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Abstract

The determination of an emotional state through speech increases the amount of
information associated with a speaker. It is therefore important to be able to detect
and identify a speaker's emotional state or state of stress. Various techniques are
used in the literature to classify emotional/stressed states on the basis of speech,
often using di�erent speech feature vectors at the same time. This study proposes a
new feature vector that will allow better classi�cation of emotional/stressed states.
The components of the feature vector are obtained from a feature subset selection
procedure based on Genetic Algorithms. A good discrimination between neutral,
angry, loud and Lombard states for the simulated domain of the Speech Under
Simulated and Actual Stress (SUSAS) database and between neutral and stressed
states for the actual domain of the SUSAS database is obtained.

1 Introduction

Technological progress has allowed an increasing degree of human-machine
interaction. This interaction can be improved and accelerated by means of
spoken communication. In human-human speech-based communications, emo-
tions play an important role, sometimes playing an even bigger role than the
logical information also included in the speech [1]. One important research
challenge in the last few years has thus been automatic recognition of the
emotional state of a speaker through speech; knowledge of this state can have
a series of applications, such as [1]:

• automatic answering machines that can adapt their voice tone to that of
the speaker;
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 • speech recognition systems that can correctly interpret the meaning of words

spoken in an ironic or sarcastic manner;
• systems which are able to detect the emotional state of an interlocutor (for
clinical diagnosis purposes, for example);

• synthesizers that can generate speech giving the sensation of a particular
emotion;

• automatic tutoring systems that can establish a learner's degree of boredom,
irritation or intimidation;

• systems that can prevent speakers in a particularly altered emotional state
from interacting with automatic recognition systems;

• systems to generate alarms on the basis of the di�erent emotional states of
people being monitored;

• entertainment systems and games that can determine a user's emotional
state.

The determination of an emotional state is therefore an important task from
several points of view. What is studied more frequently than the recognition of
the speaker's emotional state in general is classi�cation of speech under stress
(e.g., [2][3][4][5]). Several elements introduce stressed voice tones in the pro-
duction of speech, for example background noise, emergencies, high workloads,
strong emotional excitement, etc. It is well-known that the performance of
speech recognition algorithms is greatly in�uenced by the stressful conditions
in which speech is produced. Workload task stress signi�cantly impacts recog-
nition performance. E�ects of di�erent stressful conditions on speech recogni-
tion and e�orts to improve the performance of speech recognition algorithms
under stressful conditions can be found in literature. Stress classi�cation can-
not only be used to improve the robustness of speech recognition systems,
other scenarios can also bene�t, such as telecommunications, military appli-
cations, medical applications, and law enforcement. In telecommunications, in
addition to its potential to improve the telephone - based speech recognition
performance, stress classi�cation can be used to route 911 emergency call ser-
vices for high priority emergency calls. The integration of speech recognition
technology has already been seen in many military voice communication and
control applications. Since many such applications involve stressful environ-
ments (e.g., aircraft cockpits, military peacekeeping/battle�eld setting), stress
classi�cation and assessment become crucial to improve the system robust-
ness in these applications. Finally, stress classi�cation can also be employed
in forensic speech analysis by law enforcement to assess the state of telephone
callers or as an aid in suspect interviews.
Various techniques are used in the literature to classify emotional/stressed
states on the basis of speech (for example Hidden Markov Models [3][6][7][5],
Neural Networks [2][8][9]). In turn, these use di�erent speech features, the
most common being MFCC (Mel-Frequency Cepstral Coe�cients), Pitch, LPC
(Linear Prediction Coe�cients), autocorrelation coe�cients and Teager En-
ergy Operator (TEO) based features [4].
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 Some researchers have combined various techniques to enhance performance

in recognition of emotional states through speech, often using di�erent speech
features at the same time [3]. In [10] we proposed a genetic algorithm com-
ponents selection approach to distinguish between positive and negative emo-
tional states, but the aim of this paper is a broader classi�cation, taking
various speech styles into account.

