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Abstract 
 

Looking at practical application scenarios of speech recognition systems several distortion effects exist that have a major 
influence on the speech signal and can considerably deteriorate the recognition performance. So far, mainly the influence of 
stationary background noise and of unknown frequency characteristics has been studied. A further distortion effect is the hands-
free speech input in a reverberant room environment.  

A new approach is presented to adapt the energy and spectral parameters of HMMs as well as their time derivatives to the 
modifications by the speech input in a reverberant environment. The only parameter, needed for the adaptation, is an estimate of 
the reverberation time. The usability of this adaptation technique is shown by presenting the improvements for a series of 
recognition experiments on reverberant speech data. The approach for adapting the time derivatives of the acoustic parameters 
can be applied in general for all different types of distortions and is not restricted to the case of a hands-free input. 

The use of a hands-free speech input comes along with the recording of any background noise that is present in the room. 
Thus there exists the need of combining the adaptation to reverberant conditions with the adaptation to background noise and 
unknown frequency characteristics. A combined adaptation scheme for all mentioned effects is presented in this paper. The 
adaptation is based on an estimation of the noise characteristics before the beginning of speech is detected. The estimation of the 
distortion parameters is based on signal processing techniques. The applicability is demonstrated by showing the improvements 
on artificially distorted data as well as on real recordings in rooms.  
 

Keywords:   Robust Speech Recognition, HMM Adaptation, Hands-free Speech Input 
 
 

1. Introduction 

The use of speech recognition as alternative input device is especially of interest where the user has not his hands available for 
controlling a keyboard or mouse. Quite often this input mode comes along with the need of a hands-free speech input. For 
reasons of practical usage and personal comfort it is especially of interest without the need of wearing a close-talking 
microphone.  

The drawback of a hands-free speech input is a modification of the speech by the acoustic environment when the input takes 
place in a room. The influence of transmitting speech in a room can be modeled as superposition of the sound on the direct path 
from the talker’s mouth to the recording microphone and multiple reflections of the sound at the walls and any equipment inside 
the room. For stationary conditions the transmission can be modeled as convolution of the speech with a room impulse response 
(RIR). But the RIR changes as soon as the talker moves in the room or room conditions change like in case of opening a door or 
a window or other people moving in the room. Thus the adaptive estimation of the RIR is a quite difficult and complex task.  

 
Several approaches exist for enhancing speech that has been recorded in hands-free mode inside rooms. Some of these 

approaches have also been applied for the improvement of speech recognition. The methods can be separated in single and 
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multi-channel processing techniques. Most of the multi-channel approaches, e.g. (Omologo, 1998; Bitzer, 1999; Liu, 2001; 
Seltzer, 2004), are based on a beamforming technique to reduce the influence of the reflected sound or on a correlation based 
multi-channel processing. A variety of different techniques are the basis for the single channel approaches, e.g. (Avendano, 
1996; Kingsbury, 1998; Yegnanarayana, 2000; Gelbart, 2002; Tashev, 2005; Wu, 2005; Kinshita, 2005). Some are based on 
modifying the envelope contours of subband energies.  

Only a few approaches exist that try to improve speech recognition by modifying the pattern matching process (Couvreur, 
2001; Palomäki, 2002). One method (Raut, 2005) is also based on an adaptation and modification of HMM parameters as in the 
approach presented here. 

 
Looking at HMMs that are used for modeling speech in recognition systems, the detailed knowledge about the transmission as 

it is given by a RIR is not needed. Each state of a HMM represents a short speech segment with several tenth of milliseconds 
duration. The state contains information about the distribution of some spectral parameters within the segment. Usually a type of 
MEL filterbank is applied. In general HMMs describe speech with a quite low resolution with respect to time and frequency in 
comparison to the detailed description with a RIR. Thus the estimation of the RIR is not really needed to include the 
modifications of the HMM parameters that are caused by the hands-free speech input. 

 
A new approach is presented in the next chapter for adapting the parameters of HMMs to the speech transmission inside a 

room. The method is based on the description of a room transmission by an impulse response with an exponentially decaying 
envelope as approximation for a real RIR. This approximation is applied to the fairly rough modeling of speech as a sequence of 
HMM states. As consequence of the exponentially decaying shape of the impulse response, the acoustic excitation at a certain 
point in time will also be seen at later time segments. The effect of reverberation is an temporal extension of an acoustic 
excitation. This extension is modeled by adding contributions of earlier states with respect to energy and spectral parameters. 
The only parameter, needed for the adaptation, is an estimate of the reverberation time T60 that defines the contour of the 
exponentially decaying RIR. Several recognition experiments have been performed to proof the usability of the new approach.  

 
In most hands-free speech input situations background noise is present in the room. Thus, the HMM adaptation for the effects 

of a hands-free speech input is only useful when it can be combined with a technique for compensating the influence of 
stationary background noise and of an unknown frequency characteristic. During the recent years a lot of investigations have 
been carried out to reduce the deterioration of the recognition performance due to additive background noise and unknown 
frequency characteristics. The approaches are either based on the extraction of robust features in the front-end, e.g. (Macho, 
2002; Gadrudadri, 2002; ETSI, 2003), or on the adaptation of the HMM parameters to the noise conditions, e.g. (Gauvain, 1994; 
Minami, 1996; Sankar, 1996; Gales, 1996; Gales, 1997; Woodland, 2001). Most of the adaptation techniques try to estimate 
some kind of HMM parameter mapping with a maximization of the likelihood score as optimization criterion. This work uses 
signal processing approaches for estimating the distortion effects. The estimated distortion parameters are taken for the 
adaptation on the basis of a signal processing model that describes the spectral modifications due to the distortions. A frequency 
weighting can be caused, e.g. by the special characteristics of the recording microphone. In case of a hands-free speech input a 
frequency weighting might also occur due to the frequency-dependency of T60. This is not covered by the new approach which 
assumes one frequency independent value for T60 so far. But it can be compensated with an additional adaptation to unknown 
frequency characteristics. 

 
This paper shows how the new adaptation technique can be combined with the adaptation of HMMs to additive noise and 

unknown frequency characteristics (Hirsch, 2001a). This approach is based on the well known PMC method (Gales, 1995). The 
results of several recognition experiments are presented in the last chapter that proof the usability of the combined adaptation to 
all distortion effects as they can occur in real application scenarios of speech recognition systems. The achieved results are 
compared to the application of the well known MLLR (maximum likelihood linear regression) approach (Leggeter, 1995) as an 
alternative adaptation technique. 

2. Adaptation to hands-free speech input 

The new approach for adapting the energy and spectral parameters of HMMs will be derived in this chapter. It is based on the 
approach of modeling the transmission in a reverberant room by an impulse response with an ideal, exponentially decaying 
shape. This will be presented in the first section. The next section describes the adaptation of the static energy and spectral 
parameters of HMMs derived from the ideal modeling of the RIR. Finally the last section presents a new technique to adapt also 
the time derivatives of the energy and spectral HMM parameters. 
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2.1. Modeling the influence of a hands-free speech input 

The multiple reflections of sound in a room can be ideally described by an exponential decay of the acoustic energy which has 
been the result of early investigations in room acoustics (Kuttruff, 2000). This leads to a room impulse response h(t) with an 
exponentially decaying shape.  
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The only parameter for the description of the exponential shape is the reverberation time T60 that takes approximately values 

in the range of about 0,2 to 0,4 seconds for smaller rooms and of about 0,4 to 0,8 seconds for larger rooms. It can take values 
above 1 second for very large rooms like churches. The reverberation time depends on the interior in the room and the individual 
absorption characteristics of the walls. 

