estimation

4.1 Multigram inference through expectation maximization

In the following we consider the problem of inferring a model using vari-
able length units from training data that is not co-segmented. Given is a
training sample of N words paired with their pronunciations O1, . . . ,ON =
(g1, ϕ1), . . . , (gN , ϕN), but without an alignment on the level of letters and
phonemes. First we note that if we have a joint sequence model we can
compute the probability of any co-segmentation for each sample, since a co-
segmentation S uniquely defines a joint sequence:

p(g, ϕ,S) = p(q) (5)

Thus the log-likelihood of the training data can be formulated as the sum over
all segmentations:

logL(O1, . . . ,ON) =
N∑

i=1

logL(Oi) =
N∑

i=1

log

 ∑
S∈S(Oi)

p(Oi,S)

 (6)

The segmentation S into joint units is a hidden variable. As first demonstrated
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 by (Deligne and Bimbot, 1995), maximum likelihood training of this model can

be performed using the expectation maximization (EM) algorithm. We first
consider the context independent unigram case (M = 1). The re-estimation
equations for the updated parameters ϑ′ are:

p(q; ϑ) =
|q|∏
j=1

p(qj; ϑ) (7)

e(q; ϑ) :=
N∑

i=1

∑
q∈S(gi,ϕi)

p(q|gi, ϕi; ϑ) nq(q) (8)

=
N∑

i=1

∑
q∈S(gi,ϕi)

p(q; ϑ)∑
q′∈S(gi,ϕi)

p(q′; ϑ)
nq(q)

p(q; ϑ′) =
e(q; ϑ)∑
q′ e(q′; ϑ)

(9)

where nq(q) is number of occurences of the graphone q in the sequence q.
The quantity e(q; ϑ), which we call the evidence for q, is the expected number
of occurrences of the graphone q in the training sample under the current
set of parameters ϑ. The evidence can be calculated efficiently by a forward-
backward procedure (Deligne and Bimbot, 1997). This is further described in
section 6.1.

For higher order models (M > 1), we introduce the symbol h do denote the
sequence of preceding joint units hj = (qj−M+1, . . . , qj−1). We define nq,h(q)
to denote the number of occurrences of the M -gram qj−M+1, . . . , qj in q. With
this shorthand we can state the re-estimation equations as follows:

p(q; ϑ) =
|q|∏
j=1

p(qj|hj; ϑ) (10)

e(q, h; ϑ) :=
N∑

i=1

∑
q∈S(gi,ϕi)

p(q|gi, ϕi; ϑ) nq,h(q) (11)

=
N∑

i=1

∑
q∈S(gi,ϕi)

p(q; ϑ)∑
q′∈S(gi,ϕi)

p(q′; ϑ)
nq,h(q)

p(q|h; ϑ′) =
e(q, h; ϑ)∑
q′ e(q′, h; ϑ)

(12)

Again sequences q are implicitly understood to start and end with a boundary
symbol.

Obviously the above equations do not permit a new graphone to emerge once
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 its probability is zero. Therefore we initialize the model parameters by assign-

ing a uniform distribution over all graphones satisfying certain manually set
length constraints. We typically use only a simple upper limit L, i.e. |gq| ≤ L
and |ϕq| ≤ L, but exclude the non-productive case |gq| = |ϕq| = 0. More com-
plex constraints are conceivable, e.g. different limits for letter and phoneme
sequence lengths, or a lower limit in addition to the upper one. The uniform
initial distribution is the inverse of the total number of allowed graphones:

p0(q) =

[
L∑

l=0

L∑
r=0

|G|l|Φ|r
]−1

(13)

The summand for r = l = 0 accounts for the additional end-of-sequence token.

The graphone length constraint parameter L has a significant effect on the
size of the resulting graphone inventory. The other external parameter of the
sequence model is maximum the history length M . Together with L it defines
the effective span of the model, i.e. the number of letters or phonemes that
affect the estimated probabilities at a given position.

It is generally known that maximum likelihood estimates like (12) tend to
over-fit the training data and predict unseen data poorly. Also with the flat
initialization any graphone that can be construed from the training examples
will receive some probability mass, whereas only a small subset of these is ex-
pected to contribute to the “correct” model. These two issues will be addressed
by smoothing and trimming respectively as discussed in the following.

4.2 Evidence trimming

In a previous study the use of evidence trimming to address over-fitting was
suggested (Bisani and Ney, 2002). That is, to trim the evidence values below
a threshold by replacing e(q, h; ϑ) in equation (12) with

ê(q, h; ϑ) =

 0 if e(q, h; ϑ) < τ

e(q, h; ϑ) otherwise
(14)

This procedure causes the unlikely graphones to gradually die out during the
iteration process. Actually, there is always implicit trimming caused by the
limited machine precision. Evidence trimming is superior to model trimming
where a similar thresholding is applied to the probability estimates p(q; ϑ).
This is because even graphones with low probabilities p(q; ϑ) can have a condi-
tional probability p(q|gi, ϕi; ϑ) close to one in certain words. Removing them
would leave the training sample not representable by the model. Previous ex-
periments have shown that evidence trimming as such is effective in controlling

11
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 the size of the graphone inventory (Bisani and Ney, 2002). The threshold τ

needs to be adjusted on development data. In said previous study, smoothing
of the M -gram model is done independently from trimming. The next section
proposes an integrated smoothing technique.

4.3 Discounted evidence

Comparing the estimation equation (12) to typical n-gram language model-
ing, we note that we are faced with essentially the same modeling problem,
except that the evidence values take the place of classical n-gram counts.
It is well known that effective smoothing techniques are crucial to building
good language models. Empirical studies have shown that absolute discount-
ing with interpolation and a marginal preserving back-off distribution, also
known as Kneser-Ney 1 smoothing, yields very good results and often sur-
passes all other known smoothing methods (Kneser and Ney, 1995; Chen and
Goodman, 1999). Unlike counts in classical language modeling, evidence val-
ues are generally fractional. So care must be taken when adopting results from
classical language modeling, as their derivation may rely on the assumption
of integer counts. The estimation equation with absolute discounting and in-
terpolation is

pM(q|h) =
max{e(q, h)− dM , 0}∑

q′ e(q′, h)
+ λ(h) pM−1(q|h̄) (15)

For clarity we have added a subscript M to indicate the order of the dis-
tribution. dM ≥ 0 is a discount parameter. pM−1(q|h̄) is the generalized,
lower order (M -1)-gram distribution conditioned on the reduced history
h̄i = (qi−M+2, . . . , qi−1). λ(h) is chosen to make the overall distribution sum
to one.

