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 Abstract 

The present study is concerned with the blind source separation (BSS) of speech and speech-

shaped noise sources. All recordings were carried out in an anechoic chamber using a dummy 

head (two microphones, one in each ear). The program which implements the algorithm for 

BSS of convolutive mixtures introduced by Parra and Spence (2000a) was used to separate 

out the signals. In the postprocessing phase two different denoising algorithms were used. The 

first was based on a  minimum mean-square error log-spectral amplitude estimator (Ephraim 

and Malah, 1985), while the second one was based on Wiener filter in which the concept of an 

a priori signal-to-noise estimation presented by Ephraim (1985) was applied (Scalart and 

Filho, 1996). Non-sense word tests were used as a target speech in both cases while one or 

two disturbing sources were used as interferences. The speech intelligibility before and after 

the BSS was measured for three subjects with audiologically normal hearing. Next the speech 

signal after BSS was denoised and presented to the same listeners. The results revealed some 

ambiguities caused by the insufficient number of microphones compared to the number of 

sound sources. For one disturbance only, the intelligibility improvement was significant. 

However, when there were two disturbances and the target speech, the separation was much 

poorer. The additional denoising, as could be expected, raises the intelligibility slightly. 

Although the BSS method requires more research on optimization, the results of the 

investigation imply that it may be applied to hearing aids in the future. 
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1. Introduction 
People with a sensorineural hearing loss often suffer from insufficient speech 

intelligibility. They complain about a poor understanding of an interlocutor, particularly if 

there exist some interferences nearby. Simple amplification of the signal is insufficient, 

because all the signals (desirable and undesirable) are amplified, thus a signal-to-noise ratio 

(SNR) remains unchanged and the intelligibility cannot be increased. Therefore, it is 

necessary to increase the SNR to extract the target information from noise. 

There has been a lot of research on the improvement of speech-to-noise ratio using 

different signal processing methods. Two of them were used in the present study. Denoising 
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 algorithms are well established, common and used for many years, while the BSS method is a  

recent fruitful technique for speech intelligibility improvement.  

It must be emphasized that acoustic signals recorded simultaneously in a natural 

environment are usually very complex as microphones capture a mixture of sounds coming 

from several sources. Moreover, each signal in each microphone is delayed as it takes time to 

reach consecutive sensors. Thus, it can be that the recorded sound  is not a simple 

superposition of source signals in the microphone, but a convolution of signals and the 

impulse response that describes the acoustical environment and the arrival delays. Given 

independent sources (e.g. target speech and maskers) )(tsm , Mm ,...,2,1= , where t denotes 

time, the real mixing process (including delays) can be assumed as: 
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where M is the number of the independent sources ms  and nma  are the length K mixing 

filters, which describe the delays at measuring points. 

The main goal of the convolutive BSS is to filter out the signals from a microphone 

array to extract original sources while reducing interfering signals. In this case recovering the 

independent signals )(tui  can be described as:  
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where inh  are the unmixing filters to be estimated. As can be seen in equations (1) and (2) 

there exist a convolution of signals. The main goal of the BSS method is to invert the mixing 

process and find an unmixing matrix, so that )()( tstu ii = .To separate source signals from 

their mixtures, statistical methods are used. It means that the objective of BSS is to solve 

equations (2) so that the signals )(tui  are as independent as possible. To capture statistical 

independence some statistic measures are required (Cardoso, 1989; Hyvärinen et al., 2001).  

Four fundamental approaches to the separation problem can be enumerated. They are 

based on the assumption of statistical independence of the signals (Comon, 1991; Jutten and 

Herault, 1991; Comon, 1994; Hyvärinen et al., 2001). 

The first exploits some measure of statistical independence of signals as the cost 

function, namely non-gaussianity of sparseness. In this approach, the higher-order statistics 

(HOS) is essential to solve BSS problem (Cichocki and Amari, 2003; Choi et al., 2005). 
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 Another approach exploits the various diversities of signals, typically, time, frequency, 

(spectral or time coherence) and/or time-frequency diversities, or more generally, joint space-

time-frequency (STF) diversity. This approach leads to the concept of Time-Frequency 

Component Analyzer (TFCA) (Belouchrani and Amin, 1996). 

