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Multi-Style Classication of Speech Under Stress Using Feature Subset Selection Based on Genetic Algorithms

The determination of an emotional state through speech increases the amount of information associated with a speaker. It is therefore important to be able to detect and identify a speaker's emotional state or state of stress. Various techniques are used in the literature to classify emotional/stressed states on the basis of speech, often using dierent speech feature vectors at the same time. This study proposes a new feature vector that will allow better classication of emotional/stressed states. The components of the feature vector are obtained from a feature subset selection procedure based on Genetic Algorithms. A good discrimination between neutral, angry, loud and Lombard states for the simulated domain of the Speech Under Simulated and Actual Stress (SUSAS) database and between neutral and stressed states for the actual domain of the SUSAS database is obtained.

Introduction

Technological progress has allowed an increasing degree of human-machine interaction. This interaction can be improved and accelerated by means of spoken communication. In human-human speech-based communications, emotions play an important role, sometimes playing an even bigger role than the logical information also included in the speech [START_REF] Cowie | Emotion Recognition in Human-Computer Interaction[END_REF]. One important research challenge in the last few years has thus been automatic recognition of the emotional state of a speaker through speech; knowledge of this state can have a series of applications, such as [START_REF] Cowie | Emotion Recognition in Human-Computer Interaction[END_REF]:

• automatic answering machines that can adapt their voice tone to that of the speaker;
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• speech recognition systems that can correctly interpret the meaning of words spoken in an ironic or sarcastic manner;

• systems which are able to detect the emotional state of an interlocutor (for clinical diagnosis purposes, for example);

• synthesizers that can generate speech giving the sensation of a particular emotion;

• automatic tutoring systems that can establish a learner's degree of boredom, irritation or intimidation;

• systems that can prevent speakers in a particularly altered emotional state from interacting with automatic recognition systems;

• systems to generate alarms on the basis of the dierent emotional states of people being monitored;

• entertainment systems and games that can determine a user's emotional state.

The determination of an emotional state is therefore an important task from several points of view. What is studied more frequently than the recognition of the speaker's emotional state in general is classication of speech under stress (e.g., [START_REF] Hansen | Feature Analysis and Neural Network-Based Classication of Speech Under Stress[END_REF][3][4] [START_REF] Nwe | Classication of Stress in Speech Using Linear and Nonlinear Features[END_REF]). Several elements introduce stressed voice tones in the production of speech, for example background noise, emergencies, high workloads, strong emotional excitement, etc. It is well-known that the performance of speech recognition algorithms is greatly inuenced by the stressful conditions in which speech is produced. Workload task stress signicantly impacts recognition performance. Eects of dierent stressful conditions on speech recognition and eorts to improve the performance of speech recognition algorithms under stressful conditions can be found in literature. Stress classication cannot only be used to improve the robustness of speech recognition systems, other scenarios can also benet, such as telecommunications, military applications, medical applications, and law enforcement. In telecommunications, in addition to its potential to improve the telephone -based speech recognition performance, stress classication can be used to route 911 emergency call services for high priority emergency calls. The integration of speech recognition technology has already been seen in many military voice communication and control applications. Since many such applications involve stressful environments (e.g., aircraft cockpits, military peacekeeping/battleeld setting), stress classication and assessment become crucial to improve the system robustness in these applications. Finally, stress classication can also be employed in forensic speech analysis by law enforcement to assess the state of telephone callers or as an aid in suspect interviews.

Various techniques are used in the literature to classify emotional/stressed states on the basis of speech (for example Hidden Markov Models [START_REF] Bou-Ghazale | A Comparative Study of Traditional and Newly Proposed Features for Recognition of Speech Under Stress[END_REF]

[6][7][5],
Neural Networks [START_REF] Hansen | Feature Analysis and Neural Network-Based Classication of Speech Under Stress[END_REF][8] [START_REF] Nicholson | Emotion Recognition in Speech Using Neural Networks[END_REF]). In turn, these use dierent speech features, the most common being MFCC (Mel-Frequency Cepstral Coecients), Pitch, LPC (Linear Prediction Coecients), autocorrelation coecients and Teager Energy Operator (TEO) based features [START_REF] Zhou | Nonlinear Feature Based Classication of Speech Under Stress[END_REF]. Some researchers have combined various techniques to enhance performance in recognition of emotional states through speech, often using dierent speech features at the same time [START_REF] Bou-Ghazale | A Comparative Study of Traditional and Newly Proposed Features for Recognition of Speech Under Stress[END_REF]. In [START_REF] Beritelli | A Genetic Algorithm Feature Selection Approach to Robust Classication between "Positive" and "Negative" Emotional State in Speakers[END_REF] we proposed a genetic algorithm components selection approach to distinguish between positive and negative emotional states, but the aim of this paper is a broader classication, taking various speech styles into account.