Whereas in language modeling the smallest count value is one (apart from
unseen events), evidence values can become arbitrarily small, in fact smaller
than the discount. So the discounted evidence estimation includes a form of
evidence trimming: graphones with evidence values below the discount pa-
rameter are excluded from the model. A notable difference between this form
of evidence trimming and the explicit form (14) is that in discounting we
distribute the discounted evidence over unseen events, whereas in (14) the
remaining evidence is effectively distributed over seen events.

We still need to specify the back-off distribution pM−1. In classical language
modeling two flavors of Kneser-Ney smoothing are known: One is based on the

1 We have chosen to adhere to common usage, with apologies by the second author
for this breach of modesty.
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 idea of preserving the marginal distribution, the other one on leaving-one-out

(Kneser and Ney, 1995; Ney et al., 1997). Because we deal with fractional
“counts” it is not obvious how to apply leaving-one-out. Therefore we fol-
low the marginal preserving approach. The idea is to impose a consistency
constraint for all reduced histories h̄:

∑
h∈h̄

pM(q|h)
∑
q′

e(q′, h) =
∑
h∈h̄

e(q, h) (16)

Substituting with (15) and solving for pM−1(q|h̄) under the constraint that
pM−1 is normalized yields

pM−1(q|h̄) =
ê(q, h̄)∑
q′ ê(q′, h̄)

(17)

with ê being the reduced evidence

ê(q, h̄) :=
∑
h∈h̄

min{e(q, h), dM} (18)

Of course, pM−1(q|h̄) as in (17) needs to be smoothed as well. Two approaches
to smoothing pM−1 seem reasonable. The first is to “plug in” the reduced evi-
dence values (18) in (15). The second is to smooth the constraints (16). It turns
out that both approaches lead to equivalent results, except for different inter-
pretation of the discount parameters. Absolute discounting applies recursively
to lower order distributions pM−2, pM−3, . . . p0. The zerogram distribution p0

is uniform over all potential graphones (13).

In total we have introduced M discount parameters d1, . . . , dM . In classical
language modeling, Ney et al. (1995) as well as Chen and Goodman (1999)
have recommended estimates of the optimal discounts based on counts of
counts. Since fractional evidence values do not lend themselves to counting,
we resort to optimizing d on a held-out set using Powell’s method (Press et al.,
1992).

4.4 Bottom-up model construction and discounted expectation maximization

To start the interative procedure we initialize the unigram model with a flat
probability distribution (13), i.e. all possible multigrams have the same initial
probability. An alternative initialization uses unconstrained occurrence counts
c(q) in the training set (Deligne et al., 1995), that is, counting how often a gra-
phone potentially occurs in each word regardless of overlap with neighboring
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for M= 1 to Mmax:
initialize M -gram model with (M -1)-gram model

pM(q|h) = pM−1(q|h̄)
initialize the additional discount parameter

dM = dM−1

repeat until L(Oh) stops increasing:
compute evidence according to (11)
if L(Oh) did not increase:

adjust dicount parameters d1, . . . , dM−1 by direction set method
d = argmaxd′ L(Oh; d

′)
update model according to (15) and (18)

Fig. 1. Discounted EM algorithm

graphones.

c(q) :=
N∑

i=1

|gi|∑
l1=1

|gi|∑
l2=l1

|gi|∑
r1=1

|gi|∑
r2=r1

δ((gl1^ · · ·^gl2 , ϕr1^ · · ·^ϕr2) = q) (19)

These counts (subject to graphone length constraints) are then used to com-
pute the initial probability distribution by applying the normal smoothing
(15). Higher order M -gram models are initialized using the previously gen-
erated (M -1)-gram model. This means that we only allow histories which
correspond to M -grams that were not discounted away in the lower order
model.

We now address the question of how evidence discounting interacts with the
EM algorithm. First we note that we need a data set for optimizing the dis-
count values that is separate form the data used to compute the evidence
values. Not separating these sets would lead to a gross underestimation of the
discount. For this purpose we split the training data O into a training set
Ot and a typically smaller held-out set Oh. The training set is used to com-
pute the evidence values, while the held-out set is used to adjust the discount
parameters.

The normal EM algorithm strictly improves the likelihood of the training data
in each iteration. This will typically lead to over-fitting and the likelihood
of the held-out data will start to decrease at some point. Therefore, in the
discounted EM algorithm the discount values are updated to ensure that the
likelihood of the held-out data does not drop. The overall training procedure
is outlined in figure 1.
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 4.5 Maximum approximation

Earlier studies of the joint multigram approach (Deligne et al., 1995) used the
maximum approximation to (9) during training (so-called Viterbi training).

e(q; ϑ) ∼=
N∑

i=1

nq(q̂i) (20)

q̂i := argmax
q∈Q∗

p(q|gi, ϕi; ϑ) (21)

= argmax
q∈S(gi,ϕi)

p(q; ϑ)

This algorithm searches for the most likely segmentation in each iteration and
derives the updated model from the graphone counts in this segmentation.
Smoothing and bottom-up construction apply to this method just as described
before. The validity of this approximation will be studied experimentally in
section 7.7.

5 Transcription

Having estimated the model, (1) can be applied to phonemically transcribe
unseen words. In producing the phonemic transcription from the orthographic
form, we usually restrict ourselves to approximating the sum in (2) by the
maximum

p(g, ϕ) ≈ max
q∈S(g,ϕ)

p(q) (22)

This means, we look for the most likely graphone sequence matching the given
spelling and project it onto the phonemes.

ϕ(g) = ϕ( argmax
q∈Q∗|g(q)=g

p(q)) (23)

The loss in accuracy incurred by this approximation will be studied empirically
in section 7.8.

It is worth noting that because of the finite history length the joint sequence
model is in fact a weighted regular relation and can thus be represented by a
finite state transducer. This is particularly obvious in the L = 1 case, when
only singular graphones are permitted and each graphone can be presented by
an FST transition. Each history then corresponds to a state of the FST. Of
course, models with larger graphones (L > 1) can also be represented as an
FST by introducing auxiliary states.
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 6 Implementation aspects

This section highlights some important aspects of a concrete implemen-
tation of the methods described thus far. Our software implementa-
tion of these techniques is available under an Open Source license at
http://www-i6.informatik.rwth-aachen.de/web/Software/g2p.html.

