
HAL Id: hal-00499183
https://hal.science/hal-00499183

Submitted on 9 Jul 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Using Multiple Acoustic Feature Sets for Speech
Recognition

András Zolnay, Daniil Kocharov, Ralf Schlüter, Hermann Ney

To cite this version:
András Zolnay, Daniil Kocharov, Ralf Schlüter, Hermann Ney. Using Multiple Acoustic Feature Sets
for Speech Recognition. Speech Communication, 2007, 49 (6), pp.514. �10.1016/j.specom.2007.04.005�.
�hal-00499183�

https://hal.science/hal-00499183
https://hal.archives-ouvertes.fr


Accepted Manuscript

Using Multiple Acoustic Feature Sets for Speech Recognition

András Zolnay, Daniil Kocharov, Ralf Schlüter, Hermann Ney

PII: S0167-6393(07)00070-2

DOI: 10.1016/j.specom.2007.04.005

Reference: SPECOM 1637

To appear in: Speech Communication

Received Date: 12 May 2006

Revised Date: 8 January 2007

Accepted Date: 11 April 2007

Please cite this article as: Zolnay, A., Kocharov, D., Schlüter, R., Ney, H., Using Multiple Acoustic Feature Sets

for Speech Recognition, Speech Communication (2007), doi: 10.1016/j.specom.2007.04.005

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers

we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and

review of the resulting proof before it is published in its final form. Please note that during the production process

errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.specom.2007.04.005
http://dx.doi.org/10.1016/j.specom.2007.04.005


ACCEPTED MANUSCRIPT 
 

Using Multiple Acoustic Feature Sets for

Speech Recognition

András Zolnay a, Daniil Kocharov b, Ralf Schlüter a, and
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Abstract

In this paper, the use of multiple acoustic feature sets for speech recognition is inves-

tigated. The combination of both auditory as well as articulatory motivated features

is considered. In addition to a voicing feature, we introduce a recently developed

articulatory motivated feature, the spectrum derivative feature. Features are com-

bined both directly using linear discriminant analysis (LDA) as well as indirectly on

model level using discriminative model combination (DMC). Experimental results

are presented for both small- and large-vocabulary tasks. The results show that

the accuracy of automatic speech recognition systems can be significantly improved

by the combination of auditory and articulatory motivated features. The word er-

ror rate is reduced from 1.8% to 1.5% on the SieTill task for German digit string

recognition. Consistent improvements in word error rate have been obtained on two

large-vocabulary corpora. The word error rate is reduced from 19.1% to 18.4% on

the VerbMobil II corpus, a German large-vocabulary conversational speech task,

and from 14.1% to 13.5% on the British English part of the European parliament

plenary sessions (EPPS) task from the 2005 TC-STAR ASR evaluation campaign.

Key words: acoustic feature extraction, auditory features, articulatory features,
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 voicing, spectrum derivative feature, linear discriminant analysis, discriminative

model combination

1 Introduction

Most automatic speech recognition systems use at least partly acoustic fea-

tures motivated by the models of the human auditory system. The most com-

monly used methods are the Mel frequency cepstrum coefficients (MFCC),

perceptual linear prediction (PLP), and variations of these techniques. There

have also been attempts at using acoustic features for speech recognition which

are motivated by models of the human speech production system.

In this paper, the combination of several acoustic features is investigated. The

extraction of different state-of-the-art auditory motivated acoustic features is

reviewed, and detailed descriptions of the extraction of the voicing and the

novel spectrum derivative features are given. In addition, investigations on the

combination of these acoustic features are presented. Both the direct combina-

tion of feature sets by using linear discriminant analysis (LDA) as well as the

implicit combination of feature sets via their acoustic emission distributions

using discriminative model combination (DMC) and combinations thereof are

described. The contributions of this paper are:

• Voicing measure: Former investigations showed that incorporation of the

Email addresses: zolnay@informatik.rwth-aachen.de (András Zolnay),

kocharov@phonetics.pu.ru (Daniil Kocharov),

schlueter@informatik.rwth-aachen.de (Ralf Schlüter),

ney@informatik.rwth-aachen.de (Hermann Ney).
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 voicing information into speech recognition can improve the word error rate

(WER). In this work, an autocorrelation based voicing measure is tested in

combination with different state-of-the-art acoustic features. Experiments

carried out on two large-vocabulary tasks have shown that using an addi-

tional voicing measure improves even the performance of the vocal tract

length normalized (VTLN) MFCC feature.