 
The RIR can be transformed to the room transfer function by means of a Fourier transform. The room transfer function has a 

contour that changes very fast along frequency. Usually only the envelope of the room transfer function is of interest when 
looking at the filterbank approaches that are applied for extracting acoustic features in speech recognition. This effect can be 
covered by an adaptation to an unknown frequency characteristic.  

More important for the frame based analysis in speech recognition is the influence on the contour of the short-term energy  
along time. The energy contours of a speech signal are shown in figure 1 before and after the transmission in a room. The energy 
is usually estimated as short-term energy in frames of about 20 ms duration. It can be seen that the reverberation leads to an 
artificial extension of each sound contribution. This extension occurs as so called reverberation tail with the exponentially 
decaying shape of the RIR. The same effect will also be seen when looking at the energy contours in single subbands of a MEL 
based filterbank that is usually applied in the front-end of a speech recognition system. 
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Figure 1: Energy contours of a speech signal in clean and reverberant condition 
 
Transforming such energy contours to the so called modulation spectrum by means of a Fourier transform leads to the 

estimation of the modulation transfer function m(F) (Houtgast, 1980) which can be mathematically described as 
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The low pass characteristic of the modulation transfer function is shown in figure 2 for different values of T60. The cut-off 

frequency of the low pass characteristic is shifting to lower values of the modulation frequency for increasing values of T60. 
This corresponds to longer reverberation tails for higher values of T60. The artificial extension of sound contributions can lead 
to masking the acoustic parameters of low energy sounds by the parameters of a preceding sound with higher energy.  
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Figure 2: Modulation transfer functions for different values of T60 

2.2. Adaptation of static parameters 

Looking at a sequence of HMM states the acoustic excitation described by the parameters of a single state will also occur in 
succeeding states at a certain attenuation. This is based on the assumption that the HMMs have been trained on clean speech, 
recorded with a close talking microphone. Figure 3 tries to visualize this effect.  

 
 

Figure 3: The distribution of energy at state S1 due to reverberation 
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Each state Si of a HMM describes a speech segment with an average duration dur(Si) that can be derived from the transition 

probability p(Si | Si) to remain in this state.  
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where tshift is the time for shifting the analysis window in the feature extraction and NR_states is the number of states of an 
individual HMM. tshift takes a value of 10 ms for all analysis schemes applied in these investigations. This corresponds to a frame 
rate of 100 Hz. 

 
The energy contribution of the acoustic excitation in the first state to a succeeding state Si can be estimated by integrating the 

squared RIR as defined by equation 1 over the time segment of the succeeding state 
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Given an estimate of the reverberation time T60 the contribution factors can be individually calculated for all states of all 
HMMs. The approach for estimating T60 will be described later. 

Usually each state of a HMM is defined by a set of spectral parameters like the MEL frequency cepstral coefficients (MFCCs) 
and an energy parameter. These parameters are the means of Gaussian distributions. The corresponding variances are needed as 
further parameters to completely define the shape of the Gaussians. 

 
The mean of an energy parameter at an individual state Si can be adapted by adding the energy contributions of the state itself 

and the preceding states 
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In the same way the means of the power density spectra can be adapted. In case of using MFCCs, the cepstral coefficients 
have to be transformed back to the spectral domain first. 

{ } ( ) ( ) ( ){ } { }melNR
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 (6) 

where NR_cep is the highest index of the cepstral coefficients and NR_mel is the number of bands in the MEL frequency 
range. For NR_cep a value of 12 is chosen and NR_mel takes a value of 24 in our realization. |Xk| represents the value of the 
magnitude spectrum in the MEL band with index k. 

Then the power spectra can be adapted in the same way as the energy parameter 
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 The adapted spectra X~  have to be transformed to the MFCCs again. In practice, mainly 2 to 3 preceding HMM states have 
an influence on the current state. This depends on the reverberation time and on the average durations of the HMM states.  

The variances are not adapted. It turned out in earlier investigations (Gales, 1995; Hirsch, 2001a) that the modification of the 
variances has only a minor influence on the improvement of the recognition performance. 

The effects of this adaptation approach are visualized in figure 4 in the spectral domain by comparing the spectrograms as 
representations of different HMMs. Spectrograms are shown in a three dimensional visualization mode. 

 
The spectrogram of a HMM is estimated by transforming the MFCCs back to the linear spectral domain for all states. The 

transition probabilities ( )ii SSp |  to remain in a state are taken to model the average duration of this state as defined by 
equation 3. In figure 4 three spectrograms of different HMM versions are shown for the word “six”. Each HMM consists of 16 
states where a single state is described by a set of cepstral coefficients including the zeroth cepstral coefficient C0. The spectrum 
of an individual HMM state is positioned with respect to its point in time 

iSt in the middle of the segment that is described by 

this state.                                                    ( ) ( )
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Furthermore a Spline interpolation is applied to the contour of the magnitude spectral values in each MEL band.  
 

   ( ) ( ) ( ){ } ( ) ( ) ( ){ }…… ,20,10,0,,,
321
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SkSkSk ⎯⎯ →⎯      (9) 

 
Thus the spectrum can be recreated at a frame rate of 100 Hz as it is also defined by the window shift of 10 ms in the feature 

extraction. 

0

200

400

600 0

1000

2000

3000

(a)

trained on clean

t/ms

f/Hz

0
200

400
600

0

1000

2000

3000

trained on reverberation

(b)

t/ms

f/Hz

 

0

200

400

600 0

1000

2000

3000

with adaptation

t/ms

(c)

f/Hz

 
 

 Figure 4: Different spectrograms of HMMs for the word “six”  
 
The spectrogram of the clean HMM is shown in graph a) of figure 4 as it has been trained with the utterances of the TIDigits 

data base (Leonard, 1984). Only the utterances containing a single digit have been taken for the training. The contributions of 
the fricatives at the end can be clearly seen in the high frequency region where the formants of the vowel are visible in the 
middle of the word. 

The spectrogram in graph b) represents the HMM that has been trained on the TIDigits data after applying an artificial 
reverberation to the training utterances. The reverberation tails can be clearly seen when looking at the contours in individual 
MEL bands. 

The spectrogram in graph c) of figure 4 represents the HMM after adapting the clean HMM with the new approach. A fixed 
value is chosen for the reverberation time T60. The reverberation tails can also be seen in this figure. Comparing it with the 
spectrogram trained on reverberated data, a lot of similarities are visible. This shows that the new approach allows an adaptation 
of the static parameters that is comparable with training the HMM on data that have been recorded under reverberant conditions. 
 

In practice each HMM state tries to model a certain speech segment with a mixture of Gaussian distributions for each feature 
component. In this case the energy parameter at state Si and for the mixture component with the index mixj is adapted by 
calculating 
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where ( )SE  is the average energy at state S  by weighting the energies of the different mixture components with the 
corresponding mixture weighting factors 
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NR_mix is the number of Gaussian distributions for modeling this acoustic parameter in each individual HMM state.  
Thus, the influence of an earlier state is considered by using the average energy at this earlier state. 

 
In the same way the power density spectra of individual mixture components are adapted by transforming back the set of 

average cepstral coefficients to the spectral domain first and adapting the subband energy in each Mel band in the same way as 
the energy parameter. 
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The adapted power density spectrum is transformed to the cepstral domain again. 