2 Feature Extraction

The process whereby human speech is produced is typically modeled via a
linear source-�lter model. This model assumes that the �ow of air propagates
through the vocal tract as a plane wave. The vocal tract remains in a �xed
con�guration for short periods of time, so in each of these periods it can be
considered as a time-invariant linear �lter. Thus, in a long period of time
the vocal tract is modelled as a time-variant linear �lter. The speech features
typically used in speech/speaker recognition processes and speech coding are
obtained starting from identi�cation of this �lter. Some of these features have
been studied for speech signal coding (LPC, PARCOR, LSF, LAR), while
others are used for speech or speaker recognition (MFCC, LPCC, Formants,
Pitch, AC).
Research focusing on the recognition of emotional states through speech has
not up to now identi�ed a speci�c feature.
Studies conducted by Teager [11] suggest the presence of vortices in the prox-
imity of the vocal cords which interact with the primary �ow and are the
main source of excitement during closure of the cords. In addition, physiolog-
ical changes in the vocal system caused by conditions of stress, for example
muscular tension, will a�ect these interactions in the vocal tract [4]. These
interactions are nonlinear, as con�rmed by the theory of �uid mechanics [12]
and numerical simulation of the Navier-Stokes equation [13]. It will thus be
suitable to consider components extracted from nonlinear features in order to
classify stress. In [4] the authors characterize the production of speech by mod-
eling the con�guration of the �ow of air in the vocal tract and they propose
three new features to explore the prospect of variations in the energy of air�ow
characteristics within the vocal tract. These features are the TEO-decomposed
FM Variation (TEO-FM-Var), the normalized TEO Autocorrelation Envelope
area (TEO-Auto-Env), and the Critical Band based TEO Autocorrelation En-
velope area (TEO-CB-Auto-Env).
The idea on which this paper is based is to determine, starting from all the
components obtained from a broad set of speech features, a subset of com-
ponents that will make it possible to distinguish better between di�erent
emotional states than is possible when only a speech feature is used. In se-
lecting these components we therefore introduced both the commonly used
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 features derived from the linear model and TEO-CB-Auto-Env feature which,

as demonstrated in [4], is the nonlinear feature which allows for a better clas-
si�cation of di�erent types of stress.
The speech was processed using a pre-emphasis �lter to highlight the high-
frequency components and then split into 30ms frames at a rate of 10ms. On
the basis of the previous considerations, the following features were extracted
from each frame:

• 4 LPC Spectrum based Formants (F1−4)
• 16 Mel-Frequency Cepstral based Coe�cients (MFCC1−16)
• 16 Real Cepstrum based coe�cents (RCEPS1−16)
• the Energy Level (log E)
• autocorrelation based estimation of the Pitch (F0)
• 17 Autocorrelation Coe�cients (AC1−17)
• 16 Linear Prediction Coe�cients (LPC1−16)
• 16 Re�ection Coe�cients (PARCOR1−16)
• 16 Log Area Ratio Coe�cients (LAR1−16)
• 16 Line Spectral Frequencies Coe�cients (LSF1−16)
• 17 LPC Cepstral coe�cients (LPCC1−17)
• the Zero Crossing Rate (ZCR)
• the variance of the Linear Prediction Error (σ2

ELPC
)

• 16 Critical Band Based Teager Energy Operator Autocorrelation Envelope
Area (TEO − CB − Auto − Env1−16)

The �rst- and second-order time di�erences were also computed as

∆x(n) = x(n + 1) − x(n − 1)

∆2x(n) = ∆x(n + 1) − ∆x(n − 1)
(1)

obtaining for every frame a vector of 462 components.

3 Database

The extraction of speech features in the presence of di�erent emotional states
was performed using the SUSAS (Speech Under Simulated and Actual Stress)
database [14], like in [4]. The database is partitioned into �ve domains, en-
compassing a wide variety of stresses and emotions. The �ve stress domains
include:

i) talking styles (slow, fast, soft, loud, angry, clear, question);
ii) single tracking task or speech produced in noise (Lombard e�ect);
iii) dual tracking computer response task;
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 iv) actual subject motion-fear tasks (G-force, Lombard e�ect, noise,

fear);
v) psychiatric analysis data (speech in states of depression, fear, anxi-

ety).