The third approach is to exploit temporal structures of the sources. Each source has 

non-vanishing temporal correlation. In such a case less restrictive conditions than statistical 

independence can be used such as second order statistics. Several approaches are based on 

this assumption (Molgedey and Schuster, 1994; Ziehe et al., 2000; Cichocki and Belouchrani, 

2001; Choi et al., 2002; Choi et al., 2003).  

The last fundamental approach is based on non-stationarity properties and second 

order statistics (SOS). The non-stationarity was first taken into account by Matsuoka et al. 

(1995). This problem has been studied by Parra and Spence (2000a) and Pham et al. (2003). It 

was shown that decorrelation is able to perform the BSS task for wide class of source signals. 

This approach seems to be easier and more reliable as the higher order statistics methods work 

satisfactorily in computer simulations but perform poorly for recordings in real environment 

(Parra and Spence, 2000a).  

 Separating filters can be estimated in: the time domain, the frequency domain and both 

domains (Makino et al., 2005). As there is a convolution in equation (2), the performance of 

the algorithms in the time domain  is computationally expensive and time consuming (Amari 

et al., 1997; Kawamoto, 1998; Douglas and Sun, 2003; Buchner et al., 2004). However, they 

present good results for instantaneous mixtures.  

A more common approach to the problem is frequency domain BSS (Smaragdis, 1997; 

Smaragdis, 1998; Anemueller and Kollmeier, 2000; Parra and Spence, 2000a; Zhou and Xu, 

2003; Sawada et al., 2005). It is possible to use an appropriate Fourier Transform to equation 

(2). In this case the time series become polynomials and the convolution is transformed to the 

element-wise multiplications: 
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In the frequency domain, this problem becomes easier and can be solved separately at 

each frequency bin. However, it must be emphasized that moving to the frequency domain, 

makes the computation easier and faster, on the one hand, while leading to ambiguities of the 

solution on the other hand, namely the frequency bins at the output of the BSS can be 

permuted. This problem can be omitted by applying an appropriate operation to the separation 
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 matrix that smoothes the separation matrices in the frequency domain. This can be obtained 

by reducing the filter length by a rectangular window as suggested by Smaragdis (1998), 

Parra (2000a), Schobben (2002) and Buchner (2004) or by averaging the separation matrices 

with neighbouring frequencies (Smaragdis, 1998). However, such an operation changes the 

separation matrix slightly and can also influence the final separation. There exist more 

approaches to the ambiguity problems. Saruwatari et al. (2003) suggest to use beamforming 

methods and analyze the directivity patterns determined by the BSS to identify the directions 

of arrival (DOA) of the sources.  

The third approach to the BSS combines two domains. Such an approach is used in the 

implementation of Parra and Spence’s algorithm (2000a) implemented by Harmeling (2001) 

where the filter coefficients are updated in the frequency domain, but  the windowing of the 

separation filters is processed in the time domain at every iteration step. 

The BSS method, however, has one disadvantage that should be mentioned here. At 

the simplest assumption it needs at least as many sensors (microphones) as signals (sound 

sources- speakers and maskers) (Hyvärinen et al., 2001).  

In the present study the non-on-line algorithm introduced by Parra and Spence (2000a) 

and implemented by Harmeling (2001) was used. It must be emphasized, that there also exist 

some algorithms of the convolutive BSS that are able to separate the signals on-line, e.g. 

(Parra and Spence, 2000b; Asano et al., 2001, Aichner, 2003). 

2. Aim 

The main aim of the study was to compare the non-sense word (logatom) tests 

intelligibility before and after the BSS was applied. Then the denoising algorithms were 

applied to the speech signal separated by the BSS. The speech intelligibility after this process 

was measured and compared with previous results. All signals were recorded in an anechoic 

chamber to avoid any other effects such as ambient noise and additional reflections from the 

walls. 

The dummy head with two microphones (one in each ear) was used as the set of 

sensors and there were one or two interfering sources and a target speech.  

3. Algorithms 

One of the approaches to solve the problem of convolutive BSS was presented by Parra 

and Spence (2000a). The algorithm is based on a calculation of the cross-correlation matrices 

in multiple times and minimization of a least squares cost function (based on a Forbenius 
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 norm) that leads to the estimation of  the separating filters. The program convbss by 

Harmeling (2001) that implements the algorithm for BSS of convolutive mixtures by Parra 

and Spence was used in the present study to proceed the BSS. This is a non-on-line program 

that uses least square optimization.  