• Spectrum derivative measure: The novel spectrum derivative measure was

first published in (Kocharov et al., 2005). In this work, the spectrum deriva-

tive feature is investigated in detail on different small- and large-vocabulary

corpora. Recognition results have shown that combination of state-of-the-

art acoustic features with the spectrum derivative measure improves the

WER significantly.

• Linear discriminant analysis: In former publications, linear discriminant

analysis (LDA) was used in single- and multi-feature speech recognition

systems. In this work, the application of LDA to acoustic feature combi-

nation is reviewed in detail. Experiments performed on small- and large-

vocabulary corpora are presented which have shown that combination of

increasing numbers of auditory and articulatory motivated acoustic features

can improve the recognition accuracy significantly.

• Discriminative model combination: In earlier publications, discriminative

model combination (DMC) was used to combine different acoustic and lan-

guage models. There were also attempts at applying DMC to acoustic fea-

ture combination. In this work, LDA based feature combination is nested

into DMC. The nested setup leads to significant improvements in WER

compared to the best underlying single LDA combined system.

The remainder of this work is organized as follows: In the subsequent sections,
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 we review publications closely related to this work. A review of the implemen-

tation of the MFCC, PLP, and MF-PLP features is given in Section 2 along

with a short summary of the implementation of vocal tract length normaliza-

tion (VTLN) used in the experiments presented here. Detailed descriptions

of the voicing and the spectrum derivative measures are presented as well.

The LDA and the DMC based feature combination methods are described in

Section 3.1 and 3.2, respectively.

1.1 Acoustic Feature Extraction

In this section, a review of state-of-the-art auditory and articulatory motivated

feature extraction techniques is given which are close related to methods in-

vestigated in this paper.

The most widespread acoustic feature, the Mel frequency cepstrum coefficients

(MFCC), was first introduced in (Davis and Mermelstein, 1980). The percep-

tual linear predictive (PLP) feature introduced in (Hermansky, 1990) is based

on ideas similar to the MFCCs. Nevertheless, there are major differences in

data flow and in recognition performance as well. The third fairly widespread

auditory based MF-PLP feature was derived from the two aforementioned

ones, as described in (Woodland et al., 1997). The MF-PLP feature uses a

Mel scale triangular filter bank embedded into the data flow of the PLP fea-

ture.

Besides methods processing the short-term magnitude spectrum, new acoustic

features have been proposed recently which focus on the short-term phase

spectrum. In (Paliwal and Alsteris, 2005), human perception experiments have
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 shown that the phase spectrum contributes to speech intelligibility even for

windows of less than 1s. On a small-vocabulary task, significant reduction in

word error rate (WER) has been presented in (Schlüter and Ney, 2001) by

using an LDA combination of the MFCC and a set of features derived from

the short-term phase spectrum.

Also, acoustic features derived from the group delay function have been in-

vestigated in different speech applications. In (Hegde et al., 2005), significant

improvements in accuracy have been reported when combining a modified

group delay function based feature with MFCCs.

Applications of articulatory models have already been intensively studied in

speech recognition systems. In (Welling and Ney, 1996), one of the first recog-

nition systems was presented which use formant frequencies as acoustic fea-

tures. In (Holmes et al., 1997), formant frequencies were used in combination

with the MFCC feature. Using a simple acoustic model, significant improve-

ments in WER were obtained on a connected-digit recognition task when

adding the formant based features. Besides formants, the voicing feature is one

of the most intensively researched articulatory features. In rule-based speech

recognition systems, voiced-unvoiced detection was used as one of the acousti-

cal features. In (Atal and Rabiner, 1976), a voiced-unvoiced-silence detection

algorithm is proposed using statistical approaches. A voicing measure instead

of a voiced-unvoiced decision is described in (Thomson and Chengalvarayan,

1998). The authors presented results obtained by using an autocorrelation

based voicing measure along with liftered cepstral coefficients. Using the con-

catenated features, a large relative improvement in WER was obtained by

applying discriminative training. Different voicing measure extraction meth-

ods are compared in (Zolnay et al., 2003). Recognition tests were carried out

6



ACCEPTED MANUSCRIPT 
 by using the different voicing measures along with the MFCC feature. In