The database contains both simulated speech under stress (Simulated Domain)
and actual speech under stress (Actual Domain). The Simulated Domain con-
sists of data from ten stressed styles (talking styles, single tracking task and
Lombard e�ect domains); while the Actual Domain consists of speech pro-
duced while performing either (i) dual-tracking workload computer tasks, or
(ii) subject motion-fear tasks (subjects in roller-coaster rides). The Simulated
Domain uses recordings of 9 speakers in a quiet environment simulating speech
under stress. The Actual Domain uses recordings of 7 speakers in states of ac-
tual roller coaster stress. In this work four di�erent styles of speech from the
Simulated Domain (angry, loud, Lombard and neutral) and two from the Ac-
tual Domain (neutral and Roller Coaster stress) were considered. A common
highly confusable vocabulary set of 35 aircraft communication words makes up
the SUSAS database. In the Simulated Domain each word in the vocabulary
is repeated twice by each speaker. Not all the words in the vocabulary set are
present in the Actual Domain and when they are they may not be repeated.
For each of these speech styles a subset of words was chosen and then used in
the feature selection, HMM training and test phases. To compare the stress
recognition system with that presented in [4] we used the same words, i.e.,
�freeze�, �help�, �mark�, �nav�, �oh�, �zero�. Since the TEO is more applicable
for voiced sounds than for unvoiced sounds, only high-energy voiced sections
(i.e., vowels, diphthongs, liquids, glides, nasals) were extracted from the speech
signal [4].

4 Selection of the Subset of Components

4.1 Separability criteria

Having chosen the classi�cation system (neural network, HMM-based stochas-
tic model, ...), one method that could be used to assess the validity of a sub-
set of components would be to evaluate performance using the classi�cation
system itself. The time required to evaluate the various possible subsets of
components would, however, be unacceptable due to the complexity of the al-
gorithms that have to be used to train the classi�cation system. It is necessary
to de�ne a criterion whereby it is possible to establish rapidly the degree of
separability between L classes using a certain subset of components. In the
discriminant analysis of statistics, within-class and between-class are used to
formulate criteria of class separability [15]. A within-class scatter-matrix shows
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 the scatter of samples around their respective expected class vectors:

Sw =
L∑

i=1

PiE
{
(X − Mi)(X − Mi)

T |ωi

}
=

L∑
i=1

PiRi (2)

where: Pi is the a priori probability for class i, X is the parameter vector,
Mi is the mean vector for class i, Ri is the covariance matrix for class i, ωi

represents class i, and L is the number of classes. The between-classes scatter
matrix represents the scatter of the expected vectors around the mixture mean
as

Sb =
L∑

i=1

Pi(Mi − M0)(Mi − M0)
T (3)

where M0 = E{X} =
∑L

i=1 PiMi represents the expected vector of the mix-
ture distribution (i.e., the distribution of all the classes).
In order to formulate criteria for class separability, we need to convert the
matrices to a number. This number should be larger when the between-class
scatter is larger or the within-class scatter is smaller. There are several ways to
do this. Given its simplicity of implementaiton, we used the following criterion

J1 = tr(Sw
−1Sb) (4)

where the symbol tr(X) indicates the trace of the matrix X.

4.2 Selection Algorithm

The best subset of m components out of n may be found by evaluating a
criterion of class separability for all possible combinations of m variables.
However, the number of all possible combinations,

(
n
m

)
, becomes prohibitive

even for modest values of m and n. For example, with n = 24 and m = 12
there are 2, 704, 156 possible combinations. It is therefore necessary to use
techniques to avoid an exhaustive search. The techniques most widely used
in the literature are stepwise search techniques such as the backward selection
(BS) and forward selection (FS) procedures, branch and bound methods (B&B)
and stochastic global search methods like genetic algorithms (GAs).

4.2.1 Backward Selection

The BS procedure starts from the full set of n components. Then, eliminating
one component, all possible subsets of n − 1 components are obtained and
their criterion values are evaluated. The highest value is determined and the
corresponding subset is selected as the best of those with n − 1 components.
Another component is then eliminated from this subset and the best subset
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 with n−2 components is determined. The procedure is repeated until the best

subset containing the number m of desired components is obtained.

4.2.2 Forward Selection

The FS procedure starts by evaluating the separability criterion for each com-
ponent. The highest value is determined and the corresponding component
is selected as the best. All possible pairs of components which contain this
component are established and their separability criterion determined. The
pair with the highest value is selected as the best containing 2 components.
The procedure is repeated until the best subset containing the number m of
desired components is obtained.
Both BS and FS evaluate the increase in performance obtained by eliminating
or adding each component and so, although they are simple search techniques,
they do not always achieve the best solution.