The main advantage of the SOS based on non-stationarity algorithms is its robustness 

with respect to additive noise, if the number of covariance matrices is sufficiently large. 

Moreover, they seem to be more reliable in terms of convergence (Parra and Spence, 2000a) 

and easier to implement. However, they require more time to separate the signals as they are 

based on statistics taken in different time intervals. The frequency-time domain changing in 

each iterating step can not be neglected either. However, it was shown in (Kocinski, 2005) 

that this algorithm performed well with the natural signals recorded in an anechoic chamber.  

The parameters used in the experiment were: NFFT: T=512, number of matrices to 

diagonalize: K=5, number of intervals used to estimate each cross-power-matrix: N = rx/T/K, 

where rx is the length of the input signals in samples. As the recordings were performed in an 

anechoic chamber, the length of the separating filters in time domain was set to Q=128 

samples. The reflections of the signals could be neglected and only mutual time differences 

between arrival of the signals to particular microphones were important.  

As it was mentioned before this algorithm does not work on-line, thus the duration of 

the mixture signals taken to estimate the separating filters for all SNRs separately was set 

arbitrarily to 10 seconds. However, the recent (unpublished) research made by the author 

showed that this duration can be much shorter (3 seconds or even less) to get the same 

efficiency. The estimated filters were taken to separate all the recorded logatoms from the 

noise. 

Two different denoising algorithms were used in the postprocessing stage. The first 

was based on a minimum mean-square error log-spectral amplitude estimator (MMSESTSA) 

(Ephraim and Malah, 1985) while the second one was based on an a priori signal-to-noise 

estimation (Wiener-Scalart) (Scalart and Filho, 1996). Both of them were implemented by 

Zavarehei (2005b; 2005a). The time window chosen for the analysis of the signal spectra was 

set to 25 ms and overlapping 40% (10 ms). 

In the input parameters of these implementations a time of initial noise (a time at the 

beginning of the input signal in which there is no speech) is required. This initial part of the 

signal is used to estimate an average noise spectrum and use a simple voice activity detector 

(VAD) for detection of speech in particular frequency bin. This VAD is based on level 

difference of the adequate frequency bins in the successive windowed spectra: if the level of 
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 the particular frequency bin was higher enough then the level of the adequate frequency bin of 

the estimated noise, the analyzed frequency bin was marked as a “speech bin”; in the other 

case the bin was marked as a “noise bin” and averaged with the noise spectrum. 

4. Subjects 

Three subjects aged 23-25 with audiologically normal hearing were asked to listen to 

the tests and write down all understood logatoms on a special form. In all figures the subjects 

are depicted as S1, S2 (the author) and S3. All subjects were instructed and took part in short 

training session to be familiarized with the task. 

5. Experiment and Methods 

In the experiment a dummy head with two microphones (one in each ear) was used 

instead of the microphone array. This kind of recording was used to investigate how effective 

the BSS is during more natural configuration of the sources. This situation takes into account 

all the changes in an acoustic field connected with the head, i.e. head related transfer function 

(HRTF). The HRTF influences both, sound pressure level and spectra of the source signals 

reaching ears and can be an additional factor that influences the effectiveness of the BSS 

analysis. 

5.1. Stimuli 

The research consisted in recording of the test material in an anechoic chamber using a 

dummy head. Target speech stimuli were Polish non-sense word (logatom) tests 

(Brachmanski and Staroniewicz, 1999). The interference sounds were either one or two 

sources of speech-shaped noise presented from a loudspeaker. The long-term spectrum of 

such a noise and a real speech spectrum are identical. The only difference is that noise does 

not convey any semantic information. The speech-shaped noise power spectrum density 

function is approximately constant up to the frequency of 500 Hz and above this frequency it 

decreases by 12 dB per octave (Duquesnoy and Plomp, 1983; Culling and Colburn, 2000). 

The speech-shaped noise was used to avoid the so-called deep-listening effect in real speech 

(Moore, 1997). 

It is important to keep in mind that sound pressure levels of one noise and that  

produced by two sources of noise in a checkpoint (just above the dummy head) were identical 

and were adjusted to 75 dB SPL. It implies that the sound pressure level of each of the two 
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 sources of noise appearing together was 3 dB lower than that in the configuration with one 

noise only. 