6.1 Training

A hash map is used to map joint-multigrams to integer indices. When long
multigrams are allowed this map can consume a large amount of memory
since it encompasses all possible multigrams, not only those that receive an
evidence above the discount threshold. M -gram models are stored in a inverse
prefix tree structure, where each node corresponds to a particular M -gram
history, the root corresponding to the unigram, the leaves to the most specific
histories. The tree is embedded in an array in breath-first order. So a single
integer index can be used to refer to a particular M -gram history.

Evidence values (11) are computed in three steps. First segmentation graphs
are constructed. Then edge posterior probabilities are computed by means of
the forward-backward algorithm. Finally evidence values are accumulated in
a hash map. In the first step the set of potential co-segmentations is explicitly
represented as a directed acylic graph. Each edge corresponds to a graphone
q. Each vertex v of the graph corresponds to a position in the source sequence
l, a position in the target sequence r and an M -gram history h: v = (l, r, h). In
the unigram case (M = 1) there is no dependency on h and the graph can be
envisioned as a rectangular grid. When the M -gram range exceeds the length
of the sequence considered, the graph degenerates to a tree structure. With the
explicit graph representation the computation of forward, backward and pos-
terior probabilities can be implemented in a straight forward way. An implicit
representation, i.e., embedding the graph topology in the algorithms, would
greatly increase code complexity, especially for long-range M -gram models.
The graph construction algorithm is based on a depth-first search, exploring
the space of segmentations starting from the beginning of both sequences. Un-
der the depth-first scheme it was possible to integrate topological sorting of
the vertices into the construction algorithm, as well as removal of dead ends.
The list of vertices in topological order is needed for the forward/backward
computation which constitutes the second step of evidence computation.

The graphs for computing evidence values are deleted immediately after accu-
mulation has taken place, and are re-generated in the next iteration. Keeping
all graphs in memory is infeasible for larger data sets. The same graph con-
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 struction is used to compute the likelihood of the held-out set. Since the held-

out set is typically small, the graphs are not deleted for improved efficiency,
especially during adjustment of discount parameters. To provide a sense of
proportion: training of the 9-gram model on the Pronlex data set, which is
one of the larger data sets we have used, took about 3 days on a 1.8GHz CPU
and required up to 1GB of RAM.

6.2 First-best search

The optimization problem (23) can be viewed as a graph search problem and
can be solved using dynamic programming techniques. The open choice is
which search strategy is to be employed. An obvious choice would be to work
synchronously on the input side, i.e. considering each input letter after the
other. A potential problem is that when allowing graphones with an empty
grapheme side (i.e. input epsilon) in principle an infinite number of graphones
can be concatenated before advancing to the next input position. In practice
very large potential search spaces can be handled by heuristically pruning
the set of partial hypotheses. This technique is known as beam search. It
has the risk of search errors, when the beam width is too tight. The beam
width is a tunable parameter controlling the run-time vs. accuracy trade-off.
Chen (2003) uses beam search, whereas Galescu and Allen (2002) do not allow
null grapheme units and use simple dynamic programming search. We have
chosen to implement a best-first search strategy, where the current partial
hypothesis with the highest probability is expanded first. Alternative paths to
the same node are recombined, that is when a node is reached a second time
via an alternate path only the best scoring alternative is pursued further. This
procedure is equivalent to Dijkstra’s algorithm, or the A∗-algorithm with zero
rest cost. This algorithm is exact (no search errors), and we have found it to
be highly efficient for this problem. The computational effort on a typical PC
was so small that further investigations into optimizing the search strategy
were not considered worth while.

6.3 N-best search and posterior probabilities

A second decoding algorithm was implemented which is computationally more
expensive, but also provides additional results: First, a best-first search is
conducted as described above, but instead of relaxing alternative paths to
nodes that have already been seen, they are stored in a graph structure. The
resulting graph encodes all possible translations of the source sequences. Each
path uniquely corresponds to a co-segmentation of the source sequence and a
possible translation. Executing the forward algorithm with summation on the
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 graph, yields the probability of the source sequence very efficiently

p(g) =
∑

ϕ∈Φ∗
p(g, ϕ) =

∑
q∈Q∗|g(q)=g

p(q) (24)

This makes it easy to compute the posterior probability of a translation:

p(ϕ|g) =

∑
q∈S(g,ϕ)

p(q)

p(g)
(25)

After the graph has been constructed, another A∗-search is conducted on the
graph to generate n-best translations. This second search works in reverse
direction starting from the final node of the graph. The forward probabilities
without summation are used as a perfect rest cost. Therefore the paths through
the graph are retrieved in the right order from highest to lowest probability.
N-best list generation is a theoretically pleasing way of generating alternative
pronunciation candidates. We will comment on this possibility in section 9.1.
The value of the posterior probability as a confidence measure is examined in
section 9.4.

In practice we find that it is not necessary to carry out the summation in the
numerator of equation (25). Often no alternative segmentation for the best
translation occurs among the top-scoring candidates (cf. sec. 7.8). Therefore
we will use the following approximation in most experiments:

p(ϕ|g) ≈
max

q∈S(g,ϕ)
p(q)

p(g)
(26)

7 Experiments

7.1 Performance metrics

Accuracy of grapheme-to-phoneme conversion is measured in terms of
phoneme error rate (PER), which is the edit distance between the automatic
transcription result (candidate) and reference pronunciation divided by the
number of phonemes in the reference pronunciation. Edit distance (or Lev-
enshtein distance) is the minimum number of insert, delete and substitute
operations required to transform one sequence into the other (Levenshtein,
1965). If the reference lexicon contains multiple pronunciation variants for a
word, the variant that has the smallest edit distance to the candidate is used.
An additional performance metric is word error rate (WER), which is the
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 relative proportion of words that have at least one phoneme error. It is less

forgiving to near misses than phoneme error rate.

Several other publications report phoneme and word accuracy instead of error
rates. For words the relation is very simple, word error rate is one minus word
accuracy. Phoneme accuracy is frequently used in studies using the letter clas-
sification paradigm (cf. sec. 2.1). Unfortunately, direct translation to phoneme
error rate is not always possible, because it is often not clear whether accu-
racy is normalized on the number of (correct) phonemes or on the number of
letters, or how the case of multiple output phonemes for one letter (“pseudo
phoneme”) is counted. We therefore refrain from converting phoneme accura-
cies given in other publications.