4.2.3 Branch and Bound

A B&B algorithm searches the complete space of solutions for the best solution
to a given problem. Some solutions are not actually explored because they are
known a priori not to be optimal. When it becomes apparent that a solution is
not optimal exploration of it is abandoned (bound). The use of bounds for the
function to be optimized combined with the value of the current best solution
enables the algorithm to search parts of the solution space only implicitly. The
order in which solutions are explored is important: the sooner a good solution
is found, the more e�ective the bound conditions will be later, thus reducing
exploration costs. Despite investing in the search for exact algorithms that
are capable of solving the problem of parameter selection, their complexity
will always grow exponentially along with the number of components to be
selected.
Given the large number of components used in our approach, it was not pos-
sible to use B&B algorithms.

4.2.4 General Remarks on Genetic Algorithms

AGA is a stochastic global search method that mimics the metaphor of natural
biological evolution. Problems which appear to be particularly appropriate for
solution by genetic algorithms include timetabling and scheduling problems.
GAs have also been applied to engineering and to solving global optimiza-
tion problems. GAs operate on a population of potential solutions applying
the principle of the survival of the �ttest to produce (hopefully) better and
better approximations to a solution. At each generation, a new set of ap-
proximations is created by the process of selecting individuals according to
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 their level of �tness in the problem domain and breeding them together using

operators borrowed from natural genetics. This process leads to the evolu-
tion of populations of individuals that are better suited to their environment
than the individuals they were created from, just as in natural adaptation.
Individuals, or current approximations, are encoded as strings, chromosomes,
composed over an alphabet, so that the genotypes (chromosome values) are
uniquely mapped onto the decision variable (phenotypic) domain. Having de-
coded the chromosome representation into the decision variable domain, it
is possible to assess the performance, or �tness, of individual members of a
population. This is done through an objective function that characterizes an
individual's performance in the problem domain. Thus, the objective function
establishes the basis for selection of pairs of individuals that will be mated
together during reproduction. During the reproduction phase, each individual
is assigned a �tness value derived from its raw performance measure given by
the objective function. This value is used in the selection to bias towards �t-
ter individuals. Highly �t individuals, relative to the whole population, have a
high probability of being selected for mating whereas less �t individuals have
a correspondingly low probability of being selected. Once the individuals have
been assigned a �tness value, they can be chosen from the population, with a
probability according to their relative �tness, and recombined to produce the
next generation. Selection is the process of determining the number of times,
or trials, a particular individual is chosen for reproduction and, thus, the num-
ber of o�spring that an individual will produce. A real-valued interval, Sum, is
determined as the sum of the raw �tness values over all the individuals in the
current population. Individuals are then mapped one-to-one into contiguous
intervals in the range [0, Sum]. To select an individual, a random number is
generated in the interval [0, Sum] and the individual whose segment spans the
random number is selected. This process is repeated until the desired number
of individuals have been selected.
Genetic operators manipulate the characters (genes) of the chromosomes di-
rectly, using the assumption that certain individual's gene codes, on average,
produce �tter individuals. The recombination (or crossover) operator is used
to exchange genetic information between pairs, or larger groups, of individu-
als. This crossover operation is not necessarily performed on all strings in the
population. Instead, it is applied with a probability Probcross when the pairs
are chosen for breeding. A further genetic operator, called mutation, is then
applied to the new chromosomes, again with a set probability, Probmut. Mu-
tation causes the individual genetic representation to be changed according to
some probabilistic rule. Mutation is generally considered to be a background
operator that ensures that the probability of searching a particular subspace
of the problem space is never zero. This has the e�ect of tending to inhibit the
possibility of converging to a local optimum, rather than the global optimum.
After recombination and mutation, the individual strings are then, if neces-
sary, decoded, the objective function evaluated, a �tness value assigned to
each individual and individuals selected for mating according to their �tness,
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 and so the process continues through subsequent generations. In this way, the

average performance of individuals in a population is expected to increase,
as good individuals are preserved and bred with one another and the less �t
individuals die out. The GA is terminated when some criteria are satis�ed,
e.g., a certain number of generations, a mean deviation in the population, or
when a particular point in the search space is encountered.