5.2. Apparatus 

All recordings were carried out in the anechoic chamber using Tucker-Davis 

Technologies (TDT), System 3 device at the sampling rate of 24414.0625 Hz and the 

resolution of 24 bits. One speech-shaped noise was generated in a real-time by a TDT-RP2 

processor, while the second one was played using a Fostex D824 digital recorder. Both 

sources of noise were statistically independent. Next, the signals were amplified using Pioneer 

A-505R to the level of 75 dB SPL and delivered to ZG-60 three-way loudspeakers placed in 

the anechoic chamber.  

The target speech signals, previously stored on a hard drive of the PC as 24 bit binary 

files, were fed to a TDT-RP2 processor used as a D/A converter. Next the speech signal was 

fed to a TDT-PA5 programmable attenuator enabling the adjustment of SNR and amplified by 

a SONY STR-DE475 amplifier to the level of 78 dB SPL. Then the signal was delivered to 

the three-way loudspeaker ZG-60 placed in the anechoic chamber. The proper SNR was 

adjusted using a programmable attenuator (TDT-PA5).  

The signals were recorded using a Neumann dummy head (separate channel for each 

ear), connected with two TDT-MA2 microphone amplifiers. Next, both signals were fed to 

two separate inputs of the TDT-RP2 used as a A/D converter, delivered to the PC and saved 

on the hard drive as 24-bit binary files (one file for each ear). 

All previously recorded signals were analysed using convbss algorithm and presented 

to the subjects (i.e. before and after BSS) in double-walled, acoustically isolated chambers. 

The signals stored on the hard drive were fed to the TDT-RP2 processor and then amplified in 

a TDT-HB7 headphone buffer, to the level of 75 dB SPL at the tympanic membrane. Next, 

the signals were delivered to the Sennheiser HDA580 headphones and presented binaurally to 

the subjects. All the recordings and presentations were carried out using MatLab 6.5 

computing language (MathWorks Inc.).  

After the BSS was applied, the best signal was chosen and delivered to both ears. The 

subject’s task was to write down all heard logatoms in a specially prepared form. 

5.3. Spatial configuration of sources in an anechoic chamber 

In each of the spatial configurations of the sound sources used in the experiment the 

speech (target) signal, S, was always presented from the loudspeaker placed directly in front 
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 of the dummy head (0˚) and 3 m away from it. The dummy head was at a height of 1,5 m 

above steel-net floor. The noise sources were also 3 m away from the dummy head at the 

same height as the source of speech, but they were varying in number (one or two) and in 

spatial configuration. The azimuthal angle of the first noise source, N , varied (0˚ or -60˚ 

clockwise) while the azimuth of the second noise, N , was fixed at 45˚ (see Fig. 1).  

 

Fig. 1 

 

The notation of the different configurations is as follows: the upper index stands for 

the number of the noise source, whereas the lower one stands for the azimuth of the noise 

source. Four spatial configurations of the sources were considered: 0SN ,  60−SN , 450 NSN  and 

4560 NSN −  (Fig. 1). It must be emphasized that in the 0SN  (or 450 NSN ) configuration, where 

both sources were supposed to be placed at the same angle, two sources (loudspeakers) were 

placed next to each other as close as possible (see Fig. 1). 

5.4. Results 

Fig. 2 depicts the signals before and after BSS algorithm was applied for the lowest 

SNRs (-9 dB) and for all spatial configurations. As can be seen, the best results (in terms of 

SNR increase) were obtained in 60−SN  configuration. In other cases, the increase in SNR can 

not be noticed. 

Fig 2. 

 Fig. 3. shows the set of 128 samples-length separating filters in time domain (as the 

elements of matrix Wt) used to estimate signals shown in Fig. 2. It can be noticed that for the 

0SN  configuration the absolute values of the impulse response are relatively smaller than the 

values for the 60−SN  case (except first sample). Moreover, for all configurations the impulse 

response absolute values decrease as the sample index increases. 

Fig 3. 

The data gathered in this experiment, i.e. the speech intelligibility as a function of 

signal-to-noise ratio (SNR), for all subjects and all spatial configurations are depicted in Fig. 

4. Filled circles show results with no BSS, empty squares show  results after the BSS only, 

empty triangles depict the results after both BSS and MMSESTSA denoising algorithm while 

filled asterisks show results after both BSS and Wiener-Scalart denoising algorithm.  
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 It is important to keep in mind that only two microphones were used during this 

experiment and the BSS requires at least as many microphones as sound sources to proceed 

the analysis correctly. Thus, the speech intelligibility improvement in this experiment depends 

on the number of sources used. 