2.3. Estimation of T60 

The estimated reverberation time T60 is the only parameter that is needed for the adaptation as it has been described in the 
previous section. The recognition of an utterance is done with a set of adapted HMMs where the applied value of T60 has been 
estimated from the recognition of the previous utterance.  T60 is estimated after the recognition of an utterance by a search for 
this set of adapted HMMs that leads to a maximum likelihood for another forced recognition of the already recognized sequence 
of HMMs. The restriction to the forced recognition of the already recognized HMM sequence is introduced to limit the 
computational costs. This iterative process is visualized in figure 5.  

 
 

Figure 5: Estimation of T60 by an iterative search of the maximum likelihood 
 
The sequence of buffered feature vectors is used to perform the match with the previously recognized HMM sequence. At the 

beginning this match is performed with adapted HMMs for the previous estimate of T60 and for values of T60 that differ by ±20 
ms. The values for the probability, that the feature vectors match with the sequence of adapted HMMs, are taken as input for the 
search of this T60 value that leads to a maximum likelihood. Dependent on the achieved probabilities the estimated value of T60 
is lowered or increased by another 20 ms or the search process is stopped in case the previous estimate of T60 leads to the 
maximum likelihood. In case the search process is continued, another set of adapted HMMs is derived from the clean HMMs 

(13) 

(10) 
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where the adaptation can be restricted to the previously recognized HMMs. This newly adapted HMMs are used for another 
forced match and the search for the maximum likelihood. Because the hands-free conditions will usually alter only slowly in 
practical applications, the modification of T60 is restricted to the range of ±40 ms from the previous estimate. Thus only a few 
matches are needed, so that the computational costs are fairly low. 

It turns out that the estimated value of T60 varies for different speakers even though the hands-free condition is the same. This 
seems to be dependent on the speaking rate. Thus, this adaptation technique includes also a kind of duration modeling to some 
extent. 

2.4. Adaptation of Delta parameters 

Comparing the contours of the clean and the reverberant HMM at individual Mel bins it becomes obvious that also the Delta 
and Delta-Delta parameters as time derivatives of the static parameters are modified by the influence of the hands-free speech 
input. This can be seen for example in figure 4 where a “valley” is visible between the vowel and the succeeding phoneme for 
the clean HMM. This “valley” is filled by the reverberation tails for the reverberant HMM versions. This indicates that also the 
time derivatives will be different in this region. 

The Delta parameters are calculated in the feature extraction for the frame at time it  as sum of weighted differences between 
the static parameters of preceding and succeeding frames (Young, 2005). For example the calculation of the Delta logarithmic 
energy ( )itElog∆  is done as 

   ( )
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where ,,,, 11 +− iii ttt  describe the window shift by 10 ms. 
The Delta parameters of the reverberant speech are estimated as described below by looking at the adapted static parameters 

of all HMM states. The average logarithmic frame energies of all states are considered for a single HMM. A Spline interpolation 
is applied to recreate the average energy contour at a frame rate of 100 Hz.  

( ) ( ) ( ){ } ( ) ( ) ( ){ }…… ,log,,10log,0log,log,log,log
321 i

Spline
SSS tEmsEEtEtEtE ⎯⎯ →⎯     (16) 

In the same way an interpolated version of the average energy contour can be calculated for the average frame energies of the 
clean HMM. 

The procedure for calculating the Deltas in the feature extraction, as described by equation 15, can be applied to the 
interpolated energy contours of the clean and the adapted HMM. Thus the average logarithmic Delta energies ( )iclean tElog∆  

and ( )iadapted tElog∆  become available for the clean and for the adapted HMM version at the frame rate of 100 Hz 

( ),20,10,0 msmsti = . As the number of frames is equal for the clean and the adapted HMM of an individual word class the 
difference between the clean and the adapted Delta energies can be calculated. 

 ( ) ( ) ( ) ,20,10,0logloglog msmstallfortEtEtE iicleaniadaptedidiff =∆−∆=∆       (17) 

These values describe the average differences between the Delta logarithmic energies of the adapted and the clean HMM at 
each frame.  By means of a Spline interpolation the average differences are calculated for all HMM states. 

( ) ( ) ( ){ }
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321 SdiffSdiffSdiff
Spline

idiffdiffdiff

tEtEtE

tEmsEE

∆∆∆⎯⎯ →⎯

∆∆∆
 (18) 

A weighted version of these average differences is added to the corresponding Delta parameters of the clean HMM to create a 
set of adapted Delta parameters.  
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This is done individually for each state and for each mixture component. A factor β is introduced for the weighted summation 
of the differences. During recognition experiments we found a value of 0.7 for β to achieve highest performance. 

 
The Delta cepstral parameters can be adapted in the same way. The average logarithmic Mel spectral values are taken as basis 
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as they can be calculated by equations 12 and 13 from the average cepstral coefficients for each HMM state. A Spline 
interpolation can be applied to recreate the contour of the logarithmic Mel magnitude in each Mel band at the frame rate of 100 
Hz. 

( ) ( ) ( ){ } ( ) ( ) ( ){ }
melNRkfor

tXmsXXtXtXtX ikkk
Spline

SkSkSk

_,,2,1

,log,,10log,0log,log,log,log
321

……

=

⎯⎯ →⎯
 

The logarithmic spectral domain seems to be the right domain for applying the Spline interpolation even though the 
interpolation could be also immediately applied to the average cepstral parameters. The interpolated average logarithmic spectra 
are transformed to the cepstral domain.                                                                                                                                          

 ( )( ) ( )( ) ( )( ){ } ( ) ( ) ( ){ } ,10,0,...,,log,...,log,log _10_21 mstfortCtCtCtXtXtX iicepNRii
DCT

imelNRii =⎯⎯ →⎯       

 (21) 
The Delta coefficients can be calculated for the contour of each individual average cepstral coefficient. This can be done again 

for the clean as well as for the adapted HMM so that the difference between these two versions can be estimated. 

( ) ( ) ( ) cepNRmforandmsmstallfortCtCtC iimimim cleanadapteddiff
_1,20,10,0 ≤≤=∆−∆=∆   (22) 

These values describe the average differences between the Delta cepstral coefficients of the adapted and the clean HMM at 
each frame. By means of a Spline interpolation the average differences are calculated individually for each cepstral coefficient 
for all HMM states. 
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( ) ( ) ( ){ } cepNRmfortCtCtC

tCmsCC

SmSmSm
Spline

immm

diffdiffdiff

diffdiffdiff

_1,,,

,,,10,0

321
≤≤∆∆∆⎯⎯ →⎯
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…

…
  (23) 

The adapted cepstral coefficients can be calculated by adding a weighted version of the average differences to the Delta 
coefficients of the clean HMM. 

( ) ( ) ( )
cepNRmforandmixNRjwithmixalland

statesNRiwithSallforSCmixSCmixSC

j

iimjimjim diffclean

_1_1

_1,,~

≤≤≤≤

≤≤∆⋅+∆=∆ β
 (24) 

The adaptation of each cepstral coefficient is done individually for each state and for each mixture component. The value of β 
is the same as applied in equation 18 for the energy. 

 
Figure 6 summarizes and visualizes this new technique for calculating the differences between the Delta coefficients that can 

be derived from the static parameters of the clean and the adapted HMMs. It is not only applicable in case of adapting HMMs to 
the conditions of a hands-free speech input. This method can be applied in any case of adapting the static parameters of HMMs 
to the influence of distortion effects. 

 
The Delta-Delta parameters can be adapted in the same way as the Delta parameters. The Delta-Delta parameters are 

calculated from the Delta parameters in the same way the Delta parameters are determined from the static parameters. Looking at 
equation 15 the only difference is a value of 2 for the higher summation index. This results in a calculation of the Delta-Delta 
parameters over 5 sets of Delta parameters. Otherwise the adaptation of the Delta-Delta parameters is done as described by 
equations 16 to 24.  