(Graciarena et al., 2004), the entropy of the high order cepstrum is used to

extract voicing information. Recognition tests showed significant improvement

in WER when the entropy based voicing feature was combined with an au-

tocorrelation based one and with the MFCC feature. A sub-band based peri-

odic and aperiodic feature set is applied to the Aurora-2J corpus in (Ishizuka

and Miyazaki, 2004). Significant improvements in WER are reported when

comparing the proposed feature set with the baseline MFCCs. A novel ar-

ticulatory motivated feature has been proposed recently in (Kocharov et al.,

2005) providing information on the distinction between obstruents and so-

nants. The spectrum derivative feature has been tested in combination with

the MFCC feature leading to significant improvements in WER on small- and

large-vocabulary tasks. The spectrum derivative feature captures the inten-

sity of changes of the magnitude spectrum over the frequency axis. Similarly,

the derivative of magnitude spectrum formed the basis of acoustic features for

speech recognition in (Paliwal, 1999) and (Nadeu et al., 2001). A measure sim-

ilar to the spectrum derivative feature is proposed in (A. H. Gray and Markel,

1974). This measure quantifies the flatness of magnitude spectrum and it has

been developed to give insight into the whitening process of linear prediction.

Articulatory information can also be successfully utilized to improve the

MFCC feature itself. In (Gu and Rose, 2001), the magnitude spectrum of

harmonics is emphasized leading to a large improvement in WER on an iso-

lated digit string recognition task. The idea of scaling the frequency axis of

the speech signal to account for gender specific variation of the vocal tract was

first proposed in (Wakita, 1977). Meanwhile, Vocal Tract Length Normaliza-

tion became a standard method in the speech recognition community.
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 1.2 Acoustic Feature Combination

The goal of acoustic feature combination is to exploit mutually complementary

classification information provided by different features. Acoustic feature com-

bination can be carried out at different levels of a speech recognition system.

In the following, we review publications closely related to linear discriminant

analysis (LDA) and discriminative model combination (DMC) based feature

combination.

Combination of acoustic features can be performed directly on the level of

feature vectors using LDA. In this approach, different acoustic feature sets are

combined by means of an optimal linear transformation. In (Häb-Umbach and

Ney, 1992), LDA was used successfully to find an optimal linear combination

of successive vectors of a single-feature stream. The combination of differ-

ent cepstral features was tested by using LDA in (Häb-Umbach and Loog,

1999), however, without significant improvements in WER compared to us-

ing the MFCCs alone. Significant reduction in WER are presented using the

LDA based feature combination in (Schlüter and Ney, 2001) when combin-

ing MFCCs and a set of phase features and in (Zolnay et al., 2002) when

combining MFCCs with a voicing measure.

Combination of acoustic features can also be carried out at the level of acous-

tic probabilities. In this case, acoustic models trained on different feature

sets produce probabilities which are combined in a log-linear manner. Log-

linear model combination has already been applied to different problems in

speech recognition. In (Tolba et al., 2002), acoustic features were combined by

the means of log-linear modeling. The combination of the MFCCs with main
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 spectral peak features led to a significant reduction in WER on a noisy small-

vocabulary task. Word error minimizing training of log-linear model weights

for speech recognition models was proposed in (Beyerlein, 1997). Discrimi-

native model combination (DMC) applied to 5 acoustic and language models

(within-word and across-word acoustic models, bigram, trigram, and fourgram

language models) led to a significant improvement in WER, compared to the

best pairwise combinations, as described in (Beyerlein, 1998). An application

of DMC to acoustic feature combination is published in (Häb-Umbach and

Loog, 1999). Significant improvements in WER were obtained by the combi-

nation of state-of-the-art cepstral features.

2 Signal Analysis

In this section, the feature extraction methods used in the experiments pre-

sented are described. First the Mel frequency cepstrum coefficients (MFCC)

are described, followed by the perceptual linear predictive (PLP) features, and

the MF-PLP feature. Subsequently, vocal tract length normalization (VTLN)

is shortly reviewed. Finally, two articulatory motivated features are presented,

the autocorrelation based voicing feature and the spectrum derivative feature.

2.1 Mel Frequency Cepstral Coefficients

The data flow of the Mel frequency cepstral coefficients (MFCC) feature ex-

traction is depicted on Fig. 1. Every 10ms, a Hamming window is applied

to preemphasized 25ms segments and fast Fourier transform is applied along

with an appropriate zero padding. The obtained spectral magnitudes are in-
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 tegrated within 20 triangular filters arranged on the Mel-frequency scale. The

filter output is the logarithm of the sum of the weighted spectral magnitudes.