7.2 Data sets

In order to find out how the proposed method compares in terms of accuracy
to methods published previously, we have tested it on a variety of English
pronunciation databases. Table 1 gives an overview of the data sets used. In
all cases the original database is partitioned randomly into disjoint training
and testing sets. We have tried to replicate the conditions reported in previous
studies, so that the performance figures can be compared directly. 2 Two of
the data sets were made available as part of the Pascal Letter-to-Phoneme
Conversion Challenge (van den Bosch et al., 2006). For the NETtalk database
(Sejnowski and Rosenberg, 1993) three different replications were used to re-
produce different settings used in other publications. The approximate size of
the training set is used to indicate a particular replication. The 19k variant ex-
cludes homographs and one-letters words. The two other US English databases
are CMUdict (Weide, 1998) release 0.6 and Pronlex (Kingsbury et al., 1997).
Three databases of British English were used: Beep (Robinson, 1997) as used
in the Pascal Challenge, OALD (Mitton, 1992), and Celex (Celex, 1995). The
grapheme set of the Beep database includes apostrophe, hyphen, underscore
and period. (It also contains some other rare punctuation characters that were
not counted in table 1.) The OALD phoneme set includes stressed and un-
stressed vowels. The Celex set is a randomly chosen subset of the actual Celex
database which excludes phrases, abbreviations and homographs and in which
all words were converted to lower case. In addition, two non-English databases
were used: the German database LexDb (Lüngen et al., 1998) and the French
database Brulex (Content et al., 1990). The LexDb set is a random subset
of the actual LexDb database. It excludes hyphenated compounds, abbrevi-
ations and pronunciation variants and has all words converted to lower case.

2 We would like to express our gratitude to Stanley F. Chen who was kind enough
to share the pre-processing and data set partitioning he used in (Chen, 2003).
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 Table 1

Overview of pronunciation databases used in experiments on grapheme-to-phoneme
conversion: size of grapheme and phoneme inventory, average length of words, aver-
age number of pronunciations per word in the training set, number of orthograph-
ically distinct words in training, test and held-out set. In case of cross-validation
averages are given.

symbols word length prons/ number of words x-vali-
|G| |Φ| |g| |ϕ| words train test held dation

British English

Beep 30 45 9.0 7.6 1.073 215713 25706 – 10×

Celex 26 53 8.4 7.1 1 39995 15000 5000 –

OALD 26 82 8.2 6.9 1.008 56961 6377 – –

US English

NETtalk 15k 26 50 7.3 6.2 1.010 14851 4951 – –

NETtalk 18k 26 50 7.3 6.3 1.010 17822 1980 – 10×

NETtalk 19k 26 50 7.3 6.3 1 18595 1000 – 5×

CMUdict 27 39 7.5 6.3 1.062 106837 12000 – –

Pronlex 30 41 7.4 6.9 1.094 83182 4800 2400 –

German

LexDb 30 46 10.4 9.0 1 40000 15000 5000 –

French

Brulex 40 39 8.5 6.7 1 24726 2747 – 10×

The Brulex data set again comes from the Pascal Challenge.

7.3 Convergence behavior

To illustrate the behavior of the proposed training algorithm an example of
the evolution of training data likelihood and error rate over training iterations
is shown in figure 2. The held-out set likelihood increases monotonically. This
is ensured by periodically adjusting the discount parameters. We observe that
typically the discount slowly grows from iteration to iteration. As one may
expect the discount increases with model order dM−1 < dM .
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Fig. 2. Evolution of training data likelihood and model performance over EM train-
ing iterations. NETtalk15k corpus, L = 2, M = 1.
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Fig. 3. Grapheme-to-phoneme conversion performance on the NETtalk 15k data
set for L-to-L models of different complexities. Error bars show 90% confidence
intervals.

7.4 Size of graphones

The effective range covered by the model is controlled by the length of gra-
phones and the order M of the sequence model. The actual size of each gra-
phone is an outcome from the training procedure. However the maximum size
of graphones considered is controlled by a parameter L.

Here all graphones of zero up to L letters and phonemes are allowed. On the
NETtalk 15k all combinations of L and M in range from one to four and
one to six respectively have been tested. The results are depicted in figure 3.
We see that performance monotonically improves with longer M -gram range.
Concerning the maximum graphone size two regimes can be distinguished:
When the sequence model retains little or no context information (M ≤ 2),
chunks can step in and performance is better the longer the chunks are. With
longer range sequence models (M ≥ 4) the situation is reversed and accuracy
is worse the bigger the chunks are. This may be expected as data is sparser
for larger chunks. With four-grams and beyond the best results are obtained
with using singular graphones only (L = 1).

An additional experiment was conducted to study 1-to-n alignments. This was
done by choosing a different constraint on graphone length: all graphones have
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 Table 2

Comparison of different types of alignment. Phoneme error rates in percent on
NETtalk 15k, M = 6.

alignment type L = 1 L = 2 L = 3 L = 4

L-to-L 8.27 10.60 12.69 13.99

1-to-L 8.27 8.32 8.33 8.32

exactly one letter, and zero up to L phonemes, i.e. |gq| = 1 and |ϕq| ≤ L.
This type of alignment emulates typical local classification approaches (cf. sec.
2.1). Results are given in table 2. We observe that for 1-to-L alignments the
performance is virtually independent of L. The restriction to exactly one letter
per graphone alone constrains the set of segmentations largely, so that the
additional constraint on the number of phonemes does not play a significant
role. For L = 1 accuracy is slightly higher and is on par with the FST-type
model that does additionally allow phoneme insertions. Considering that most
words have fewer phonemes than letters, this is understandable.

7.5 Size of held-out set

As explained above, it is necessary to reserve some part of the training data
as a held-out set which is used to adjust the discount parameters. An open
question is how large the held-out set should be. On the one hand, too small
a held-out set will make the estimation of discounts unreliable, leading to
poor performance. On the other hand, enlarging the held-out set reduces the
amount of data used in the actual model estimation, which also deteriorates
performance. The second problem can be partially alleviated by doing addi-
tional fold-back training: After the training process has converged, the held-
out data is added to the estimation data and training is iterated further until
convergence while keeping the discount parameters fixed.