2.5. Restrictions in case of a connected word recognition 

The complete adaptation scheme as described above works well for whole word HMMs in case of an isolated word 
recognition. For the recognition of connected words the adaptation will not be perfect when uttering a sequence of words 
without even short pauses between the words. The beginning of a word is modified by the reverberation tail of the acoustic 
excitation at the ending of the preceding word. These effects can be taken into account only in a type of online adaptation. To 
get knowledge about the preceding word, the log likelihood is observed at the final states of all HMMs during the frame-wise 
recognition with the Viterbi algorithm. The adaptation of the first frames of all HMMs can be done when a high log likelihood is 
computed for the final states of a HMM so that is very likely that the corresponding word was spoken. Thus the energy and 
spectral parameters, that are contained in the final states of the HMM with the high likelihood, can be used to adapt the first 
states of all HMMs.  

 

(20) 
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Figure 6: Scheme for estimating the differences between the Delta parameters of clean and adapted HMMs 
 
The implementation of this online technique is quite complex because it is based on a frame-wise decision process whether 

and which HMM creates a high likelihood at its final states. The authors implemented this approach but could find only small 
improvements for a connected digit recognition with respect to word accuracy. Also because of the high computational effort the 
approach was not investigated further. 

2.6. Adaptation of triphone HMMs 

Most often triphone HMMs are used in case of a phoneme based recognition which is used for the recognition of large 
vocabularies. A triphone HMM is applied to model the acoustic characteristics of a phoneme in the context of a specified 
preceding and a specified succeeding phoneme. Thinking about the adaptation of this triphone HMM, the knowledge about the 
preceding phoneme and the succeeding phoneme can be taken to apply the adaptation approach as it was presented for the 
application to whole word HMMs in the previous sections. Looking at a single triphone HMM as it is done for the triphone “s-I-
k” in figure 7,  the number of possible preceding and succeeding triphone HMMs is restricted.  
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Figure 7: Possible preceding and succeeding triphone HMMs for one selected triphone HMM 
 
The triphone HMM “s-I-k” for the vowel “i” in the context of a preceding “s” and a succeeding “k” will be preceded by a 

triphone HMM “unknown-s-I” for the fricative “s” with the vowel “i” following. Only the preceding phoneme of “s” is not 
defined. In the same way a triphone HMM “I-k-unknown” for the “k” will succeed the triphone HMM for the “i”. This 
knowledge about the sequence of HMMs and hence also about the complete sequence of states enables the applicability of the 
new approach for the adaptation to reverberation. Looking at the sequence of 3 triphones as shown in figure 7, the complete 
sequence of 9 HMM states for all 3 models is used for the adaptation. It is done in the same way as it has been described for the 
whole-word HMMs before.  

Thus, the problem of being unable to adapt the first states of a whole word HMM, does not exist in case of triphone models 
where a certain knowledge about the preceding model is available. 

 
This preceding model “unknown-s-I” is chosen from all available triphone HMMs by looking at the spectral similarity 

between the last state of each triphone HMM “unknown-s-I” and the first state of the HMM “s-I-k”. The spectral similarity is 
estimated by calculating the Euclidean distance between the average cepstral coefficients of the first state of “s-I-k” and the 
corresponding coefficients of the last state of the preceding phoneme. The triphone HMM with the smallest spectral distance is 
selected. 
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In case of modeling with a mixture of Gaussian distributions the average cepstral coefficients are calculated by taking into 
account the mixture weights. 
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        (26) 

 
In the same way the preceding triphone is chosen by comparing the last state of “s-I-k” with the first state of all triphones “I-

k-unknown”. 
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The static and the Delta parameters are adapted for the states of the HMM “s-I-k” by looking at the whole state sequence of all 
3 consecutive triphone HMMs and applying the adaptation technique as described for the whole-word HMMs. By transforming 
back the 9 sets of cepstral coefficients to the spectral domain and applying a Spline interpolation the spectrogram for the 
complete segment of the 3 triphones is available. The knowledge of the preceding phoneme has the advantage that the energy 
and spectral information of these states can be used to adapt the succeeding states of the HMM “s-I-k” with respect to 
reverberation. Hence, the drawback of not knowing the preceding HMM for the adaptation of the first states does not exist as it 
occurs in case of whole-word HMMs. The knowledge of the succeeding triphone is only used for the better estimation of the 
adapted Delta parameters. 

 
This adaptation technique can be applied to all triphone HMMs that are used for the recognition. In case of using state tying a 

further tying can be applied after the adaptation. This has not been investigated here. The authors only intended to demonstrate 
the principal applicability of the new adaptation method to the modeling with triphone HMMs. 
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3. Recognition experiments on hands-free speech input 

Recognition experiments have been run to proof the applicability of the new adaptation approach and to quantify the 
improvements that can be achieved. 

Some details about the applied feature extraction and the recognition are presented at the beginning of this chapter. After this 
the results are shown for a series of experiments with the intention to demonstrate the applicability to a word recognition based 
on whole word HMMs. Finally the improvements are presented separately for the recognition of a large vocabulary based on the 
use of triphone HMMs. 

3.1. Feature Extraction 

The acoustic features are extracted from the speech signal by a cepstral analysis scheme that is similar to many realizations in 
this field. A pre-emphasis is applied to the speech signal by means of a first order FIR filter where the value of the preceding 
sample is weighted by a factor of  0.95 before subtracting it from the value of each sample. Short segments of speech are 
extracted with a 25 ms Hamming window. The window is shifted by 10 ms which corresponds to a frame rate of 100 Hz. Each 
speech frame is transformed to the spectral domain by means of a 256 point DFT (Discrete Fourier Transform). The so called 
MEL spectrum is estimated by weighting the values of the DFT magnitude spectrum with triangular shaped functions and 
summing up the spectral magnitudes for each triangular. Thus, a MEL spectrum is computed for 24 nonlinearly distributed 
frequency bands in the range from 200 Hz up to 4000 Hz. The 24 logarithmic MEL spectral values are transformed to the 
cepstral domain by means of a DCT (Discrete Cosine Transform). 13 cepstral coefficients C0 to C12 are calculated. Thus, C0 is 
available as acoustic parameter in each state of all HMMs. C0 is only needed to transform back the cepstral coefficients to the 
spectral domain as part of the adaptation process. But C0 is not used for the recognition. Instead of C0 an energy parameter is 
estimated from the preemphasised and Hamming weighted speech samples. A preemphasis factor of –1 is applied here which 
leads to a slightly higher attenuation of the low frequency components. This is of advantage in the presence of background noise 
with its main energy at low frequencies. The short-term energy is calculated by summing up the squared values of all samples in 
each 25ms frame. 

 
The described analysis technique is applied to speech data sampled at 8 kHz. In case of data sampled at 16 kHz the same MEL 

filterbank is applied in the frequency range up to 4000 Hz. All filter characteristics like e.g. the preemphasis filtering or the MEL 
filters and all other individual settings like e.g. the frame length or the FFT length are chosen in an appropriate way so that the 
final cepstral coefficients are almost identical to the coefficients which result from an analysis of  the same utterance sampled at 
8 kHz. This approach has been investigated in earlier work (Hirsch, 2001b). It allows for example the recognition of speech data 
sampled at 8 kHz with HMMs that have been trained on data sampled at 16 kHz. 