The number of filters depends on the sample rate, 15 for 8kHz and 20 for

16kHz. Subsequently, a discrete cosine transform is applied to decorrelate the

filter bank outputs. The optimal number of cepstrum coefficients depends on

the corpus, see Table 1. Finally, normalization steps are applied to account

for variations in the recording channel. Here, cepstral mean subtraction and

energy normalization are carried out either utterance-wise or using a sliding

window.
SPEECH SIGNAL

MFCC FEATURE VECTOR

PREEMPHASIS AND WINDOWING

MAGNITUDE SPECTRUM

LOGARITHM

CEPSTRAL DECORRELATION

NORMALIZATION

MEL SCALED FILTER BANK

f

Fig. 1. Block diagram of Mel Frequency Cepstral Coefficients.

2.2 Perceptual Linear Predictive Analysis

The motivation of the Perceptual Linear Predictive (PLP) feature, proposed

in (Hermansky, 1990), is similar to the one of the MFCCs. As depicted on

Fig. 2, every 10ms, a Hamming window is applied to the speech signal. Unlike

in the MFCC method, a window length of 20ms is used. Fast Fourier trans-

form is applied and the resulting spectral magnitudes are integrated within 20

10
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 trapezoidal filters arranged on the Bark-frequency scale. The filter output is

the weighted sum of the spectral magnitudes. The number of filters depends

on the sample rate, 15 for 8kHz and 20 for 16kHz. The filter bank is virtually

extended by two more filters, centered at frequency 0 and at sample-rate/2.

Since these filters reach far beyond the valid frequency range, their output is

discarded and replaced by the value of the right and left neighbor, respectively.

Equal loudness preemphasis is applied to the extended filter bank outputs fol-

lowed by the application of the intensity loudness law. Next, the cepstrum

coefficients are derived from an all-poles approximation of the output of the

intensity loudness law. For this, autocorrelation coefficients are calculated by

applying the inverse discrete Fourier transform to the output of the intensity

loudness law. To obtain the cepstrum coefficients, the autocorrelation coeffi-

cients are transformed to the gain and to autoregressive coefficients by using

the Levinson-Durbin recursion. Instead of regenerating the smoothed all-poles

approximation of the output of the intensity loudness law, the cepstrum co-

efficients are computed directly by applying a simple recursion. The zeroth

cepstrum coefficient is explicitly set to the logarithm of the square of the

gain. Finally, the resulting cepstrum coefficients are normalized as described

in Section 2.1.

2.3 PLP Derived from Mel Scale Filter Bank

In this method, the MFCC and PLP techniques are merged into one algorithm

generating the MF-PLP feature. As shown in Fig. 3, the Mel scale triangular

filter bank taken from the MFCC algorithm is applied here to the power spec-

trum instead of the magnitude spectrum. Subsequently, cepstrum coefficients

11
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 SPEECH SIGNAL

PLP FEATURE VECTOR

WINDOWING

POWER SPECTRUM

REPEAT FIRST & LAST VALUE

CEPSTRUM

BARK SCALED FILTER BANK

f

INTENSITY LOUDNESS LAW

EQUAL LOUDNESS PREEMPHASIS

fbark

AUTOCORRELATION

AUTOREGRESSION

NORMALIZATION

Fig. 2. Block diagram of Perceptual Linear Predictive Analysis.

are computed as described for the extraction of PLP features, where the copy-

ing of the outermost filters and the equal loudness preemphasis is skipped.

The dynamic range of the filter bank outputs is compressed by the intensity

loudness law. The cepstrum coefficients are calculated from the output of the

intensity loudness law via the all-poles approximation as described in Section

2.2. Finally, a normalization is applied as described in Section 2.1.

2.4 Vocal Tract Length Normalization

A considerable part of the variability in the speech signal is caused by speaker

dependent differences in vocal tract length. Vocal tract length normalization

tries to account for this effect by warping the frequency axis of the power

12
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 SPEECH SIGNAL

MF-PLP FEATURE VECTOR

PREEMPHASIS AND WINDOWING

POWER SPECTRUM

CEPSTRUM

INTENSITY LOUDNESS LAW

AUTOCORRELATION

AUTOREGRESSION

MEL SCALED FILTER BANK

f

NORMALIZATION

Fig. 3. Block diagram of MF-PLP feature.