Feature Extraction

The process whereby human speech is produced is typically modeled via a linear source-lter model. This model assumes that the ow of air propagates through the vocal tract as a plane wave. The vocal tract remains in a xed conguration for short periods of time, so in each of these periods it can be considered as a time-invariant linear lter. Thus, in a long period of time the vocal tract is modelled as a time-variant linear lter. The speech features typically used in speech/speaker recognition processes and speech coding are obtained starting from identication of this lter. Some of these features have been studied for speech signal coding (LPC, PARCOR, LSF, LAR), while others are used for speech or speaker recognition (MFCC, LPCC, Formants, Pitch, AC).

Research focusing on the recognition of emotional states through speech has not up to now identied a specic feature.

Studies conducted by Teager [START_REF] Teager | Some Observations on Oral Air Flow During Phonation[END_REF] suggest the presence of vortices in the proximity of the vocal cords which interact with the primary ow and are the main source of excitement during closure of the cords. In addition, physiological changes in the vocal system caused by conditions of stress, for example muscular tension, will aect these interactions in the vocal tract [START_REF] Zhou | Nonlinear Feature Based Classication of Speech Under Stress[END_REF]. These interactions are nonlinear, as conrmed by the theory of uid mechanics [START_REF] Chorin | A Mathematical Introduction to Fluid Mechanism[END_REF] and numerical simulation of the Navier-Stokes equation [START_REF] Thomas | A Finite Element Model of Fluid Flow in the Vocal Tract[END_REF]. It will thus be suitable to consider components extracted from nonlinear features in order to classify stress. In [START_REF] Zhou | Nonlinear Feature Based Classication of Speech Under Stress[END_REF] the authors characterize the production of speech by modeling the conguration of the ow of air in the vocal tract and they propose three new features to explore the prospect of variations in the energy of airow characteristics within the vocal tract. These features are the TEO-decomposed FM Variation (TEO-FM-Var), the normalized TEO Autocorrelation Envelope area (TEO-Auto-Env), and the Critical Band based TEO Autocorrelation Envelope area (TEO-CB-Auto-Env).

The idea on which this paper is based is to determine, starting from all the components obtained from a broad set of speech features, a subset of components that will make it possible to distinguish better between dierent emotional states than is possible when only a speech feature is used. In selecting these components we therefore introduced both the commonly used features derived from the linear model and TEO-CB-Auto-Env feature which, as demonstrated in [START_REF] Zhou | Nonlinear Feature Based Classication of Speech Under Stress[END_REF], is the nonlinear feature which allows for a better classication of dierent types of stress.

The speech was processed using a pre-emphasis lter to highlight the highfrequency components and then split into 30ms frames at a rate of 10ms. On the basis of the previous considerations, the following features were extracted from each frame: The rst-and second-order time dierences were also computed as

• 4 LPC
∆x(n) = x(n + 1) -x(n -1) ∆ 2 x(n) = ∆x(n + 1) -∆x(n -1) (1) 
obtaining for every frame a vector of 462 components.

Database

The extraction of speech features in the presence of dierent emotional states was performed using the SUSAS (Speech Under Simulated and Actual Stress) database [START_REF] Hansen | Getting Started with SUSAS: A Speech Under Simulated and Actual Stress Database[END_REF], like in [START_REF] Zhou | Nonlinear Feature Based Classication of Speech Under Stress[END_REF]. The database is partitioned into ve domains, encompassing a wide variety of stresses and emotions. For each of these speech styles a subset of words was chosen and then used in the feature selection, HMM training and test phases. To compare the stress recognition system with that presented in [START_REF] Zhou | Nonlinear Feature Based Classication of Speech Under Stress[END_REF] we used the same words, i.e., freeze, help, mark, nav, oh, zero. Since the TEO is more applicable for voiced sounds than for unvoiced sounds, only high-energy voiced sections (i.e., vowels, diphthongs, liquids, glides, nasals) were extracted from the speech signal [START_REF] Zhou | Nonlinear Feature Based Classication of Speech Under Stress[END_REF].