Besides the 13 cepstral coefficients and the energy parameter in the range up to 4 kHz two further parameters are calculated in 
case of data sampled at 16 kHz. These are 2 energy parameters that describe the energy in the frequency range from 4 to 5.5 kHz 
respectively in the range from 5.5 to 8 kHz. This is realized by summing up the corresponding components of the FFT power 
density spectrum. These additional coefficients can help to increase the recognition performance a bit in comparison to the case 
of recognizing data sampled at 8 kHz.  

12 cepstral coefficients C1 to C12 and the logarithm of the energy parameters are used as acoustic parameters for the 
recognition. Furthermore Delta and Delta-Delta coefficients are added as additional features where the Delta parameters are 
calculated as described by equation 15. The Delta calculation corresponds to the way of estimating Delta parameters in the HTK 
software package (Young, 2005). 

Thus, finally a feature vector consists of 39 components in case of speech data sampled at 8 kHz and it consists of 45 
components in case of data sampled at 16 kHz. 
 

The parameters of the HMMs are determined by applying the available training tools of the HTK software package. The 
recognition is done either with an own C implementation of a Viterbi recognizer or with the corresponding tool of the HTK 
package. It has been verified that the own implementation leads to the same recognition results as the HTK recognizer. 
Furthermore the Viterbi recognizer has also been implemented as Matlab module. This was helpful during the development 
process of the adaptation algorithms due to the easier software development with Matlab and its graphical visualization 
properties.  

The adaptation techniques have been implemented as Matlab and as C modules. The adaptation is individually applied to each 
speech utterance when detecting the beginning of speech. The applied voice activity detector takes the MEL magnitude spectrum 
as input. It will be described a bit more in detail later. The C modules for the analysis and the recognition are designed for an 
application in a real-time recognition and dialogue system (Hirsch, 1999). This means that the Viterbi match can be started and 



 

 

 

ACCEPTED MANUSCRIPT 

 

 13

run in parallel to the feature extraction after the detection of speech. Techniques like a cepstral mean normalization on the whole 
utterance are not considered here because they would delay the beginning of the Viterbi match till the detection of the end of 
speech. 

3.2. Recognition with whole-word HMMs 

The TIDigits data base is taken as basis for the experiments on isolated and connected word recognition. A version of the 
TIDigits is used that has been downsampled at 8 kHz. All utterances from the adult speakers designated for training are taken to 
determine 2 gender dependent HMMs for each word. Each HMM consists of 16 states where each state is described by the 
mixture of 2 Gaussian distributions for each of the 39 acoustic features. A single state HMM with a mixture of 8 Gaussians is 
used for modeling the pauses. The HMMs are defined as left-to-right models without skips over states. The recognizer is set up 
to recognize any sequence of digits with the restriction that a sequence contains only models from the same gender.  

3.2.1. Recognition of single digits 

A first series of experiments focused on these test utterances that contain only a single digit. These are about 2500 utterances 
in total. This is done to avoid the inter-word effects between fluently spoken words without pauses between the words. As 
already mentioned before, the reverberation will influence the beginning of a word by the ending of the preceding word. 

 
The word error rates are shown in figure 8 where the recognition of connected words is still enabled so that also insertion 

errors can occur. Results are presented for 3 different conditions. Besides the clean data the TIDigits have been processed with a 
tool for simulating the influence of a hands-free speech input (Hirsch, 2005). This tool creates fairly natural sounding 
reverberation. A Web interface exists to experience this tool (Finster, 2005). Test data have been created for the simulation of 
two different rooms, an office room with a reverberation time of about 0.4 s and a living room with a reverberation time of about 
0.6 s. As expected the error rates are higher for the longer reverberation time. 

  
For each condition four different processing methods are compared. The first one is based on the advanced front-end as it has 

been standardized by ETSI (ETSI, 2003). Robust acoustic features are extracted with this front-end. The term robustness refers 
to the presence of background noise and unknown frequency characteristics. This is realized by extending a cepstral analysis 
scheme by two further processing steps. The first one contains a Wiener filtering based on an estimation of the noise spectrum to 
reduce the influence of stationary background noise. A blind estimation and equalization of unknown frequency characteristics 
has been integrated as second processing block. Each feature vector consists of 39 parameters. These are 12 Mel frequency 
cepstral coefficients and an energy parameter as well as the corresponding Delta and Delta-Delta parameters. Feature vectors are 
computed at a rate of 100 Hz. This front-end is considered as a representative for a robust feature extraction and is taken as 
reference for comparing the results with the HMM adaptation. 
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Figure 8: Word error rates for these TIDigits utterances that contain only single digits 



 

 

 

ACCEPTED MANUSCRIPT 

 

 14

 
The cepstral analysis scheme as it has been described in the previous section is investigated as second method. Word error 

rates are presented for the 3 cases where the recognition is done 
- without any adaptation or 
- with adaptation of the static parameters only or 
- with adaptation of the static and the Delta and Delta-Delta parameters. 

 
The error rates for the clean data are in the range of 0.4 to 0.5 %. It can be seen that the influence of the reverberation leads to 

a considerable deterioration of the recognition rates for both feature extraction schemes. The high error rate of the cepstral 
analysis scheme in comparison to the ETSI front-end in case of the living room condition is due to a high number of insertion 
errors. The number of substitutions is even lower for the cepstral analysis scheme in comparison to the ETSI scheme. 

Error rates can be reduced by applying the adaptation methods. Adapting also the Delta and Delta-Delta parameters leads to 
an additional gain in both reverberant situations. 
 

The efficiency of the adaptation scheme is investigated by comparing the obtained results to the case of training the HMMs on 
reverberated data. Therefore a set of HMMs is trained with all TIDigits training utterances after applying the simulation of a 
reverberation in the living room.  

Results are listed in the first two lines of table 1 for the cases without adaptation and with adaptation of the static and Delta 
parameters and taking HMMs trained on clean data only. These are the error rates as already shown in figure 8. The third line of 
table 1 contains the error rates for the case of applying the HMMs trained on reverberated data and without any adaptation. 

 

Condition  

Clean Office room Living room 

without adaptation 0.44 % 3.49 % 6.94 % 

Adaptation to reverberation & 
Deltas 

0.44 % 1.57 % 2.05 % 

HMMs trained on living room 10.98 % 1.93 % 1.73 % 

 
Table 1: Word error rates for the recognition of single TIDigits applying the cepstral analysis 
 
The error rate decreases from about 7% to 1,7% for the living room condition when moving from the training on clean data 

and applying no adaptation to the training on reverberant data. Applying the adaptation scheme to the clean HMMs leads to an 
error rate quite close to the case of training on reverberated data. This can be taken as further proof for the usefulness of the 
applied adaptation method.  

The drawback of training the HMMs on reverberant data is a considerable increase of the error rate to about 11 % for the 
recognition of clean data. This indicates that the training has to be done on a mixture of conditions for a practical application. 
And this can only be done if the whole range of conditions is known in advance. 

3.2.2. Connected word recognition 

The word error rates are shown in figure 9 for the recognition of all TIDigits utterances that have been designated for 
recognition. These are 8700 utterances containing about 28000 digits in total. The results are presented for the 4 conditions that 
have also been shown in the previous figure. 

First of all the error rates for the robust ETSI front-end are higher in comparison to applying the cepstral analysis scheme 
without any adaptation. For the condition of a hands-free speech input in reverberant environments it looks like the ETSI front-
end does not work as efficient as it does in the presence of background noise. 