spectrum. In a simplified model, the human vocal tract is treated as a straight

uniform tube of length L. According to this model, a change in L by a cer-

tain factor α−1 results in a scaling of the frequency axis by α. Thus, for this

model, the frequency axis should be scaled linearly to compensate for the

variability caused by different vocal tracts of individual speakers. The warp-

ing of frequency axis can be implemented similar to the Mel warping in the

MFCC data flow. Instead of a separate warping step requiring interpolation

of the magnitude spectrum, the linear warping function is nested into the Mel

warping function. The nested warping function can simply be integrated into

the filter bank. The algorithm of the filter warping remains unchanged. The

only difference is that the Mel warping function is replaced by the nested

warping function. The estimation of the warping factors in test either is car-

ried out using the maximum likelihood estimation on a preliminary recognition

pass (Lee and Rose, 1996) or is based on text-independent Gaussian Mixture

Models without the need of a first recognition pass (Welling et al., 2002). In

13
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 this work, maximum likelihood estimation of the warping factors has been

used.

2.5 Voicing Feature

Voicing represents an important characterizing feature of phonemes. There-

fore, a method explicitly extracting the degree of voicing from a speech signal

can be expected to improve discrimination of phonemes and consequently to

improve recognition results. Here, the goal is to produce a continuous measure

representing the degree of periodic vibration of the vocal cords instead of the

implementation of a voiced-unvoiced decision algorithm. The oscillation of the

vocal chords produces quasi periodic segments in the speech signal. Common

motivation of the voicing extraction methods is to quantify this periodicity.

In (Zolnay et al., 2003), three methods were compared which produce voicing

measures describing the degree of periodicity of a speech signal in a given time

frame. The harmonic product spectrum based method measures the periodicity

of a time frame in the frequency domain while the autocorrelation based and

the average magnitude difference based methods operate in the time domain.

Since the comparison did not show any significant differences, in this work,

the autocorrelation based method has been used.

2.5.1 Extraction Algorithm

Assume the unbiased estimate of the autocorrelation R̃t(τ) for some time

frame t and a shift τ :

R̃t(τ) =
1

T − τ

T−τ−1∑
ν=0

xt(ν) xt(ν + τ), (1)

14
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 where T is the length of a time frame. The autocorrelation of periodic signals

of frequency f attains its maximum not only at τ = 0 but also at integer

multiples of the period, i.e. for τ = k
f

k = 0,±1,±2, .... Therefore, a peak in

the range of practically relevant pitches with a value close to Rt(0) is a strong

indication of periodicity. In order to produce a bounded measure of voicing,

the autocorrelation is divided by R̃t(0). The resulting function provides values

mainly in the interval [−1..1] nevertheless because of the unbiased estimate,

theoretically any value is possible. The voicing measure vt is thus the maximum

value of the normalized autocorrelation in the interval of practically relevant

pitch periods [2.5ms..12.5ms]:

vt =
max

2.5ms·fs≤τ≤12.5ms·fs

R̃t(τ)

R̃t(0)
(2)

where fs denotes the sample rate. Values of vt close to 1 indicate voicing, values

close to 0 indicate voiceless time frames. Fig. 4 summarizes the necessary steps

to extract the voicing measure. The autocorrelation function is determined

SPEECH SIGNAL

VOICEDNESS MEASURE

MAXIMUM [2.5ms..12.5ms]

WINDOWING

FRAME ENERGY NORMALIZATION

AUTOCORRELATION

Fig. 4. Block diagram of voicing measure.

every 10ms on speech segments of 40ms length. The window length has been

optimized empirically on small- and large-vocabulary corpora. The optimal

value of 40ms corresponds to former results, cf. (Rabiner and Schafer, 1979,

p. 318). The frame energy normalization ensures that R̃t(0) ≡ 1 such that the
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 division in (2) can be omitted. After calculating the unbiased autocorrelation

for discrete lags in the interval [2.5ms ·fs, 12.5ms ·fs], a simple linear search is

used to find the maximal value. In this way, a one-dimensional voicing feature

is generated every 10ms.

2.5.2 Analysis of the Voicing Feature

To analyze the voicing measure vt, histograms of the measure on a voiced-

unvoiced sound pair have been estimated. For example, in Fig. 5, we have

compared the pair of fricatives /v/-/f/ which phonetically differ only by the

type of excitation (i.e. state of the vocal cords). The voicing histogram of

both phonemes has been estimated on values aligned to any of the states

of the triphones with the given phoneme as central phoneme. As shown in

Fig. 5, the voicing measure can effectively contribute to the discrimination of

voiced-unvoiced sound pairs.