4.2.5 Genetic Algorithms for Components Selection

Genetic algorithms have demonstrated substantial improvement over a variety
of random and local search methods. This is accomplished by their ability to
exploit accumulating information about an initially unknown search space in
order to bias subsequent search into promising subspaces. Since GAs are ba-
sically a domain-independent search technique, they are ideal for applications
where domain knowledge and theory is di�cult or impossible to provide [16].
For GAs to work the number of components to be selected must be predeter-
mined and constant. It is therefore necessary to modify the typical functioning
of GAs so that this constraint is met. Let n be the total number of compo-
nents available to choose from to represent the patterns to be classi�ed. Each
subset of components is a chromosome and is represented by a binary vector
of size Lind = n. If a bit is a 1, it means that the corresponding component is
selected. A value of 0 indicates that the corresponding component is not se-
lected. GAs operate simultaneously on a number of potential solutions, called
a population, consisting of some encoding of the parameter set. The initial
population is achieved by generating the required number of individuals using
a random number generator that uniformly distributes numbers in the desired
range. With a binary population of Nind individuals whose chromosomes are
Lind bits long, Nind ·Lind random uniformly distributed numbers from the set
0, 1 would be produced, such that the number of 1s in each row is equal to
m. The algorithm generating the initial population is shown in Fig. 1. The
function randperm(n) returns a random permutation of the �rst n integers.
The objective function used to run the GA was equal to the inverse of the
separation index J−1

1 . In our approach the number of individuals in the new
population will be equal to the number of individuals in the initial population
Nind. The crossover operation is applied with a probability of Probcross = 0.7
when the pairs are chosen for breeding. This crossover probability value is typ-
ically used in GAs and generally yields good results in terms of convergence
towards the optimal solution. Our system uses the simplest form of crossover
called single-point crossover. Fig. 2 shows the algorithm used for recombina-
tion. Let O and E be the arrays containing the indexes of the components
selected for the parents; having generated a random �oating number between
0 and 1 (rand(1.0) function) recombination is only performed when this num-
ber is lower than the pre-established Probcross. An integer position x is selected
uniformly at random between 1 and the string length m (indicated in Fig. 2
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 by means of the randint function), and the genetic information exchanged be-

tween the individuals about this point; then two new o�spring strings O∗ and
E∗ are produced. When the parents have components in common, the o�spring
may have fewer than m components selected. For this reason a check routine
illustrated in Fig. 3 is used, which ensures o�spring with the pre-established
number of features, m. This is achieved by exploiting the components not
shared by the parents and the o�spring produced (in the algorithm in Fig. 3
the �\� operator yields all indexes in the array that appear in the �rst operand
but not in the second).
The mutation algorithm is applied in such a way that it can be veri�ed with
a probability of Probmut = 0.7 for each member of the population. As with
crossover, the value selected for the mutation probability is one typically used
in GAs as it gives good results in terms of convergence towards the optimal
solution. When one or more members invert their value, passing from 0 to 1
or 1 to 0, the number of elements with a value of 1 must be equal to m. Once
again the check routine in Fig. 3 is used.
For each generation cycle the positions of the 1s in the row with the lowest
objective function value indicate the m best components for each generation.
The generational cycle is repeated 300 times and at each generation the sys-
tem stores the set of m components with the best performance in terms of the
separation index. At the end of the generational cycle the set chosen is the
one with the best separation index.
Fig. 4 is an example of the trend followed by the separation index (the inverse
of the objective function) as the number of generation cycles progresses.

4.3 Genetic Algorithm features

At this point it is necessary to establish the number of components to be
extracted during the selection procedure. This is important so as to be able
to make signi�cant comparisons with the results obtained using other feature
vectors. The results in [4] were obtained using HMM models trained with 16
MFCCs feature vector and TEO-CB-Auto-Env feature vector of 16 compo-
nents to classify between the 4 states of the Simulated Domain and between
the 2 states of the Actual Domain. We therefore initially extracted exclusively
16 components (16-GA feature vector) from the set of non time-derivative
features. Then, to obtain even better performance, we introduced the time-
derivative features and determined the separation index using vectors with a
larger number of components. As the number of components used increases,
the speed at which the separation index grows decreases. It was found that
when more than 48 components are used the increase in the separation in-
dex is insigni�cant. We therefore extracted 48 components (48-GA feature
vector) from the set of all features. As an example, Table 1 indicates the 48
components selected using the GA technique. The �rst column in the table
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 Table 1