 
The application of the adaptation method leads also to a reduction of the error rates for the case of recognizing sequences of 

connected words. The relative improvement is not as high as in case of recognizing single digits. The authors mainly regard the 
superposition effect at the beginning of words as responsible for this. The acoustic information at the beginning of a word is 
modified by the acoustic information of the preceding word due to the reverberation. These “inter-word” modifications occur 
especially when sequences of words are spoken fluently with coarticulation effects. In general the speaking rate considerably 
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varies between speakers when uttering a sequence of digits. This effect can only be approximately covered by modeling with 
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Figure 9: Word error rates for the recognition of all TIDigits 
 
HMMs with multiple mixture components. Analyzing the errors a bit more in detail, it turns out that about half of the errors 

are due to deletions in case of recognizing the living room data with adaptation. It seems to be difficult to recognize especially 
the “fast” speakers which create these co-articulation effects. The “inter-word” modifications are not compensated by this 
adaptation technique.  

We observe again that the additional adaptation of the Delta and Delta-Delta parameters causes a further gain in recognition 
performance. 

 
Further recognition results are presented in figure 10 for varying the reverberation time in the living room condition. The tool 
for simulating the hands-free speech input in noisy environments allows the variation of the reverberation time in a certain 
range. The RIR for the living room simulation is modified inside the tool so that it reflects the desired reverberation time. 
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Figure 10: Word error rates for a variation of the reverberation time in the living room 
 
As expected the error rate increases for higher reverberation time. The error rates for a reverberation time of 0.6 s are the ones 

shown in the previous figure. Again the recognition performance is slightly worse for applying the robust ETSI front-end in 
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comparison to the cepstral analysis scheme. The improvement due to the adaptation is visible over the whole range of the 
reverberation time. 

3.3. Recognition with triphone HMMs 

Triphone HMMs are used for the recognition of a large vocabulary. The “Wall Street Journal” data base (WSJ0) (LDC, 1993) 
is taken as basis for these investigations as it has also been used for the evaluations inside the ETSI working group Aurora 
(Picone, 2004). Approximately 7200 utterances that have been recorded at a sampling rate of 16 kHz with a high quality 
microphone are taken for the training of triphone models. The triphones are modeled as HMMs with 3 states where each acoustic 
parameter of each state is described by a mixture of 4 Gaussian distributions. Training and recognition are done with HTK as it 
has been defined in (Au Yeung, 2004). The training procedure includes state tying to model the triphones with a total of about 
3200 different states. The recognition is based on the usage of a dictionary containing the phoneme description of about 5000 
words. The possible sequences of words are defined by a “bigram” model. The recognition process is speeded up by a state 
based pruning. 

 
The cepstral analysis scheme is applied as it has been described before for data sampled at 16 kHz.  We achieve a word error 

rate of 11.21% for the recognition of the 330 clean utterances that have been designated for testing. The word error rate can be 
reduced by applying HMMs that model acoustic parameters with a higher number of distributions. Because of the high 
computational costs, only experiments have been run with HMMs modeling with a mixture of 4 distributions. 

All 330 test utterances have been processed with the simulation tool to investigate the recording in an office room with a 
reverberation time of about 0,4 s. The word error rates for recognizing these data are listed in table 2. 

 

clean Office without adaptation Office with fixed adaptation 

11.2 % 48.8 % 39.8 % 

 
Table 2: Word error rates for the recognition of the “Wall Street Journal” large vocabulary 

 
The word error rate increases considerably to a value of 48.8 % in the hands-free mode. 
The adaptation of the triphone HMMs is applied as described before. As the own implementation of the Viterbi recognizer 

does not support the use of complex language models, HTK is employed for the recognition. Thus, the estimation of the 
reverberation time T60 as well as the individual adaptation for each utterance is not applicable. The whole set of triphone HMMs 
is adapted once at the beginning with a fixed value for the estimated reverberation time T60 instead. The adaptation is 
implemented as Matlab functions. The intention of the authors is only the proof that the new adaptation approach can be applied 
to triphone HMMs in principal. The word error rate decreases by about 10 % when applying the set of adapted triphone HMMs. 

4. Combined adaptation to different distortion effects 

The hands-free speech input in a room comes along with the recording of background noise as it is present in almost all 
applications of speech recognition systems. Furthermore the spectrum of the speech is modified by the frequency characteristics 
of the microphone and of an additional transmission channel, e.g. in case of transmitting the speech via telephone to a remote 
recognition system. This creates the need to compensate also these distortion effects. 

In earlier work (Hirsch, 2001a) the authors developed an adaptation scheme based on the well known PMC (parallel model 
combination) approach. This scheme consists of an adaptation of the static Mel frequency cepstral coefficients. The cepstral 
coefficients are transformed back to the Mel spectral domain where the adaptation can be realized by a multiplication with a 
frequency weighting function as estimate for the frequency characteristics and by adding the estimated noise spectrum. The 
cepstral coefficients of all HMMs are individually adapted for each speech utterance when the beginning of speech is detected. 
Furthermore the energy parameter can be adapted with an estimate of the noise energy. 

We present a short overview about the techniques for estimating the spectrum of the background noise and the frequency 
weighting function in the next section. Having these estimates as well as an estimation of T60, it will be shown that the earlier 
adaptation approach (Hirsch, 2001a) can be combined with the new method of adapting the spectra to a hands-free speech input. 
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4.1. Estimation of distortion parameters 

The spectrum of the background noise is estimated by looking at a smoothed version of the Mel magnitude spectrum as it is 
calculated in the feature extraction. The contour of the spectral magnitude values is smoothed in each Mel subband  by applying 
a first order recursive filtering. 

( ) ( ) ( ) ( ) …,20,10,0_11 1 msmstandmelNRkfortXsmoothtXitXsmooth iikikik =≤≤⋅+⋅−= −αα  

where ( )ik tXi  is the Mel spectrum of the analysis frame at time it  as calculated in the feature extraction. (28) 
A VAD (voice activity detector) is applied that takes the Mel spectra as input. A speech onset is detected when the estimated 

signal-to-noise ratios exceed an adaptive threshold in several subbands for a certain umber of frames. The VAD was developed 
for earlier investigations. More details can be found in (Hirsch, 1995; Hirsch, 2001a). 

When the beginning of speech is detected the estimated noise spectrum is set to the smoothed spectrum of the last analysis 
frame that is marked as pause frame. 

 ( ) melNRkforframepauselastXsmoothN kk _1 ≤≤=  (29) 
Furthermore the energy of the noise is estimated as energy of the last pause frame. 
 ( )framepauselastEiEnoise =   , (30) 

where ( )itEi  is the energy of the analysis frame at time it  as calculated in the feature extraction. 
 
The detection of speech begin is also taken as trigger point to perform the adaptation of all HMMs. For the simulation 

experiments we take the acoustic parameters of all frames from a recorded utterance as input for the Viterbi recognition. For the 
real-time version of the recognizer as it is applied in a speech dialogue system, we start the recognition process 5 frames earlier 
than the first frame detected as speech. Thus, the Viterbi calculation can be run almost in parallel with the feature extraction.  

 
The frequency weighting function is estimated after the recognition of an utterance. It is applied for the recognition of the next 

utterance. This is based on the assumption that the frequency characteristics of the whole speech transmission will not change 
rapidly. Usually the microphone and the other transmission conditions do not change during a recognition session. The 
weighting function is estimated by comparing the long-term spectra of the noisy input speech and of the clean speech. The 
“best” sequence of HMM states is considered as it is available after the Viterbi match by backtracking the path with the highest 
likelihood. The long-term spectrum of the noisy input speech is calculated for all analysis frames that are mapped on speech 
HMMs excluding the frames that are mapped on the pause model.  