4 Selection of the Subset of Components

Separability criteria

Having chosen the classication system (neural network, HMM-based stochastic model, ...), one method that could be used to assess the validity of a subset of components would be to evaluate performance using the classication system itself. The time required to evaluate the various possible subsets of components would, however, be unacceptable due to the complexity of the algorithms that have to be used to train the classication system. It is necessary to dene a criterion whereby it is possible to establish rapidly the degree of separability between L classes using a certain subset of components. In the discriminant analysis of statistics, within-class and between-class are used to formulate criteria of class separability [START_REF] Fukunaga | Introduction to Statistical Pattern Recognition[END_REF]. A within-class scatter-matrix shows the scatter of samples around their respective expected class vectors:

S w = L i=1 P i E (X -M i )(X -M i ) T |ω i = L i=1 P i R i (2) 
where: P i is the a priori probability for class i, X is the parameter vector, M i is the mean vector for class i, R i is the covariance matrix for class i, ω i represents class i, and L is the number of classes. The between-classes scatter matrix represents the scatter of the expected vectors around the mixture mean as

S b = L i=1 P i (M i -M 0 )(M i -M 0 ) T (3) 
where M 0 = E{X} = L i=1 P i M i represents the expected vector of the mixture distribution (i.e., the distribution of all the classes).

In order to formulate criteria for class separability, we need to convert the matrices to a number. This number should be larger when the between-class scatter is larger or the within-class scatter is smaller. There are several ways to do this. Given its simplicity of implementaiton, we used the following criterion

J 1 = tr(S w -1 S b ) (4) 
where the symbol tr(X) indicates the trace of the matrix X.

Selection Algorithm

The best subset of m components out of n may be found by evaluating a criterion of class separability for all possible combinations of m variables.

However, the number of all possible combinations, n m , becomes prohibitive even for modest values of m and n. For example, with n = 24 and m = 12 there are 2, 704, 156 possible combinations. It is therefore necessary to use techniques to avoid an exhaustive search. The techniques most widely used in the literature are stepwise search techniques such as the backward selection (BS) and forward selection (FS) procedures, branch and bound methods (B&B) and stochastic global search methods like genetic algorithms (GAs).

Backward Selection

The BS procedure starts from the full set of n components. Then, eliminating one component, all possible subsets of n -1 components are obtained and their criterion values are evaluated. The highest value is determined and the corresponding subset is selected as the best of those with n -1 components.

Another component is then eliminated from this subset and the best subset with n-2 components is determined. The procedure is repeated until the best subset containing the number m of desired components is obtained.

Forward Selection

The FS procedure starts by evaluating the separability criterion for each component. The highest value is determined and the corresponding component is selected as the best. All possible pairs of components which contain this component are established and their separability criterion determined. The pair with the highest value is selected as the best containing 2 components. The procedure is repeated until the best subset containing the number m of desired components is obtained.

Both BS and FS evaluate the increase in performance obtained by eliminating or adding each component and so, although they are simple search techniques, they do not always achieve the best solution.

Branch and Bound

A B&B algorithm searches the complete space of solutions for the best solution to a given problem. Some solutions are not actually explored because they are known a priori not to be optimal. When it becomes apparent that a solution is not optimal exploration of it is abandoned (bound). The use of bounds for the function to be optimized combined with the value of the current best solution enables the algorithm to search parts of the solution space only implicitly. The order in which solutions are explored is important: the sooner a good solution is found, the more eective the bound conditions will be later, thus reducing exploration costs. Despite investing in the search for exact algorithms that are capable of solving the problem of parameter selection, their complexity will always grow exponentially along with the number of components to be selected.

Given the large number of components used in our approach, it was not possible to use B&B algorithms.

General Remarks on Genetic Algorithms

A GA is a stochastic global search method that mimics the metaphor of natural biological evolution. Problems which appear to be particularly appropriate for solution by genetic algorithms include timetabling and scheduling problems.