Fig. 4. 

The cumulative distribution function (CDF) of the Gaussian distribution was fitted to 

mean (across subjects) values obtained in the experiment (for each paradigm separately) by 

means of last-mean square procedure. By this way the speech reception thresholds (SRTs) 

were obtained as the mean value parameter of the fitted CDF. The comparison of the values of 

SRTs for all paradigms is shown in Fig. 5. In the ‘no data’ case, the speech intelligibility after 

BSS was applied was too high for all SNRs, thus the unambiguous fitting was impossible. 

Fig. 5. 

As can be noticed in Fig. 4 the best intelligibility improvement after the BSS was 

obtained when there were only two sources ( 0SN  and 60−SN ). Moreover, for these two cases 

the best results were obtained when the interference was spatially separated form the target 

speech ( 60−SN ). In this case, for all subjects and for high signal-to-noise ratios the difference 

between speech intelligibility in no BSS case and after the BSS only was applied can be 

neglected since the subjects were able to understand correctly almost all logatoms. The 

situation changes with the decrease in SNR. The speech intelligibility with no BSS markedly 

decreases while the speech intelligibility after BSS remains almost the same and even for 

SNR=-9 dB reaches about 90 %. Thus the speech intelligibility improvement reaches even 50 

percentage points for individual subject while the mean is about 40 percentage points.  

This results can be explained on the basis of the appropriate transfer functions between 

the sources and the sensors or head-related transfer function (HRTF). In the 60−SN  

configuration, sources were spatially separated, thus the source-sensor transfer functions were 

different. In terms of HRTF (see Fig. 1), the interaural phase and time differences were 

different from zero, thus the local SNR in the left ear was higher than in the right one. On the 

other hand, for 0SN  the source-sensor transfer functions should be the same and the 

configuration should be referred to the so-called ill-posed BSS problem. In terms of HRTF, it 

can be stated that there should be no difference in the SNRs in both ears (no difference 

between signals in both microphones), so the factor that could make the extraction of source 

signals possible should play no role at all. However, as it was mentioned above, because of 
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 the recording method (in this case two loudspeakers were placed next to each other, not 

exactly at the same place), the transfer functions were somewhat different. It seems that this 

slight difference was enough for BSS to perform effectively. Thus, for the 0SN  configuration 

the speech intelligibility improvement was noticed (see Fig. 2 and Fig. 5), however, the 

difference in results before and after BSS is smaller comparing to the 60−SN  configuration. 

This difference can is also noticeable in Fig. 2, where for 0SN  configuration, the increase in 

SNR can not be noticed, however it the speech enhancement is noticeable in the results of the 

experiment.  

There was much poorer speech intelligibility improvement (or even deterioration was 

noticed after the BSS was applied) when there were three sound sources, that is in 450 NSN  

and 4560 NSN −  configurations. It seems, that it was caused by the insufficient number of 

microphones.  

It must be emphasized that the additional denoising in the postprocessing phase also 

brought about an increase in the speech intelligibility (see Fig. 5). This additional speech 

enhancement reaches from about 2 to about 4 dB in terms of SRT decrease. It seems 

reasonable to state that the better enhancement in SNR after the BSS, the better enhancement 

after denoising (it makes the substraction of the noise “easier” for the denoising algorithm). 

The data gathered in this experiment were analyzed using a within-subject analysis of 

variance (ANOVA) with the three following factors: (1) the type of signal (i.e. No BSS, BSS 

only, BSS + MMSESTSA and BSS + Wiener-Scalart), (2) signal-to-noise ratio (SNR) and (3) 

spatial configuration. The type of signal was proved to be statistically significant  

[F(3,6)=18.48, p<0.002]. SNR was also proved to be statistically significant [F(4,8)=166.17 , 

p<0.001] as well as the spatial configuration of the sources [F(3,6)=43.78, p<0.001]. Among 

all the interactions the most important ones were those between type of signal and other 

factors. All of them were proved to be statistically significant- SNR and type of listening 

stratum: [F(12,24)=4,79, p<0.001]; spatial configuration and type of signal: [F(9,18)=10.89, 

p<0.001]. The interaction between all three factors was also proved to be statistically 

significant [F(36,72)=5.1, p<0.001]. This analysis proved the importance of the BSS and the 

denoising algorithms in the speech intelligibility improvement. However, the effectiveness of 

this enhancement methods depends on the configuration and speech-to-noise ratio as it could 

be expected. 
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 6. Conclusion 