 ( ) { }HMMsspeechonmappedvectorsfeaturetfortXi
speechNR

Xlong i
framesspeech

ikk ∈⋅= ∑_
1

    (31) 

where NR_speech is the total number of vectors mapped on speech HMMs. 
 
In a similar way the long-term spectrum of the clean speech is estimated by looking at the spectral information contained in 

the HMM states at the path with highest likelihood. A set of adapted HMMs is used for the recognition. But for the estimation of 
the clean spectrum the spectral information is extracted from the corresponding clean HMMs. The cepstral coefficients of the 
corresponding clean HMM states are transformed back to the Mel spectral domain. In case of HMMs with multiple mixture 
components, the spectrum of this mixture component with the smallest spectral distance to the corresponding spectrum of the 
input signal is taken. Therefore, the estimated noise spectrum is subtracted from the spectrum of the input signal to compare it 
with the spectrum contained in a clean HMM. The spectral similarity is calculated as City block distance. So, the long-term 
spectrum of the clean speech can be estimated. 

 
( ) ( ) ( )[ ]

{ }HMMsspeechonmappedvectorsfeaturetfor

silNtmixtStMcleanX
speechNR

Slong
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framesspeech
kiiikk
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−⋅= ∑ ,,
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1
   (32) 

with ( )itMclean  and ( )itS  as recognized model and state on the best path and ( )itmix  as mixture component with 
smallest spectral distance. 

silN  is the Mel spectrum that can be derived from the single state pause model. Calculating the average cepstral values of 
the pause state according to equation 12, the spectrum can be determined by transforming the cepstral values to the spectral 
domain (equation 13). The pause model contains the spectral information of the background noise that was present during the 
recording of the training data. In case of “clean” training data, silN  takes only small values. It is subtracted here to compensate 
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its presence in the spectral parameters of all HMMs. In the rare case of getting a negative value after the subtraction the result is 
set to a fixed small positive value.   

 
Subtracting the estimated noise spectrum from the long-term spectrum of the noisy input speech, the frequency weighting 

function can be estimated. 

 melNRkfor
Slong

NXlong
W

k

kk
k _1 ≤≤

−
=    (33) 

It turned out in earlier investigations that this type of estimating the spectral difference between the input signal and the clean 
HMMs works well. Because of comparing the spectral information from the input signal and the clean HMMs, the weighting 
function does not only contain the spectral characteristics of the recording equipment and the transmission line but also the 
frequency characteristics of the individual speaker to some extent. 

 
In the same way the difference between the energy contours of the input speech and the best HMM sequence can be 

calculated. The energy values of the input signal are accumulated for those frames mapped on speech HMMs.  

 ( ) { }HMMsspeechonmappedvectorsfeaturetfortEi
speechNR

Einput i
framesspeech

i ∈⋅= ∑_
1

  (34) 

The energy parameters contained in the clean HMMs on the best path are accumulated as estimate for the clean energy. 
Models, states and mixture components are selected as described before (equation 32). 

 
( ) ( ) ( )[ ]

{ }HMMsspeechonmappedvectorsfeaturetfor

silEtmixtStMcleanE
speechNR

Eclean

i

framesspeech
iii

∈

−⋅= ∑ ,,
_

1
     (35) 

The average energy silE of the single state pause model is subtracted to compensate the presence of background noise in the 
training data.  

A weighting factor can be calculated that describes the average energy difference between the input signal and the energies 
contained in the sequence of HMM states on the best path. 

 
Eclean

EnoiseEinputwe −
=         (36) 

This factor contains information about the loudness of the individual speaker. 

4.2.   Combined Adaptation 

Having estimates for the noise spectrum, the frequency weighting function and the reverberation time, the Mel spectra of the 
clean HMMs are adapted as shown in figure 11. 

 
The cepstral coefficients of each state and mixture component are transformed back to the linear Mel spectrum for all clean 

HMMs. The Mel spectra are adapted to the estimated reverberation condition as described by equation 14. The estimated 
weighting function and the estimated noise spectrum are applied for the further adaptation. 

 ( ) ( ) melNRkforNmixSXWmixSX kjikkjik _1,~,ˆ ≤≤+⋅=   (37) 

The adapted Mel spectra are transformed to the cepstral domain again. 
In the same way the energy parameter that has been adapted to the reverberation as stated in equation 10, is used as input for 

the further adaptation. 

 ( ) ( ) EnoisemixSEwemixSE jijik +⋅= ,~,ˆ   (38) 
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Figure 11: Scheme for adapting HMMs to all distortion effects 
 
The adaptation to reverberation and noise is visualized by the spectrograms in figure 12. The spectrogram is shown in graph 

a) as it can be calculated from the HMM of the word six trained on clean data. In graph b) the adapted version of this HMM is 
visualized. The adapted HMM has been extracted during the recognition of artificially distorted TIDigits data. These data have 
been created from a simulation of the hands-free recording in a noisy living room environment. The noise spectrum as it is 
estimated for the individual input utterance, becomes visible as shift of the complete spectrogram. The reverberation tails can 
also be seen when looking at the contours along time in individual subbands.  
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Figure 12: Spectrograms of the clean and the adapted HMMs for the word “six” 

5. Recognition experiments on hands-free speech input in noisy environments 

Again the recognition of connected digits is employed to proof the applicability of the combined adaptation to several 
distortion effects. A data base called Aurora-2 (Hirsch, 2000) exists that consists of noisy versions of the TIDigits. Noise signals 
have been artificially added at different SNRs. Furthermore a few test sets exist where the frequency characteristics have been 
modified to simulate the recording with audio devices in the telecommunication area. But Aurora-2 does not cover the effect of a 
hands-free speech input in noisy environments. 

Thus new sets of distorted versions have been artificially created from the clean TIDigits by applying the already mentioned 
simulation tool (Finster, 2005). To make these data available for the research community, they have been put together as data 
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base and have been combined with HTK based recognition experiments. They will become available under the title Aurora-5 
(Aurora, 2006). 

A few details about the new data base will be listed in the next section before presenting the recognition results for these data. 
Finally results will be shown for the recognition of data that have been recorded in a reverberant meeting room in hands-free 
mode. 

5.1. Distorted data of the Aurora-5 experiment   

The new data base focuses on 2 application scenarios for speech recognition. The first one is the application inside the noisy 
interior of a car, the second one the hands-free speech input in an office or a living room, to control e.g. electronic devices like a 
telephone or audio/video equipment. In comparison to Aurora-2 where only 1000 utterances were selected, each test set contains 
all 8700 utterances here. 

 
The usage of telephone like devices is assumed in general for the car scenario by filtering all data with a G.712 frequency 

characteristic first (Campos-Neto, 1999). G.712 is a characteristic that attenuates all frequency components outside the range 
from about 300 to 3400 Hz. Car noise is added to the filtered data at different SNRs in the range from 0 to 15 dB. The noise 
segment for distorting a single utterance is randomly selected out of 8 recordings that were made in different cars and under 
different conditions like e.g. windows open or closed. Three different versions exist for the car noise condition. The first version 
contains additive noise only according to the recording with a close talking microphone. The second one considers the recording 
with a hands-free microphone. The third version is like the second one but containing a further transmission over a GSM cellular 
telephone network. This reflects the usage of an information retrieval system located at a remote position in the telephone 
network. The GSM transmission is simulated by randomly selecting an AMR (adaptive multi-rate) speech coding mode and the 
channel conditions of the cellular channel. These options exist as part of the simulation tool. In total 15 test sets exist for the 5 
different SNR conditions including the clean case and the 3 versions. 