GAs have also been applied to engineering and to solving global optimization problems. GAs operate on a population of potential solutions applying the principle of the survival of the ttest to produce (hopefully) better and better approximations to a solution. At each generation, a new set of approximations is created by the process of selecting individuals according to their level of tness in the problem domain and breeding them together using operators borrowed from natural genetics. This process leads to the evolution of populations of individuals that are better suited to their environment than the individuals they were created from, just as in natural adaptation. Genetic operators manipulate the characters (genes) of the chromosomes directly, using the assumption that certain individual's gene codes, on average, produce tter individuals. The recombination (or crossover) operator is used to exchange genetic information between pairs, or larger groups, of individuals. This crossover operation is not necessarily performed on all strings in the population. Instead, it is applied with a probability P rob cross when the pairs are chosen for breeding. A further genetic operator, called mutation, is then applied to the new chromosomes, again with a set probability, P rob mut . Mutation causes the individual genetic representation to be changed according to some probabilistic rule. Mutation is generally considered to be a background operator that ensures that the probability of searching a particular subspace of the problem space is never zero. This has the eect of tending to inhibit the possibility of converging to a local optimum, rather than the global optimum.

Individuals

After recombination and mutation, the individual strings are then, if necessary, decoded, the objective function evaluated, a tness value assigned to each individual and individuals selected for mating according to their tness, and so the process continues through subsequent generations. In this way, the average performance of individuals in a population is expected to increase, as good individuals are preserved and bred with one another and the less t individuals die out. The GA is terminated when some criteria are satised, e.g., a certain number of generations, a mean deviation in the population, or when a particular point in the search space is encountered.

Genetic Algorithms for Components Selection

Genetic algorithms have demonstrated substantial improvement over a variety of random and local search methods. This is accomplished by their ability to exploit accumulating information about an initially unknown search space in order to bias subsequent search into promising subspaces. Since GAs are basically a domain-independent search technique, they are ideal for applications where domain knowledge and theory is dicult or impossible to provide [START_REF] Vafaie | Robust Feature Selection Algorithms[END_REF].

For GAs to work the number of components to be selected must be predetermined and constant. It is therefore necessary to modify the typical functioning of GAs so that this constraint is met. Let n be the total number of components available to choose from to represent the patterns to be classied. Each subset of components is a chromosome and is represented by a binary vector of size L ind = n. If a bit is a 1, it means that the corresponding component is selected. A value of 0 indicates that the corresponding component is not selected. GAs operate simultaneously on a number of potential solutions, called a population, consisting of some encoding of the parameter set. The initial population is achieved by generating the required number of individuals using a random number generator that uniformly distributes numbers in the desired range. With a binary population of N ind individuals whose chromosomes are L ind bits long, N ind • L ind random uniformly distributed numbers from the set 0, 1 would be produced, such that the number of 1s in each row is equal to m. The algorithm generating the initial population is shown in Fig. 1. The function randperm(n) returns a random permutation of the rst n integers.

The objective function used to run the GA was equal to the inverse of the separation index J -1

1 . In our approach the number of individuals in the new population will be equal to the number of individuals in the initial population N ind . The crossover operation is applied with a probability of P rob cross = 0.7 when the pairs are chosen for breeding. This crossover probability value is typically used in GAs and generally yields good results in terms of convergence towards the optimal solution. Our system uses the simplest form of crossover called single-point crossover. Fig. 2 shows the algorithm used for recombination. Let O and E be the arrays containing the indexes of the components selected for the parents; having generated a random oating number between 0 and 1 (rand(1.0) function) recombination is only performed when this number is lower than the pre-established P rob cross . An integer position x is selected uniformly at random between 1 and the string length m (indicated in Fig. 2 by means of the randint function), and the genetic information exchanged between the individuals about this point; then two new ospring strings O * and E * are produced. When the parents have components in common, the ospring may have fewer than m components selected. For this reason a check routine illustrated in Fig. 3 is used, which ensures ospring with the pre-established number of features, m. This is achieved by exploiting the components not shared by the parents and the ospring produced (in the algorithm in Fig. 3 the \ operator yields all indexes in the array that appear in the rst operand but not in the second).

The mutation algorithm is applied in such a way that it can be veried with a probability of P rob mut = 0.7 for each member of the population. As with crossover, the value selected for the mutation probability is one typically used in GAs as it gives good results in terms of convergence towards the optimal solution. When one or more members invert their value, passing from 0 to 1 or 1 to 0, the number of elements with a value of 1 must be equal to m. Once again the check routine in Fig. 3 is used.

For each generation cycle the positions of the 1s in the row with the lowest objective function value indicate the m best components for each generation. The generational cycle is repeated 300 times and at each generation the system stores the set of m components with the best performance in terms of the separation index. At the end of the generational cycle the set chosen is the one with the best separation index. Fig. 4 is an example of the trend followed by the separation index (the inverse of the objective function) as the number of generation cycles progresses.