 0.02

 0.04

 p(v |/v/)
 p(v |/f/)

 0  0.25  0.75 0.5  1.0

t

t

Fig. 5. Histograms of the voicing measure vt for the voiced fricative /v/ and its

unvoiced counterpart /f/ estimated on the VM II corpus (cf. Sec. 4.1).

2.6 Spectrum Derivative Feature

The spectrum derivative feature was first introduced in (Kocharov et al., 2005)

to distinguish consonants from two articulatory classes: obstruents and so-

16
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 nants. From a phonetic point of view, these two classes differ by the presence

of formants. In the magnitude spectrum of sonants, we can observe peaky

formant-like structures. However, obstruents manifest in a flat and noisy mag-

nitude spectrum. Hence, a feature summarizing the intensity of changes of

the magnitude spectrum over the frequency axis can help to distinguish both

phonetic classes.

2.6.1 Extraction Algorithm

The spectrum derivative feature is a measure calculated as the absolute sum

of the first order derivatives of the magnitude spectrum. The extraction pro-

cedure is shown in Fig. 6. A Hamming window is applied to preemphasized

SPEECH SIGNAL

SPECTRUM DERIVATIVE MEASURE

PREEMPHASIS AND WINDOWING

MAGNITUDE SPECTRUM

FRAME ENERGY NORMALIZATION

SPECTRUM DERIVATIVE

VECTOR NORM

LOGARITHM

LOW-PASS FILTER

Fig. 6. Block diagram of spectrum derivative measure.

speech segments. The frame shift is chosen to 10ms. The window length has

been optimized empirically in a range between 15ms and 90ms. The best re-

sults have been obtained by using 25ms window, as used for MFCC generation.

The magnitude spectrum Xt[n] of time frame t is calculated by using FFT

along with an appropriate zero padding. The preprocessing of the magnitude

spectrum begins with discarding the high frequency magnitudes. The cut-

17
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 off frequency is chosen at 1kHz. Comparative tests on different corpora have

shown that processing the lower part of the magnitude spectrum only gives

the best recognition results. Nevertheless, further experiments are necessary

to understand the effects of filtering. In the next step, the filtered magnitude

spectrum X̂t[n] is energy normalized to account for frame energy variation.

Experiments have been carried out by using frame-wise and utterance-wise en-

ergy normalization. Best recognition results have been obtained by applying

energy normalization to every time frame:

X̃t[n] =
X̂t[n]√

X̂t[0]2 + X̂t[
N
2
]2 + 2

∑N/2−1
n=1 X̂t[n]2

, (3)

where t denotes the time frame, n denotes the discrete frequency, and N is

the number of FFT points. The first order derivative at[n] is calculated over

the normalized magnitude spectrum X̃[n]:

at[n] = X̃t[n]− X̃t[n− 1], (4)

at[0]≡ 0. (5)

Finally, the spectrum derivative feature is a continuous measure st calculated

as the logarithm of the absolute sum of the discrete first order derivatives:

st = log
(∑N/2

n=0
|at[n]|

)
. (6)

Note that this method can be straightforward extended to using higher order

derivatives. The measure can be calculated for every higher order derivative

of the magnitude spectrum as well. Nevertheless, experiments has not shown

any consistent additional improvement in WER when using the higher order

derivatives on top of the first order derivative.

18
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 2.6.2 Analysis of the Spectral Derivative Feature

In order to analyze the spectrum derivative feature, histograms of the spec-

trum derivative measure have been generated for a specific phoneme pair. Fig.

7 depicts distributions of st on the exemplary phoneme pair /v/ and /s/,

which, phonetically, differ by their sonority. The histogram estimation has

been carried out similar to the voicing feature described in Section 2.5.2.

 4

 8

 p(s |/v/)
 p(s |/s/)

 0  0.25  0.75 0.5  1.0

t

t

Fig. 7. Histograms of spectrum derivative measure st for the sonant consonant /v/

and the obstruent consonant /s/ estimated on the VM II corpus (cf. Sec. 4.1).