To find the best trade-off, we have done experiments on the NETtalk 15k data
set with varying held-out set sizes using L = 1 and M = 6. Figure 4 shows
that there is a shallow optimum at a held-out set size of about 1000 words
when fold-back is employed which is 7% of the training data for this data set.
Without fold-back the depletion of training examples makes itself felt very
strongly. We conclude that fold-back is generally advisable. Since the held-out
data is used to estimate the M discount parameters, a held-out set of 1000
words should also work well with larger data sets. In the following experiments
we have generally used fold-back, except on data sets which have a dedicated
development test set.
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Fig. 4. Graphme-to-phoneme conversion performance on the NETtalk 15k data as
a function of different partitionings of the training data (L = 1, M = 6). For the
no fold-back case, the set of words used for model estimation is reduced by the
respective amount of held-out data. In the fold-back case additional EM training
iterations with the full training set were done.

7.6 Effect of smoothing

In the theoretical derivation of the probabilistic model much attention was
given to smoothing. In this section we want to verify our assumption about
the importance of smoothing empirically. In a first attempt to do this all dis-
count parameters were fixed to be zero. This emulates maximum likelihood
estimation as far as possible with our software implementation. Because we
represent all probabilities in the log-domain, zero probabilities are actually
taken to be approximately 10−1010

. For this reason, when the decoder encoun-
ters an unseen grapheme sequence it will use the back-off “distribution” even
though it is penalized with a quasi-zero weight. As there is no discounting the
back-off “distribution” is uniform. A true implementation of naive maximum
likelihood would simply bail out when presented with an grapheme M -gram
that was not seen in training. Therefore we think that the back-off as last
resort scheme is more reasonable to compare to. Nevertheless, it performs
quite poorly. As shown in figure 5, over-fitting kicks in at M ≥ 4. The lowest
phoneme error rate on NETtalk 15k is 11.78% at M = 3 (and L = 1), which
is 42% higher than what we achieve with the smoothed model.
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Fig. 5. Grapheme-to-phoneme conversion accuracy on the NETtalk 15k for
smoothed and unsmoothed models as a function of context length (L = 1). Er-
ror bars show 90% confidence intervals.

The main shortcoming of the unsmoothed model is that it is completely in-
discriminative on the unseen events. In a second experiment the discount
was set to a small but non-zero value d = 10−6. For comparison, the em-
pirical discounts determined during training as described are on this data
d1 = 0.06, d2 = 0.31, d3 = 0.54, d4 = 0.68, d5 = 0.79. Although this model
assigns too little probability mass to unseen events, when it must back-off
it makes use of a proper back-off distribution. We find that this marginally
smoothed model performs much better than the unsmoothed one, but still
lags far behind the empirically smoothed model (see fig. 5). For short context
lengths (M ≤ 2) error rates are near identical, as data is not sparse in this
regime. Beyond that, the error rate of the smoothed model drops rapidly and
reaches a plateau at 8.27 for M ≥ 5. For the marginally smoothed model the
error rate decreases more gradually and reaches its lowest value of 9.47% at
M = 11. Thus the smoothed models achieve a 12.7% relative lower error rate
with a much smaller model (151k vs. 435k M -grams).

7.7 Training with maximum approximation

We now address the question whether the maximum approximation during
training is allowable (cf. sec. 4.5). Models were trained on the NETtalk 15k
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 Table 3

Comparison of model initialization and training schemes. Phoneme error rates in
percent on NETtalk 15k with M = 6. Training was performed either with maximum
approximation, or with normal EM (“sum”).

initialization training L = 1 L = 2 L = 3

flat maximum 8.42 12.40 20.71

counts maximum 8.36 10.84 13.65

flat sum 8.27 10.60 12.66

counts sum 8.27 10.59 12.61

data set with maximum graphone sizes of L = 1 . . . 3 using four different
settings. The model was initialized either flat (13), or using unconstrained
counts (19). Subsequently either EM training (“sum”, i.e. with summation
over alternative segmentations), or training with maximum approximation
(“maximum”) was performed to convergence.

Results in terms of transcription accuracy are given in table 3. We find that
training with maximum approximation is very sensitive to initialization. The
count-based initialization yields far better results for non-singular graphones.
For singular graphones the advantage is not quite significant. Training with
summation is rather insensitive to initialization. The difference between both
initialization schemes is insignificant in this case. Generally the maximum
approximation in training hurts performance. For L = 2 the difference is
significant with a probability of improvement of 95% according to a pair-wise
bootstrap analysis (Bisani and Ney, 2004). For L = 1 there seems not to be a
significant disadvantage to using the maximum approximation.

7.8 Transcription with summation

The experiment described in this section aims at determining the impact of
the maximum approximation (22) on transcription accuracy. Carrying out the
sum over different alignments of the same target sequence can be executed
with the help of n-best lists. N-best lists were computed for the NETtalk 15k
corpus as described in section 6.3 using models with M = 6. Each entry in
the list represents a unique graphone sequence which implies the candidate
transcription and has a posterior probability associated with it. The length of
each n-best list was chosen to be at least 50 and for each word so that the
accumulated posterior probability was greater than 0.99. As a result, the oracle
error of the n-best lists is far below the first-best one. (By oracle error rate
we mean the error rate that could be obtained by picking the best hypothesis
from each list.) The same transcription may occur multiple times in such an
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 Table 4

Comparison of grapheme-to-phoneme conversion with and without using the maxi-
mum approximation in decoding. NETtalk 15k, M = 6.

L = 1 L = 2 L = 3 L = 4

length of n-best list 84.00 101.07 56.96 47.14

distinct pronunciations 81.91 69.19 36.72 29.29

alignments per pronunciation 1.0184 1.4330 1.6378 1.7108

oracle PER [%] 0.23 0.46 1.43 3.74

rank-order correlation 0.9838 0.9864 0.9796 0.9524

first-best changes [%] 0.0800 1.9992 2.9035 2.2065

PER without summation [%] 8.27 10.60 12.69 14.89

PER with summation [%] 8.27 10.42 12.43 14.75

n-best list, each time generated by a different alignment. We measure how
often these repetitions occur by stating the ratio of the number of entries to
the number of distinct pronunciations. From each original n-best list two new
lists were derived. For the maximum-approximation n-best list, any repeated
pronunciations were simply dropped and the list was left in its original order
which is by decreasing maximum-approximated posterior probability (26). For
the n-best list with summation, we summed the posterior probabilities of the
entries which correspond to the same pronunciation. This list was re-sorted
according to this better approximation of the true posterior probability. The
average rank-order correlation was computed to quantify how much the two
resulting lists differ. In addition we counted for what fraction of words the
top-scoring candidate changed. We also compared the error rates for the top-
scoring candidate in both cases.