Genetic Algorithm features

At this point it is necessary to establish the number of components to be extracted during the selection procedure. This is important so as to be able to make signicant comparisons with the results obtained using other feature vectors. The results in [START_REF] Zhou | Nonlinear Feature Based Classication of Speech Under Stress[END_REF] were obtained using HMM models trained with 16

MFCCs feature vector and TEO-CB-Auto-Env feature vector of 16 components to classify between the 4 states of the Simulated Domain and between the 2 states of the Actual Domain. We therefore initially extracted exclusively 16 components (16-GA feature vector) from the set of non time-derivative features. Then, to obtain even better performance, we introduced the timederivative features and determined the separation index using vectors with a larger number of components. As the number of components used increases, the speed at which the separation index grows decreases. It was found that when more than 48 components are used the increase in the separation index is insignicant. We therefore extracted 48 components (48-GA feature vector) from the set of all features. As an example, Table 1 indicates the 48 components selected using the GA technique. The rst column in the table Table 1 48-GA Feature Vector Components Selected Feature

∆ 0 ∆ 1 ∆ 2 # AC 1-17 1 15 - 2 F 0 1 - 1 2 
F 1-4 1,2,3,4 2,4 2,4 8 
LAR 1-16 3 - 4 2 log E 1 1 - 2 LP C 1-16 - - 2 1
LP CC 1-17 3,4,5,7,15 -13 6

LSF 1-16 1,5,12 - 1 4 M F CC 1-16 9 - - 1 
P ARCOR 1-16 1,2 ,3,4,6,9,11 - 1,11 9 
RCEP S 1-16

T EO 1-16

(Feature) contains the various features used; the second column (∆ 0 ) contains the indexes of the components selected from the non time-derivative features;

the third (∆ 1 ) and fourth (∆

)) columns respectively contain the indexes of the components selected from the rst and second derivative of the features; the last column (#) gives the total number of components selected for each feature. It should be pointed out that a single component selected by a GA is not signicant as the objective function is evaluated over the whole subset.

More specically, if the selection using GA is repeated, their statistical nature may yield a dierent combination of components, but (in the optimal case) it would still converge on the same objective function value. In this case the aim of selection is to identify a subset with a high degree of separability and which is assumed to give better performance when used as input for a classication system.

In [START_REF] Beritelli | A Genetic Algorithm Feature Selection Approach to Robust Classication between "Positive" and "Negative" Emotional State in Speakers[END_REF] we used two suboptimal techniques for components selection, the FS and the GA selection approach, and we showed that the performance obtained with the selection technique based on GA was consistently better than that of the FS technique. Thus the performance that can be obtained through the GA feature vectors was compared with that of the linear features considered to be most ecient at recognizing a speaker's emotional state, MFCCs and Pitch [START_REF] Hansen | Feature Analysis and Neural Network-Based Classication of Speech Under Stress[END_REF][17], and the nonlinear feature TEO-CB-Auto-Env [START_REF] Zhou | Nonlinear Feature Based Classication of Speech Under Stress[END_REF]. To compare the performance of the system proposed with that of others in the literature, as was done in [START_REF] Zhou | Nonlinear Feature Based Classication of Speech Under Stress[END_REF], we performed the evaluation in three dierent contexts:

• Text-Dependent Pairwise Stress Classication • Text-Independent Pairwise Stress Classication • Text-Independent Multistyle Stress
The classier used in the test was a baseline ve-state HMM-based classier with continuous distributions, each with two Gaussian mixtures. The HMMs were trained and tested using the Hidden Markov Model ToolKit (HTK-3.3) [START_REF] Young | The HTK Book (for HTK Version 3.3[END_REF]. To compare the performance obtainable using the dierent types of features as input to the classication systems, the HMMs were trained and tested with the following inputs: a) MFCCs feature vector (16 components); b) Pitch feature (scalar); c) TEO-CB-Auto-Env feature vector (16 components); d) 16-GA feature vector (16 components); e) 48-GA feature vector (48 components).