48-GA Feature Vector

Components Selected

Feature ∆0 ∆1 ∆2 #

AC1−17 1 15 - 2

F0 1 - 1 2

F1−4 1,2,3,4 2,4 2,4 8

LAR1−16 3 - 4 2

log E 1 1 - 2

LPC1−16 - - 2 1

LPCC1−17 3,4,5,7,15 - 13 6

LSF1−16 1,5,12 - 1 4

MFCC1−16 9 - - 1

PARCOR1−16 1,2,3,4,6,9,11 - 1,11 9

RCEPS1−16 1,2,8 - - 3

TEO1−16 1,3,7,11 - 8,12,16 7

σ2
ELPC

1 - - 1

ZCR - - - 0

(Feature) contains the various features used; the second column (∆0) contains
the indexes of the components selected from the non time-derivative features;
the third (∆1) and fourth (∆2)) columns respectively contain the indexes of
the components selected from the �rst and second derivative of the features;
the last column (#) gives the total number of components selected for each
feature. It should be pointed out that a single component selected by a GA
is not signi�cant as the objective function is evaluated over the whole subset.
More speci�cally, if the selection using GA is repeated, their statistical nature
may yield a di�erent combination of components, but (in the optimal case) it
would still converge on the same objective function value. In this case the aim
of selection is to identify a subset with a high degree of separability and which
is assumed to give better performance when used as input for a classi�cation
system.
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 5 Evaluations

In [10] we used two suboptimal techniques for components selection, the FS
and the GA selection approach, and we showed that the performance obtained
with the selection technique based on GA was consistently better than that
of the FS technique. Thus the performance that can be obtained through the
GA feature vectors was compared with that of the linear features considered
to be most e�cient at recognizing a speaker's emotional state, MFCCs and
Pitch [2][17], and the nonlinear feature TEO-CB-Auto-Env [4]. To compare
the performance of the system proposed with that of others in the literature,
as was done in [4], we performed the evaluation in three di�erent contexts:

• Text-Dependent Pairwise Stress Classi�cation
• Text-Independent Pairwise Stress Classi�cation
• Text-Independent Multistyle Stress Classi�cation

The classi�er used in the test was a baseline �ve-state HMM-based classi�er
with continuous distributions, each with two Gaussian mixtures. The HMMs
were trained and tested using the Hidden Markov Model ToolKit (HTK-3.3)
[18]. To compare the performance obtainable using the di�erent types of fea-
tures as input to the classi�cation systems, the HMMs were trained and tested
with the following inputs:

a) MFCCs feature vector (16 components);
b) Pitch feature (scalar);
c) TEO-CB-Auto-Env feature vector (16 components);
d) 16-GA feature vector (16 components);
e) 48-GA feature vector (48 components).

5.1 Text-Dependent Pairwise Stress Classi�cation

The �rst step involved text-dependent pairwise classi�cation, in which the
HMMs were trained and tested with the same words. An HMM was trained
with the voiced part of each of the words from each style of speech chosen for
the training phase. There are thus 24 HMMs (6 words x 4 styles of speech)
for the Simulated Domain and 12 (6 words x 2 styles of speech) for the Actual
Domain. The HMMs were trained with a series of �replicas� of the same word
uttered by various speakers. Due to the low number of voice tones available
for pairwise classi�cation, the �round-robin� method used in [4] was applied
(e.g., in the Simulated Domain for each of the 18 �replicas� of a word the
relative HMM is trained with 17 of the replicas and tested with the remaining
word). The results of this classi�cation are shown in Fig. 5. From analysis of
the �gure it emerges that when the GA features (both 16 and 48 components)
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 are used the results are on average better than in all the other cases. Using

the 16-GA feature there is an average increase in performance of about 5%
as compared with the results obtained using MFCCs, about 7% as compared
with the results obtained using TEO-CB-Auto-Env and about 4% as compared
with the results obtained using Pitch. Analyzing the standard deviation of
the classi�cation obtained with the di�erent speech styles it is observed that
all the types of features maintain the same consistency. Only in the case of
classi�cation between loud and neutral better performance was achieved using
MFCCs feature vector.

5.2 Text-Independent Pairwise Stress Classi�cation

The second test involved text-independent pairwise classi�cation to see whether
the performance of these features depends, and to what extent, on the infor-
mation contained in a text or phoneme. A single HMM was trained for each
style of speech in the two domains: for the Simulated Domain four HMMs
were trained with 108 words belonging to the four styles, whereas 270 di�er-
ent words were used in the test phase. For the Actual Domain the two HMMs
for the neutral and stressed styles were trained with 94 words each and the
tests were performed using 140 di�erent words. Fig. 6 shows the results of
this classi�cation. The results obtained using 16-GA feature were on average
slightly better than those obtained using TEO-CB-Auto-Env (the average in-
crease in performance is about 3%). The performance obtained using both
MFCCs and Pitch decreases signi�cantly in this context due to their depen-
dence on the phonetic content of the words. Text-independent classi�cation
using 48-GA feature performed very well with regard to the pairs belonging
to the Simulated Domain, and also in the Actual Domain performance was
clearly better than that achieved using the other features. When the 48-GA
feature was used the average increase in performance as compared with the
TEO-CB-Auto-Env is about 10%. It was also observed that in this case the
consistency of the features was more di�erentiated: the standard deviation of
the classi�catrion results obtained using 48-GA feature was less than 1%; It
was about 4% when TEO-CB-Auto-Env was used, and over 10% when Pitch
and MFCCs were used.