A significant speech intelligibility improvement was noticed after the BSS algorithm 

was applied to the set of mixtures of independent signals. For individual subjects and for low 

signal-to-noise ratios the difference between speech intelligibility before and after the BSS 

method was applied reaches even more than 40 percentage points and can be increased by 

additional denoising in the postprocessing stage. However, the experiment brings some 

ambiguities connected with the insufficient numbers of sensors. When there are more sources 

than microphones, the algorithm is not able to proceed with the separation properly and there 

is poor speech intelligibility improvement or even there is no speech enhancement at all.  

However, in other cases, when the number of microphones was equal to the number of 

sources, the speech enhancement was significant even if the target speech and the disturbance 

was situated almost at the same place. Moreover, an acoustic shadow of the head seems to play 

an important role that helps to extract the signals. It is important to emphasize that in the 

experiment all information about interaural phase difference and interaural level difference 

after the BSS was applied was lost because the same (best) target signal was delivered to both 

ears. However, the binaural cues can be somewhat retained using the spatial characteristics of 

the estimated filter, i.e. the angle for which the separating filter spatial transmittance is 

maximal can be recalculated in interaural time and phase differences. This interaural 

information is very important for sound source localization and can also be used in the so-

called spatial suppression increasing the speech intelligibility (Kocinski and Sek, 2005). 

Nevertheless, the speech intelligibility improvement was noticed after BSS and denoising 

algorithms were applied. 

Moreover the combination of BSS and denoising algorithms brings about further 

increase in speech intelligibility. However, it must be emphasized that those algorithms 

perform well for stationary disturbing signals, such as those used in the present experiment. 

For non-stationary signals e.g. disturbing speech or music, the effectiveness of such algorithms 

may be poorer. 

The present study has proved an important role of the BSS in the speech intelligibility 

improvement. It seems to be reasonable to combine the BSS method with other methods that 

are used in speech processing such as beamforming or automatic speech recognition. Some 

algorithms have been introduced by other authors, e.g. (Parra and Fancourt, 2002). 
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 Figure captions: 

Fig. 1. Four spatial configurations of the sources and the dummy head  in an anechoic 

chamber. 

Fig. 2.  Short (10 seconds) examples of the signals before BSS (left column) and after BSS 

(right column)  for all spatial configurations and SNR=-9.  

Fig. 3. Set of 128 samples-length separating filters in time domain estimated for the signals 

from Fig. 2. 

Fig. 4. Speech intelligibility as a function of signal-to-noise ratio (SNR) of original signal 

(before BSS) for three subject (S1, S2, S3) and four different spatial configurations of the 

sources.   

Fig. 5. Speech reception thresholds (SRTs) for within-subject averaged results (taken from 

Fig. 4). 
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 FIGURES: 

 

 

 
 

Fig. 1. Jedrzej Kocinski. Speech Intelligibility Improvement Using Convolutive Blind 

Source Separation Assisted by Denoising Algorithms. 

 

 

 



 

 

 

ACCEPTED MANUSCRIPT 

 

 

 



 

 

 

ACCEPTED MANUSCRIPT 

 

 

 
Fig. 2. Jedrzej Kocinski. Speech Intelligibility Improvement Using Convolutive Blind 

Source Separation Assisted by Denoising Algorithms. 
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Fig. 3. Jedrzej Kocinski. Speech Intelligibility Improvement Using Convolutive Blind 

Source Separation Assisted by Denoising Algorithms. 
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Fig. 4. Jedrzej Kocinski. Speech Intelligibility Improvement Using Convolutive Blind 

Source Separation Assisted by Denoising Algorithms. 
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Fig. 4. Jedrzej Kocinski. Speech Intelligibility Improvement Using Convolutive Blind 

Source Separation Assisted by Denoising Algorithms. 
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Fig. 4. Jedrzej Kocinski. Speech Intelligibility Improvement Using Convolutive Blind 

Source Separation Assisted by Denoising Algorithms. 
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Fig. 5. Jedrzej Kocinski. Speech Intelligibility Improvement Using Convolutive Blind 

Source Separation Assisted by Denoising Algorithms. 

 