Text-Dependent Pairwise Stress Classication

The rst step involved text-dependent pairwise classication, in which the HMMs were trained and tested with the same words. An HMM was trained with the voiced part of each of the words from each style of speech chosen for the training phase. There are thus 24 HMMs (6 words x 4 styles of speech)

for the Simulated Domain and 12 (6 words x 2 styles of speech) for the Actual Domain. The HMMs were trained with a series of replicas of the same word uttered by various speakers. Due to the low number of voice tones available for pairwise classication, the round-robin method used in [START_REF] Zhou | Nonlinear Feature Based Classication of Speech Under Stress[END_REF] was applied (e.g., in the Simulated Domain for each of the 18 replicas of a word the relative HMM is trained with 17 of the replicas and tested with the remaining word). The results of this classication are shown in Fig. 5. From analysis of the gure it emerges that when the GA features (both 16 and 48 components) are used the results are on average better than in all the other cases. Using the 16-GA feature there is an average increase in performance of about 5%

as compared with the results obtained using MFCCs, about 7% as compared with the results obtained using TEO-CB-Auto-Env and about 4% as compared with the results obtained using Pitch. Analyzing the standard deviation of the classication obtained with the dierent speech styles it is observed that all the types of features maintain the same consistency. Only in the case of classication between loud and neutral better performance was achieved using MFCCs feature vector.

Text-Independent Pairwise Stress Classication

The second test involved text-independent pairwise classication to see whether the performance of these features depends, and to what extent, on the information contained in a text or phoneme. A single HMM was trained for each style of speech in the two domains: for the Simulated Domain four HMMs were trained with 108 words belonging to the four styles, whereas 270 dierent words were used in the test phase. For the Actual Domain the two HMMs for the neutral and stressed styles were trained with 94 words each and the tests were performed using 140 dierent words. Fig. 6 shows the results of this classication. The results obtained using 16-GA feature were on average slightly better than those obtained using TEO-CB-Auto-Env (the average increase in performance is about 3%). The performance obtained using both MFCCs and Pitch decreases signicantly in this context due to their dependence on the phonetic content of the words. Text-independent classication using 48-GA feature performed very well with regard to the pairs belonging to the Simulated Domain, and also in the Actual Domain performance was clearly better than that achieved using the other features. When the 48-GA feature was used the average increase in performance as compared with the TEO-CB-Auto-Env is about 10%. It was also observed that in this case the consistency of the features was more dierentiated: the standard deviation of the classicatrion results obtained using 48-GA feature was less than 1%; It was about 4% when TEO-CB-Auto-Env was used, and over 10% when Pitch and MFCCs were used.

Text-Independent Multistyle Stress Classication

The aim of the last phase was multistyle text-independent stress classication.

The aim was to verify the accuracy of the features in distinguishing between neutral and stress-aected speech, and then to evaluate their eciency in classifying various types of stress. The Actual Domain was not considered in As the results show, there is once again an increase in performance when the GA features are used. Performance analysis shows that when TEO-CB-Auto-Env feature vector is used classication between the 4 speech styles is on average better than when MFCCs feature vector and Pitch are used. The MFCCs feature performs better, however, in classifying the neutral state and Pitch performs better when classifying the Lombard state.

Comparing the results obtained using 16-GA feature with those obtained using TEO-CB-Auto-Env, there is an improvement of about 8% in the neutral case, about 3% in the angry case, 16% in the loud case and a slight deterioration of about 2% in the Lombard case. As can be seen from Table 6 the best performance in classication of the 4 speech styles is obtained using the 48-GA feature.

6 Conclusions and Future Work

The paper has proposed a GA-based components selection procedure to build new speech features for distinguishing between dierent styles of stress. It has been demonstrated that the recognition system using these GA features per- 
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  , or current approximations, are encoded as strings, chromosomes, composed over an alphabet, so that the genotypes (chromosome values) are uniquely mapped onto the decision variable (phenotypic) domain. Having decoded the chromosome representation into the decision variable domain, it is possible to assess the performance, or tness, of individual members of a population. This is done through an objective function that characterizes an individual's performance in the problem domain. Thus, the objective function establishes the basis for selection of pairs of individuals that will be mated together during reproduction. During the reproduction phase, each individual is assigned a tness value derived from its raw performance measure given by the objective function. This value is used in the selection to bias towards tter individuals. Highly t individuals, relative to the whole population, have a high probability of being selected for mating whereas less t individuals have a correspondingly low probability of being selected. Once the individuals have been assigned a tness value, they can be chosen from the population, with a probability according to their relative tness, and recombined to produce the next generation. Selection is the process of determining the number of times, or trials, a particular individual is chosen for reproduction and, thus, the number of ospring that an individual will produce. A real-valued interval, Sum, is determined as the sum of the raw tness values over all the individuals in the current population. Individuals are then mapped one-to-one into contiguous intervals in the range [0, Sum]. To select an individual, a random number is generated in the interval [0, Sum] and the individual whose segment spans the random number is selected. This process is repeated until the desired number of individuals have been selected.
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 12112 Fig. 1. Algorithm used to create the initial population.
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 5 Fig. 5. Text-Dependent pairwise stress classication results.