3 Feature Combination

3.1 LDA Based Feature Combination

The linear discriminant analysis (LDA) based feature combination approach

can be used to combine different acoustic feature vectors directly. In (Häb-

Umbach and Ney, 1992), LDA was first used successfully to find an optimal

linear combination of successive vectors of a single-feature stream. In the fol-

lowing steps, we describe a straightforward way to use this method for feature

combination. In the first step, feature vectors xfi
t extracted by different algo-

rithms fi are concatenated for all time frames t. In the second step, 2L + 1

successive concatenated vectors are concatenated again for all time frames t
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 which makes up the large input vector of LDA. With L = 5 and with F = 3

different features, the size of the LDA input vector grows up to ≈ 400 com-

ponents. Finally, the combined feature vector yt is created by projecting the

large input vector on a smaller subspace:

yt = V T ·
[[

xf1

t−L, . . . , xfF
t−L

]
, . . . ,

[
xf1

t , . . . , xfF
t

]
, . . . ,

[
xf1

t+L, . . . , xfF
t+L

]]T
, (7)

where the matrix V is determined by LDA such that it conveys the most

relevant classification information to yt. The resulting acoustic vectors are

used both in training and in recognition.

3.2 DMC Based Feature Combination

Discriminative model combination (DMC) was first proposed in (Beyerlein,

1997). This method provides a flexible framework for log-linear combination of

acoustic and language models for speech recognition. In the following, DMC is

shortly reviewed and the application of DMC to acoustic feature combination

is described. The DMC based approach combines acoustic features indirectly

via log-linear combination of acoustic models for each acoustic feature. The

log-linear model weights are trained by using a discriminative criterion mini-

mizing word error rate.

The basic idea of DMC is to modify the modeling of the posterior probability

P (W |X) in Bayes’ decision rule:

Wopt = argmax
W

P (W |X). (8)

In the standard case, the posterior probability is decomposed into the language

model probability P (W ) and the acoustic model probability P (X|W ):
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P (W |X) =
P (W )P (X|W )∑

W ′ P (W ′)P (X|W ′)
. (9)

In case of discriminative model combination, the posterior probability is gen-

eralized to a log-linear distribution:

P (W |X) =
e
−

∑
i

λigi(W,X)

∑
W ′ e

−
∑
i

λigi(W ′,X)
(10)

When applying log-linear modeling to speech recognition, the basic feature

function types are negative logarithms of probability distributions:

• language model: glm(W, X) = − log P (W ),

• acoustic model: gam,fi
(W, X) = − log Pfi

(Xfi
|W ).

In order to combine different acoustic features, we redefine X to be a sequence

of tuples containing the time-synchronous acoustic feature vectors xfi
t instead

of a sequence of single feature acoustic observation vectors. Furthermore, we

introduce separate acoustic feature functions gam,fi
(W, X) for each acoustic

feature fi. Theoretically, every feature function receives all the different acous-

tic feature vectors. Nevertheless, in our system, the acoustic feature functions

make only use of the underlying acoustic feature fi. Consequently, the Bayes’

decision rule for log-linear feature combination using a single language model

and for each acoustic feature a separate acoustic model can be written as:

Wopt = argmax
W

P (W )λlm
∏
i

Pfi
(Xfi

|W )λfi . (11)

3.2.1 DMC Training Process

The training of a DMC system consists of two major steps: independent train-

ing of the parameters of each feature function gi(W, X) and discriminative
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 training of the log-linear model weights λi. In this work, the negative loga-

rithms of the probability distributions have been used as feature functions. In

order to train the parameters of the language and acoustic model distributions,

standard maximum likelihood training has been performed. The training of

model weights has been carried out in a discriminative manner minimizing

word error rate. Detailed descriptions of the word error minimizing training

of log-linear model weights can be found in (Beyerlein, 1998, 2000).

4 Experiments

4.1 Corpora and Recognition Systems

Experiments for acoustic feature combination have been carried out on a num-

ber of small- and large-vocabulary speech recognition tasks. Small-vocabulary

tests have been performed on the SieTill corpus. The corpus consists of Ger-

man continuous digit strings recorded over telephone line. Large-vocabulary

experiments have been conducted on the VerbMobil II (VM II) corpus and

on the English partition of the European parliament plenary sessions (EPPS)

corpus from the 2005 TC-STAR ASR evaluation campaign. The VM II corpus

consists of German conversational speech whereas the EPPS corpus contains

plenary session speeches of the European Parliament in British English. The

settings of the RWTH speech recognition systems for these corpora are sum-

marized in Table 1.
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 4.2 Baseline Recognition Results

Baseline recognition tests have been carried out by using the state-the-of-art

MFCC, MF-PLP, PLP, and VTLN features. Table 2 summarizes the results.