5.3 Text-Independent Multistyle Stress Classi�cation

The aim of the last phase was multistyle text-independent stress classi�cation.
The aim was to verify the accuracy of the features in distinguishing between
neutral and stress-a�ected speech, and then to evaluate their e�ciency in
classifying various types of stress. The Actual Domain was not considered in
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 Table 2

Text-Independent multistyle classi�cation using MFCCs.

Test Distribution of Speech Style Neutral-Stressed

Speech Detection Rate (%) Detection Rate (%)

Style Neutral Angry Loud Lombard Neutral Stressed

Neutral 78.3 7.66 9.6 4.44 78.3 21.7

Angry 20.3 46.86 21.36 11.48 20.3 79.7

Loud 20.84 31 33.32 14.84 20.84 79.16

Lombard 29.9 20.63 29.74 19.73 29.9 70.1

Table 3
Text-Independent multistyle classi�cation using PITCH.

Test Distribution of Speech Style Neutral-Stressed

Speech Detection Rate (%) Detection Rate (%)

Style Neutral Angry Loud Lombard Neutral Stressed

Neutral 53.24 1.8 3.6 41.36 53.24 46.76

Angry 14.73 41.15 18.37 25.75 14.73 85.27

Loud 13.1 33.65 34.35 18.9 13.1 86.9

Lombard 8.42 6.9 7.27 77.41 8.42 91.58

this phase as the stress present in the voice tones in this domain is strong
and less easy to detect in most real cases. Each of the 270 words outside the
vocabulary used in the Text-Independent Pairwise test phase was classi�ed
using the four HMMs for the four speech styles in the Simulated Domain. The
output was therefore not simply words classi�ed as neutral or stressed but as
belonging to one of the four styles of stress considered.
The results obtained with the various features are given in Tables 2, 3, 4, 5
and 6. The �rst part of each table is the matrix of misclassi�cation between
the various speech styles. So if, for example, the system input is presented
with a token belonging to the neutral class, classi�cation is correct only if the
neutral model achieves maximum verisimilitude. The second part of the tables
gives the Neutral-Stressed Detection Rate: if the input is a token belonging
to one or other of the angry, loud and Lombard classes, the token will be
correctly classi�ed if any one of the three models (angry, loud or Lombard)
obtains the maximum verisimilitude. In this way it is possible to compare the
results in the various tables directly. Analysis of the second part of the tables
shows that when GA features are used performance is considerably better in
classi�cation of the neutral style. When models trained with 48-GA feature
are used the neutral style is always recognized correctly.
To analyze the results obtained in classi�cation between the 4 di�erent speech

14
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 Table 4

Text-Independent multistyle classi�cation using TEO-CB-AUTO-ENV.

Test Distribution of Speech Style Neutral-Stressed

Speech Detection Rate (%) Detection Rate (%)

Style Neutral Angry Loud Lombard Neutral Stressed

Neutral 73.55 4.32 2.1 20.03 73.55 26.45

Angry 7.4 62.24 14.81 15.55 7.4 92.6

Loud 0.74 36.03 35.23 28 0.74 99.26

Lombard 15.55 8.91 8.15 67.39 15.55 84.45

Table 5
Text-Independent multistyle classi�cation using 16-GA feature.

Test Distribution of Speech Style Neutral-Stressed

Speech Detection Rate (%) Detection Rate (%)

Style Neutral Angry Loud Lombard Neutral Stressed

Neutral 81.71 6.62 3.31 8.36 81.71 18.29

Angry 6.8 65.6 14.55 13.05 6.8 93.20

Loud 3.7 29.6 51.6 15.1 3.7 96.30

Lombard 8.89 16.83 9.08 65.2 8.89 91.11

Table 6
Text-Independent multistyle classi�cation using 48-GA feature.