The results are given in table 4. We find that repeated transcriptions are very
rare in the case of singular graphones (L = 1). As a consequence accuracy re-
sults are practically unaffected by carrying out the summation in decoding. For
the models employing larger graphones there is more ambiguity in the align-
ment of source and target sequence. This manifests itself in a larger number
of alignments for each candidate transcription. Still the rank-order correlation
is very close to one, implying that different candidates change position only
rarely due to summation. In terms of accuracy, summation in decoding leads
to a small but consistent improvement. Still, the best results are obtained with
singular graphones where summation is unnecessary.
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 7.9 Performance evaluation

The following experiments are meant to evaluate how well the method pro-
posed here works on a variety of data sets, especially in comparison with
other methods. We applied the settings that were found to be best in the ex-
periments described above. It is conceivable that different settings work better
when data sets of significantly larger size are used. However, we did not pursue
this possibility, as preliminary tests have indicated otherwise.

The settings used can be summarized as follows: Models used only singular
graphones and were trained with the EM algorithm (with summation) and
flat initialization. When the test set did not have a dedicated development
test set, a held-out set was created by randomly picking about 1000 words
from the training data. In this case additional fold-back training was done as
a final step. On data sets that have a development test set (Celex, Pronlex and
LexDb) it was used as the held-out set in training, but no fold-back training
was done. For each data set the sequence model order was chosen that gave
the highest log-likelihood for the held-out set. In all cases this was M = 8 or
9. In decoding the maximum approximation was used.

Table 5 summarizes our results on all English data sets and quotes results
published by other authors. Results on non-English data sets are listed in ta-
ble 6. Unfortunately, to our knowledge, no error rates have been published on
these data sets by other authors. Error margins corresponding to 90% confi-
dence intervals were computed using per-word bootstrap resampling (Bisani
and Ney, 2004). When the data set prescribed the use of n-fold cross vali-
dation, n models were trained independently on n − 1/n-th of the data and
evaluated on the remaining n-th. Error rates are in this case computed on the
union of the n test sets, and error margins are obtained from sampling over
this union. For reference the sizes of all models in terms of their number of
graphones and m-grams are reported in table 8.

8 Discussion

The numbers in table 5 show that the proposed method is more accurate
than or on par with all previously published result. Apart from that, these
results as well as the various contrastive experiments reported provide some
insight on previously unanswered questions. First we should point out that
the results by Chen (2003) are very close to those obtained by the method
presented here. This comes as no surprise as his approach is very similar, albeit
computationally more demanding. He uses only singular graphones with a long
range M -gram model, which is the same basic configuration that yielded the
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Table 5
Summary and comparison of grapheme-to-phoneme conversion accuracy on English
data sets. The lines marked with “=” use exactly the same data both for training and
testing. Other lines use faithful replications. “±” indicates 90% confidence interval.

data set author PER [%] WER [%]

Beep this work 3.38 ± 0.03 20.08 ± 0.15

Celex = Bisani and Ney (2002) 3.98

= Vozila et al. (2003) 3.68 17.13

Chen (2003) 2.7

= this work 2.50 ± 0.11 11.42 ± 0.43

OALD Pagel et al. (1998) with POS 6.03 21.87

Pagel et al. (1998) w/o POS 23.34

= Chen (2003) 18.9

= this work 3.54 ± 0.19 17.49 ± 0.78

NETtalk 15k Andersen et al. (1996) 47.0

Jiang et al. (1997) 8.1 34.2

= Chen (2003) 34.6

= this work 8.26 ± 0.32 33.67 ± 1.10

NETtalk 18k Torkkola (1993) 9.2

Yvon (1996) 36.04

Galescu and Allen (2001) 9.00 36.07

this work 7.83 ± 0.16 31.79 ± 0.54

NETtalk 19k Marchand and Damper (2000) 34.5

= Chen (2003) 32.1

= this work 7.66 ± 0.31 31.00 ± 1.09

CMUdict Galescu and Allen (2002) 7.0 28.5

= Chen (2003) 5.9 24.7

= this work 5.88 ± 0.18 24.53 ± 0.65

Pronlex = Chen (2003) conditional ME 8.00 31.8

= Chen (2003) joint ME 7.15 27.3

= this work 6.78 ± 0.31 27.33 ± 1.04
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Table 6
Grapheme-to-phoneme conversion accuracy for non-English data sets

language data set PER [%] WER[%]

German LexDb 0.28 ± 0.03 1.75 ± 0.18

French Brulex 1.18 ± 0.05 6.25 ± 0.24

Table 7
Grapheme-to-phoneme conversion accuracy on the respective training sets. The
same models as in tables 5 and 6 are used.

language data set PER [%] WER[%]

British English Beep 0.36 ± 0.01 2.18 ± 0.05

US English NETtalk 15k 0.44 ± 0.04 2.16 ± 0.20

US English CMUdict 0.38 ± 0.02 1.79 ± 0.07

German LexDb 0.007 ±0.002 0.06 ± 0.02

French Brulex 0.05 ± 0.01 0.25 ± 0.05

Table 8
Sizes of grapheme-to-phoneme conversion models corresponding to the accuracies
reported in tables 5 and 6. Total number of graphones occurring in the model (after
trimming), M -gram order of the model, and total number of M -grams stored (in-
cluding back-off weights). For data sets using cross-validation the maximum values
are given.

data set graphones order parameters

Beep 485 9 1728389

Celex 226 8 670582

OALD 307 9 815109

NETtalk 15k 149 8 246149

NETtalk 18k 158 8 293572

NETtalk 19k 155 8 296184

CMUdict 270 9 1556784

Pronlex 282 8 1321060

LexDb 158 9 347758

Brulex 193 8 401739
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 best performance in our experiments. However, instead of a discounting and

interpolation type model estimation he uses a maximum-entropy-based model
with Gaussian priors. Our results shows that the maximum-entropy method is
not essential for obtaining this high level of accuracy. As both models make use
the same contextual information (M -grams), smooth probabilities of unseen
events and preserve lower-order marginals, similar levels of performance can
be expected (Chen and Rosenfeld, 2000).