 
For the second scenario randomly selected noise segments are added from 5 recordings inside different rooms like e.g. an 

office room or a restaurant. The same range of SNRs is considered. Three different versions exist. The first one looks at additive 
noise only simulating the recording with a close talking microphone. The second one considers the recording in an office room 
where the reverberation time is randomly varied in the range from 0.3 to 0.4 seconds. In the third version the recording in a 
living room is simulated where the reverberation time randomly varies in the range from 0.5 to 0.6 seconds. This comes up again 
to 15 test sets in total. 

 
In general the Aurora-5 data contain a bigger variance of the distortion conditions inside each test set in comparison to 

Aurora-2. For example only a single noise recording has been taken for Aurora-2 to create one test set. 

5.2. Recognition of artificially distorted digits 

Cepstral parameters are extracted again as acoustic features, as described and applied before for the experiments with 
reverberation as the single distortion effect. Also the same gender dependent HMMs are used that have been created with a 
training on the clean TIDigits. The word error rates are presented in figure 13 for the three different versions containing car 
noise. 

 
Looking at the condition with additive noise only, shown in graph a), the expected improvement can be seen when comparing 

the results for the robust ETSI front-end against the results for a cepstral analysis. Further small improvements are achieved 
when adapting the HMMs to all distortion effects as described in the previous chapter. Furthermore the error rates are shown for 
the unsupervised HMM adaptation with MLLR as it is available as part of the HTK Viterbi recognizer. An incremental MLLR is 
performed after each utterance. We observed a worse recognition performance when applying MLLR every 2 or more 
utterances. The adaptation is performed on the HMMs containing the features of the cepstral analysis so that the results can be 
immediately compared to the new adaptation approach. The error rates for MLLR are only a little bit worse in this case. 

 
The improvement, comparing the new adaptation approach against the ETSI front-end, is higher when looking at the 

condition of a hands-free speech input in the noisy car environment. This is shown in the graph b). The reverberation time is 
fairly small in a car in comparison to rooms. The major impact of the hands-free recording inside a car is a modification of the 
frequency characteristics. The adaptation seems to compensate these effects to a higher extent than the robust feature extraction 
except for the low SNR of 0 dB. The error rates for MLLR are again slightly worse. 
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The adaptation scheme shows its usability also for the case of an additional transmission over the GSM cellular network as 

shown by the results in graph c). In this case the speech is further modified by the encoding and decoding and the transmission 
errors on the cellular channel. The adaptation technique seems to cover this type of distortion considerably better than the robust 
ETSI front-end. The performance of MLLR is extremely low for the SNR of 0 dB. This has been observed in several 
experiments where the performance without adaptation was already quite low. MLLR seems to be unable to find the right 
feature mapping in such cases and seems to adapt the features in the wrong direction.  
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Figure 13: Word error rates for different recording conditions inside a car 
 

The cases with car noise do not include the major effects of a hands-free speech input in a reverberant room environment. The 
word error rates presented in figure 14 do include such effects. These experiments investigate recordings of speech inside a 
noisy room environment.  

 
In the case of additive noise only, shown in graph a), the new adaptation scheme leads to similar error rates like the robust 

front-end. In general the recognition performance is lower in comparison to the case with car noise because the interior noise 
signals contain more non stationary segments. 

A considerable improvement is observed when comparing the new adaptation technique against the robust front-end for the 
cases of a hands-free speech input in an office or a living room as shown in graphs b) and c). The additional adaptation to 
reverberation causes this improvement.  
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Figure 14: Word error rates for different recording conditions inside rooms 
 
MLLR adaptation leads to worse results especially for SNRs below 15 dB. It looks like the mapping on the basis of a linear 

regression is not able to completely compensate the sum of spectral modifications caused by background noise and 
reverberation. While additive noise and a frequency weighting can be modeled as a stationary modification of each frame, 
reverberation includes modifications along the time axis. In sum this can not be completely compensated with a linear mapping. 
As already observed for the car noise conditions, MLLR seems to adapt into the wrong direction in case we obtain a low 
performance without adaptation. 

5.3. Recognition of digits recorded in application scenarios 

All results presented so far have been derived from a recognition of artificially distorted speech data. The authors believe that 
their simulation of recording conditions represents the situation of applying a recognition system in a real scenario quite well. 

Thus the improvements on artificially distorted data should also be visible in real application scenarios. This is proofed by 
recognizing speech data that have been recorded in different situations.  

 
The first experiment is run on the so called Bellcore digits. These are speech data that have been recorded over telephone 

lines. There exist the recordings of 220 American speakers that have spoken the 10 English digits as isolated words. The 
recordings contain the usual distortions that occur in case of transmitting speech over the telephone. This includes the usage of 
telephone devices with different frequency characteristics and the presence of some background noise. Word error rates are 
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shown in figure 15 for an isolated word recognition using the set of HMMs that have been trained on the clean TIDigits. 
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Figure 15: Word error rates for the Bellcore single digits with HMMs trained on the TIDigits 
 
For the cepstral analysis and the HMMs trained on clean TIDigits the recognition performance is low with an error rate of 

about 30 %. The error rate can considerably be reduced with the robust ETSI front-end to a rate less than 10 %. Applying the 
adaptation technique leads to a further relative error rate reduction by about 70 % in comparison to the error rate for the robust 
front-end. 

MLLR adaptation is applied on the HMMs for the case of cepstral analysis, where these results are not shown in the figure. 
We obtain the highest performance with an error rate of 12 % when performing the adaptation every 5 utterances. An interesting 
result is achieved when applying the MLLR adaptation on the HMMs trained on the features of the ETSI front-end. We obtain 
an error rate of 2,3 % when performing the adaptation for each utterance. This is even slightly better than the new adaptation 
technique. It might indicate that it is possible to combine a robust feature extraction with an additional adaptation. 
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Figure 16: Word error rates for the meeting recorder digits with HMMs trained on TIDigits 
 
Another experiment is run on some recordings of the meeting recorder project (Janin, 2003). Speech data have been recorded 

during meetings in a meeting room where the microphones were placed in the middle of a table. Thus these data contain 
reverberation besides a low amount of background noise. The speakers uttered also sequences of English digits which are used 
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for this experiment. Only the recordings of native English speakers are used resulting in about 2350 utterances with about 7700 
digits in total. Word error rates are shown in figure 16. 

 
In this case the performance of the robust front-end is slightly worse in comparison to a standard cepstral analysis. This effect 

has already been observed in most of the experiments on reverberant data presented in the preceding sections. Applying the 
adaptation scheme, the error rate can be reduced by about 70 % in relation to the cepstral analysis without adaptation. We 
achieve almost the same performance when performing MLLR adaptation for each utterance. 

6. Conclusion 

We present a new technique for adapting the acoustic parameters of HMMs to the condition of hands-free speech input in 
reverberant rooms. This approach can be combined with existing techniques for the adaptation on noise and unknown frequency 
characteristics. Furthermore we introduce a new method for adapting the Delta parameters based on a preceding adaptation of 
the static parameters. 

Applying the new adaptation approach on artificially distorted data or on real recordings in noisy conditions, we achieve a 
considerably higher recognition performance in comparison to the case without adaptation. The error rates are also lower than 
the ones that are achieved with the robust ETSI front-end that can be considered as representative for a robust feature extraction.  

Especially in conditions where additive noise and reverberation distort the speech signal, we obtain a higher recognition 
performance with the new adaptation technique in comparison to MLLR adaptation. The linear regression seems to compensate 
the nonlinear distortion effects worse than the new approach. 

In the future we will investigate whether and how robust feature extraction schemes can be combined with HMM adaptation 
techniques. 
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