Test Distribution of Speech Style Neutral-Stressed

Speech Detection Rate (%) Detection Rate (%)

Style Neutral Angry Loud Lombard Neutral Stressed

Neutral 100 0 0 0 100 0

Angry 9.04 75.4 3.04 12.52 9.04 90.96

Loud 10.3 0 64.62 25.08 10.3 89.7

Lombard 0 3.78 5.27 90.95 0 100

styles we can use the values on the diagonal of the misclassi�cation matrix in
the �rst part of each table. As the results show, there is once again an increase
in performance when the GA features are used. Performance analysis shows
that when TEO-CB-Auto-Env feature vector is used classi�cation between
the 4 speech styles is on average better than when MFCCs feature vector and
Pitch are used. The MFCCs feature performs better, however, in classifying
the neutral state and Pitch performs better when classifying the Lombard state.
Comparing the results obtained using 16-GA feature with those obtained using
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 TEO-CB-Auto-Env, there is an improvement of about 8% in the neutral case,

about 3% in the angry case, 16% in the loud case and a slight deterioration
of about 2% in the Lombard case. As can be seen from Table 6 the best
performance in classi�cation of the 4 speech styles is obtained using the 48-
GA feature.

6 Conclusions and Future Work

The paper has proposed a GA-based components selection procedure to build
new speech features for distinguishing between di�erent styles of stress. It has
been demonstrated that the recognition system using these GA features per-
formed better than the others in three di�erent evaluations: Text-Dependent
Pairwise Stress Classi�cation, Text-Independent Pairwise Stress Classi�cation
and Text-Independent Multistyle Stress Classi�cation.
Rather than recognizing emotional states from the way a single word is ut-
tered, the authors think that better results could be obtained by analyzing
whole sentences uttered under a given type of stress. Sentences could be di-
vided into time segments of �nite duration and the technique could then be
applied to each segment. These time segments have to be chosen very carefully
as they have to ful�ll two con�icting conditions:
1) emotional changes can occur very quickly, but the segment length sets the
temporal resolution of recognizable changes,
2) reliable statistical features can often only be computed over longer seg-
ments.
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ROUTINE CREATE INITIAL POPULATION

INPUT:

nothing

OUTPUT:

initial population of chromosomes C

Ci,j=0 : i=1..NIND, j=1..n

I = randperm(n)

j1 = 1

j2 = m

i = 1

while i <= NIND

Ci,I[j1..j2]=1

j1 = j1 + m

j2 = j2 + m

if j2 > n

if j1 < n

i = i + 1

Ci,I[j1..n]=1

Ci,I[1:j2−n]=1

end

I = randperm(n)

j1 = 1

j2 = m

end

i = i + 1

end

Fig. 1. Algorithm used to create the initial population.
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ROUTINE CROSSOVER

INPUT:

selected individuals C

OUTPUT:

new individuals C∗

C∗
i,j=0 : i=1..Nind, j=1..n

while i <= Nind

if rand(1.0) < Probcross

k=1, h=1

for j=1...n

if Ci,j==1

Oh = j

h=h+1

end

if Ci+1,j==1

Ek = j

k=k+1

end

end

x = randint(m)

O∗=[O1 ...Ox Ex+1 ...Em]

E∗=[E1 ...Ex Ox+1 ...Om]

O∗ = check(O∗, i, O, E)

E∗ = check(E∗, i+1, O, E)

for h=1...m

C∗
i,O∗

h
=1

C∗
i+1,E∗

h
=1

end

end

i = i + 2

end

Fig. 2. Algorithm used for crossover.
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ROUTINE CHECK

INPUT:

offspring index array X

chromosome position p

first parent index array P1

second parent index array P2

OUTPUT:

checked offspring index array X

Cj=0 : j=1..n

for h=1...m

CX(h) = 1

end

if
∑n

j=1 Cj < m

X∗=sort(X)

A = [P1 P2]

D = A \ X∗

I = randperm(length(D))

k=1

for h = 1..m

if X∗
h == X∗

h+1

X∗
h = D(I(k))

k=k+1

if k > length(D) k = 1

end

end

end

X = X∗

Fig. 3. Algorithm used to maintain a constant number of components selected after
crossover or mutation.
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Fig. 4. Example of objective function trend.

Fig. 5. Text-Dependent pairwise stress classi�cation results.
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Fig. 6. Text-Independent pairwise stress classi�cation results.
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