An advantageous property of joint-sequence models is their capability to han-
dle the alignment problem intrinsically (Och and Ney, 2003). This is conve-
nient especially in developing a grapheme-to-phoneme conversion system for
a new language where otherwise alignment rules would need to be written by
hand. Intuitively the ability of this model to group symbols into larger units
(“chunking”) is appealing as it allows for a natural mapping of frequent letter
groups such as “th” or “ph”. Table 9 shows some examples of automatically
inferred graphones. Chen (2003) doubted whether chunking was really ben-
eficial to grapheme-to-phoneme conversion accuracy, but it should be noted
that no previous work has explored the use of non-singular graphones in com-
bination with a long-range M -gram (M ≥ 5) sequence model. The results in
section 7.4 confirm previous reports that non-singular graphones help when
the overarching M -gram sequence model has a short span. However, as the
span of the M -gram model is extended, shorter graphones gain in accuracy
more quickly than longer ones, and eventually perform better. Thus singular
graphones in combination with a long range sequence model yields the best
performance. Accuracy increases monotonically with M , and typically satu-
rates at M = 8 or 9, which corresponds to typical word length and confirms
the common language modeling wisdom that one should “remember” every-
thing. Is was further shown that 1-to-n alignments can achieve comparable
accuracy. Such alignments may have advantages in terms of a simpler decoder
implementation.

The failure of non-singular graphones can partially be explained by consider-
ing that larger graphone inventories aggravate data sparseness in estimating
the sequence model. On the other hand, this shows that we have not found
the best conceivable training procedure, yet. Since the shorter graphones are
a subset of the larger ones, a perfect algorithm should be able to choose only
the shorter ones if they predict pronunciations best, and artificial constraints
should be unnecessary. Still the ability of the algorithm presented to infer vari-
able length fragments from unaligned data may be useful in other applications,
for example in finding sub-word units for open-vocabulary speech recognition
(Bisani and Ney, 2005; Galescu, 2003).

Concerning the use of the maximum approximation, experiments confirm the-
ory in that carrying out the summation consistently leads to better perfor-
mance. During training it is generally advisable to use the true EM algorithm
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 Table 9

Typical examples of automatically inferred graphones. These are the fifteen gra-
phones with the highest unigram probabilities inferred from the English Celex (left)
and the German LexDb (right) database. M = 1, L = 4.

p(q) gq ϕq

0.04825 “s” [s]
0.03134 “t” [t]
0.02647 “s” [z]
0.02446 “ing” [I N]
0.02116 “l” [l]
0.02067 “p” [p]
0.01994 “n” [n]
0.01845 “d” [d]
0.01817 “st” [s t]
0.01166 “in” [I n]
0.01114 “m” [m]
0.01073 “ly” [l I]
0.00997 “b” [b]
0.00981 “c” [k]
0.00813 “tion” [S n

"
]

p(q) gq ϕq

0.07438 “en” [@ n]
0.05756 “t” [t]
0.03535 “ge” [g @]
0.03026 “n” [n]
0.02592 “r” [r]
0.02204 “l” [l]
0.02201 “s” [s]
0.02177 “te” [t @]
0.01927 “sch” [S]
0.01907 “m” [m]
0.01905 “de” [d @]
0.01725 “st” [s t]
0.01555 “e” [@]
0.01492 “es” [@ s]
0.01418 “er” [5]

(with summation). For transcription, summation does not have an impact,
as long as only singular graphones are used. We have also demonstrated that
smoothing is essential to obtaining highly accurate models.

By evaluating on unseen data this study has emphasized the generalization
capabilities of the grapheme-to-phoneme converter. Yet, a major strength of
sequence models of this type is that they easily memorize long sequences from
the training data. This manifests itself in very low error rates on the train-
ing set, shown in table 7. However, the models require a quite large amount
of memory and are probably not suitable for lexicon compression. Further
research is required for application in scarce memory environments.

9 Applications

9.1 Lexicon augmentation

Large vocabulary speech recognition (LVCSR) systems rely on phonemic tran-
scriptions to build hidden Markov models for all the words in their recognition
vocabulary from smaller context dependent units (e.g. triphone models). In
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 typical application domains the recognition vocabulary will have reasonably

high but rarely complete coverage. When applications allow end users to add
words to the recognition vocabulary the phonemic representation is typically
hidden, because the user is not expected to understand and use the phonetic
notation. In this case grapheme-to-phoneme conversion is used to produce a
pronunciation for the orthographic form provided by the user. Desktop appli-
cations may additionally make use of acoustic sample utterances.

Grapheme-to-phoneme conversion can also be used in rapid cross-domain port-
ing. In this scenario one wants to adapt an existing LVCSR system to work in a
new application domain. Typically the existing lexicon will have a rather high
out-of-vocabulary (OOV) rate on the new domain and a large number of words
must be added to the system’s dictionary. Here grapheme-to-phoneme conver-
sion is a fast and cheap way to provide the missing phonetic transcriptions. In
Bisani and Ney (2003) we studied the trade-off between manual transcription
effort and speech recognitions accuracy. The advantage of data-driven meth-
ods such as the one presented here is that the model can be trained on the
existing system dictionary. Therefore the automatically produced transcrip-
tions will be consistent with the pronunciations taken over from the existing
dictionary. Gollan et al. (2005) as well as Lööf et al. (2006) report on systems
that have been ported to a new domain using this technique. A grapheme-to-
phoneme converter that was developed independently will generally deviate
in terms of the phoneme inventories and transcription conventions used.

Speech recognition systems often use multiple pronunciations for a word to ac-
count for some variation in the way users speak. The n-best decoder described
in section 6.3 allows generation of alternative pronunciation candidates. If the
training data contains (systematic) pronunciation variation, the n-best list de-
coder will consistently produce variants. However, there is little guidance as
to how many pronunciations should be accepted in this case. It should also be
noted that the algorithm will not come up with likely variants in the sense of
natural phonological variation. The variants generated will reflect the ambigu-
ity and variation found in the training data, but typically this method cannot
be used on its own to suggest variants due to dialect or other phonological
processes that are not present in the training data.

9.2 Sound-to-letter conversion

Only relatively few publications have addressed the inverse problem of
grapheme-to-phoneme conversion, namely inferring the correct spelling of a
word from its phonemic transcription. Examples include the works of Meng
et al. (1994) and Galescu and Allen (2002). An advantage of the method pro-
posed here is that it uses statistical models that are symmetric with respect
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 Table 10

Phoneme-to-grapheme conversion accuracy for selected data sets. Comparable re-
sults from Galescu and Allen (2002) are quoted.

letter error word error
language data set rate [%] rate [%]

US English NETtalk 18k Galescu 10.03 41.87

this work 8.62 ± 0.16 37.27 ± 0.57

US English CMUdict Galescu 11.5 49.7

this work 10.35 ± 0.22 47.31 ± 0.73

German LexDb this work 0.41 ± 0.04 2.86 ± 0.22

French Brulex this work 5.62 ± 0.11 26.75 ± 0.44

to both sides of the transduction. It is thus straight forward to apply them in
the opposite direction.