Table 2

 2 Text-Independent multistyle classication using MFCCs.

	Test Speech Style Neutral 78.3 7.66 9.6 Distribution of Speech Style Detection Rate (%) Neutral Angry Loud Lombard Neutral Stressed Neutral-Stressed Detection Rate (%) 4.44 21.7 78.3 Angry 20.3 46.86 21.36 11.48 20.3 79.7 Loud 20.84 31 33.32 14.84 20.84 79.16 Lombard 29.9 20.63 29.74 19.73 29.9 70.1

Table 3

 3 Text-Independent multistyle classication using PITCH. The rst part of each table is the matrix of misclassication between the various speech styles. So if, for example, the system input is presented with a token belonging to the neutral class, classication is correct only if the neutral model achieves maximum verisimilitude. The second part of the tables gives the Neutral-Stressed Detection Rate: if the input is a token belonging to one or other of the angry, loud and Lombard classes, the token will be correctly classied if any one of the three models (angry, loud or Lombard) obtains the maximum verisimilitude. In this way it is possible to compare the results in the various tables directly. Analysis of the second part of the tables shows that when GA features are used performance is considerably better in classication of the neutral style. When models trained with 48-GA feature are used the neutral style is always recognized correctly.

	Test Speech Style Neutral 53.24 1.8 3.6 Distribution of Speech Style Detection Rate (%) Neutral Angry Loud Lombard Neutral Stressed Neutral-Stressed Detection Rate (%) 41.36 46.76 53.24 Angry 14.73 41.15 18.37 25.75 14.73 85.27 Loud 13.1 33.65 34.35 18.9 13.1 86.9 Lombard 8.42 6.9 7.27 77.41 8.42 91.58
	this phase as the stress present in the voice tones in this domain is strong
	and less easy to detect in most real cases. Each of the 270 words outside the
	vocabulary used in the Text-Independent Pairwise test phase was classied
	using the four HMMs for the four speech styles in the Simulated Domain. The
	output was therefore not simply words classied as neutral or stressed but as
	belonging to one of the four styles of stress considered.
	The results obtained with the various features are given in Tables 2, 3, 4, 5
	and 6.

To analyze the results obtained in classication between the 4 dierent speech

Table 4

 4 Text-Independent multistyle classication using TEO-CB-AUTO-ENV.

	Test Speech Style Neutral 73.55 4.32 2.1 Distribution of Speech Style Detection Rate (%) Neutral Angry Loud Lombard Neutral Stressed Neutral-Stressed Detection Rate (%) 20.03 26.45 73.55 Angry 7.4 62.24 14.81 15.55 7.4 92.6 Loud 0.74 36.03 35.23 28 0.74 99.26 Lombard 15.55 8.91 8.15 67.39 15.55 84.45

Table 5

 5 Text-Independent multistyle classication using 16-GA feature.

	Test Speech Style Neutral 81.71 6.62 3.31 8.36 Distribution of Speech Style Detection Rate (%) Neutral Angry Loud Lombard Neutral Stressed Neutral-Stressed Detection Rate (%) 18.29 81.71 Angry 6.8 65.6 14.55 13.05 6.8 93.20 Loud 3.7 29.6 51.6 15.1 3.7 96.30 Lombard 8.89 16.83 9.08 65.2 8.89 91.11

Table 6

 6 Text-Independent multistyle classication using 48-GA feature. use the values on the diagonal of the misclassication matrix in the rst part of each table.

	Test Speech Style Neutral 100 Distribution of Speech Style Detection Rate (%) Neutral Angry Loud Lombard Neutral Stressed Neutral-Stressed Detection Rate (%) 0 0 0 0 100 Angry 9.04 75.4 3.04 12.52 9.04 90.96 Loud 10.3 0 64.62 25.08 10.3 89.7 Lombard 0 3.78 5.27 90.95 0 100
	styles we can
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 3. Algorithm used to maintain a constant number of components selected after crossover or mutation.