Table 10 states some results to illustrate the level of accuracy that can be
achieved. On the English NETtalk data set we find the spelling accuracy to
be relatively close to the pronunciation accuracy on the reverse task. The let-
ter error rate is 10% higher that the phoneme error rate. At 76%, this ratio
is significantly worse on CMUdict. This discrepancy can be explained by the
higher number of proper names, abbreviations and acronyms in CMUdict. A
high accuracy on German shows again that this language has a rather pho-
netic orthography. In contrast to this, the phoneme-to-grapheme accuracy on
the French data set is strikingly poor. This can be attributed to the notori-
ously high number of homophones in this language and in particular to the
prevalence of silent final consonants.

Combining sound-to-letter conversion with a phoneme recognizer to ortho-
graphically transcribe out-of-dictionary words suggests itself. However, un-
guided acoustic phoneme recognition is notoriously inaccurate (Bisani and
Ney, 2001), which impedes the applicability of phoneme-to-grapheme conver-
sion in speech transcription.

9.3 Facilitate creation of pronunciation dictionaries

The techniques described in this article were used during the creation of the
German LC-Star lexicon for speech synthesis and recognition (Ziegenhain,
2005; Bisani et al., 2005). This lexicon contains information about over 46,000
proper names and 54,000 common words. For each entry part-of-speech infor-
mation and phonemic transcriptions in SAMPA notation (Wells, 1997a,b) are
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 provided including syllabification and stress marks.

Creating the phonemic transcriptions in this lexicon was facilitated by us-
ing the data-driven statistical grapheme-to-phoneme converter described here.
The phonemic transcriptions have to indicate both syllable boundaries and
stress. Therefore, we simply added a syllable boundary marker as well as a
stress marker to the phoneme inventory. Our method has no provisions to
account for the structural properties of stress and syllabification. Therefore
structural errors occur, e.g. multiple primary stresses in a word or syllables
without a nucleus. Nevertheless, we found that our G2P method provided
reasonably good syllable boundary and stress prediction. Structural errors are
not harmful in this application, because they can be filtered out very easily.

Initially the most frequent words were transcribed manually. Then a
grapheme-to-phoneme conversion model was estimated and additional words
were transcribed automatically. These automatic transcripts were manually
verified and corrected and then added to the G2P training data yielding an
improved model. These steps were iterated several times. Over several iter-
ations the fraction of incorrect pronunciations found in the verification step
was reduced below 1%. In early iterations we selected which words to verify
randomly. In later iterations we computed the orthographic perplexity of each
word, which is defined as p(g)−1/|g|, using an M -gram model p(g) based on
the G2P training data available at that point. The words with the highest
perplexity were chosen for manual correction. These are hardest for the G2P
model to predict correctly, because they correspond least to the words seen
in training. However, the reader should be warned that there is a danger in
overdoing this. Odd words may accumulate in the training data in higher than
natural concentration, causing the algorithm to prefer the exception over the
rule.

9.4 Spotting errors in pronunciation databases

When manually revising a pronunciation lexicon it is very helpful to have some
guidance of where to look for wrong entries. We have examined the following
criteria for finding incorrect entries in the G2P output:

• Orthographic probabilities: p(g)
This measure takes into account that the G2P model typically gives bad
results for words that are very unlike the words seen in the training set.
Dissimilarity with the training data is reflected by a low probability.

• Orthographic perplexity: p(g)−1/|g|

• Phonotactic probability: p(ϕ)
Phonotactic probability measures how much the word sounds like a typical
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 word of the language. Strange unpronounceable phoneme sequences should

have a low phonotactic probability.
• Phonotactic perplexity: p(ϕ)−1/|ϕ|

• Grapheme-to-phoneme posterior probability: p(ϕ|g)
This criterion is theoretically most appealing as it corresponds to our esti-
mate of the probability that ϕ is the correct pronunciation of g.

A quantitative evaluation of these criteria has been carried out in the course of
the LC-Star German lexicon project. The grapheme-to-phoneme conversion
model used in this experiment was trained on 31,405 manually verified example
pronunciations, 2% of which were used as a held-out set, without fold-back.
The model uses only singular graphones with an M -gram order of M = 7.
Another 86 thousand words have been transcribed with this model and the
afore mentioned criteria have been computed for each of them. From this list
we have randomly selected 5,746 words for manual verification. We did this
by sampling uniformly from the range of observed values of the quantities
studied, and picking the word with the closest value. This procedure allows
us to judge error rate as a function of the confidence measure considered.
Uniform sampling on a per entry basis, would have led to very poor coverage
of the regions of very high or very low confidence. The list of entries was sorted
alphabetically before it was given to a human expert for correction, so that
the expert had no indication of whether a particular pronunciation had high
or low confidence.

Figure 6 shows detection error trade-off curves for the three best measures
considered. Equal error rates for all studied measures are given in table 11.
Equal error rate (also called cross-over error rate) is the operating point at
which false acceptance and false rejection rates are equal. It is obvious that
posterior probability performs much better than all of the other measures.
Orthographic and phonotactic perplexity are consistently inferior to the cor-
responding probability. A possible explanation for this is that perplexity favors
longer words because the impact of unlikely letters or phonemes is diluted. In
contrast to this, our data indicates that longer words seems to have a higher
chance of containing an error. Presumably this is simply because long words
have more phonemes that can be wrong.

It should be emphasized that the pronunciations assessed were generated by
the very same method and data that was used to verify them. This means
that classification into correct and wrong entries is harder than finding gross
mistakes or inconsistencies between different sources.
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Fig. 6. Detection-error trade-off curves to grapheme-to-phoneme confidence mea-
sures

Table 11
Comparison of different confidence measures for grapheme-to-phoneme conversion.

measure equal error rate [%]

orthographic perplexity 41.7

orthographic probability 41.1

phonotactic perplexity 41.3

phonotactic probability 35.6

grapheme-to-phoneme posterior probability 31.2
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