Although vocal tract length normalization can be applied to any of the MFCC,

PLP, and MF-PLP features, in this paper, VTLN denotes the normalization of

the MFCC feature. On the EPPS corpus, we used text-independent Gaussian

Mixture Models for warping factor estimation. For the sake of faster recog-

nition passes, we have used supervised warping factor estimation on the VM

II corpus. Note that only slight or insignificant differences in WER can be

found when comparing the supervised warping factor estimation with other

unsupervised ones.

4.3 LDA Based Feature Combination

In this section, experimental results are presented which have been obtained

by the LDA based combination of state-of-the-art features with the voicing

and the spectrum derivative measures.

For the different corpora, the number of concatenated successive feature vec-

tors (L) taken as input to LDA, and the dimension of the projected feature

space, cf. (7), have been optimized using the MFCC feature and are given in

Table 1. For a given corpus, the size of the projected feature vectors has been

kept constant throughout different experiments to ensure comparable numbers

of parameters and therefore comparability of recognition results. Nevertheless,

the LDA input dimension increases with the number of feature sets combined,
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 therefore implying a slight increase of parameters for the LDA transformation

matrix. Finally, note that LDA has been applied in baseline experiments using

a single feature in the same way as in feature combination experiments.

4.3.1 Recognition Results for Voicing Feature Inclusion

The one-dimensional voicing measure has to be viewed as an auxiliary feature

in contrast to the baseline MFCC, PLP, MF-PLP, or VTLN features. There-

fore, the use of the voicing measure necessarily implies feature combination.

Here, LDA based feature combination as described in Section 3.1 has been

used to incorporate the voicing feature. Table 3 summarizes the results ob-

tained by using a single additional voicing measure (V) on different corpora.

The application of the voicing measure has led to consistent improvements in

WER of 11% on the small- and 3% on the large-vocabulary corpora relative

to the baseline features.

In order to analyze the effects of the additional voicing feature on recognition

accuracy, the difference of two confusion matrices is shown in Table 4. The

confusion matrices were obtained on the small-vocabulary German digit string

recognition SieTill task considering correctly recognized and substituted ut-

terances. In order to show the changes caused by using the additional voicing

feature, the difference of the confusion matrices is presented rather than show-

ing the single matrices separately. The confusion matrix obtained by using the

LDA combined MFCC and voicing features has been subtracted from the one

generated by using only the MFCC feature. Consequently, in the diagonal of

the difference confusion matrix, negative elements show improvements and

positive ones degradations. Naturally, negative off-diagonal elements indicate
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 degradations and positive ones improvements.

By introducing the voicing feature, the overall number of errors decreased

by more than 1
10

. Nevertheless, locally also degradations can be found in the

difference confusion matrix. Furthermore, the amount of confusions between

the words ’2’ and ’3’ has increased. In this case, a voicing feature could only

contribute to the first stop consonant, and it could be observed that in this

case, the word ’2’ is favored at the cost of word ’3’, with a negligible effect on

the overall change in error rate. Apart from small variations, in all other cases

improvements could be observed.

4.3.2 Recognition Results for Spectrum Derivative Inclusion

Similar to the voicing feature, also the spectrum derivative feature has to

be viewed as auxiliary. Therefore, results for the spectrum derivative feature

have also been produced using LDA based feature combination, here using

the MFCC and VTLN features. Table 5 shows the results obtained by using

the single additional spectrum derivative measure (SD) on different corpora.

Applying the spectrum derivative measure has resulted in improvements in

WER of 11% on the SieTill and 3% on the VM II corpora relative to the

baseline features. The spectrum derivative feature could not improve the WER

significantly on the EPPS corpus.

4.3.3 Combining MFCC, VTLN, Voicing, and Spectrum Derivative Features

Finally, experiments to combine the MFCC, vocal tract length normalized

MFCC (VTLN), voicing (V), and spectrum derivative (SD) features have been

conducted using LDA. Table 6 summarizes the corresponding recognition re-
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 sults.

On the small-vocabulary SieTill task, an improvement of 11% in WER relative

to the MFCCs has been obtained when adding the voicing feature. Extending

the set of features by the spectrum derivative feature, the WER has further

improved by relative 6%. Nevertheless, this improvement has turned out to

be significantly less than the improvements obtained by the combination of

solely the MFCC and the spectrum derivative features. This observation has

been confirmed on the large-vocabulary corpora as well.

On the large-vocabulary tasks, the MFCC and the best performing VTLN fea-

tures have been chosen as baselines. On the VM II corpus, the combination

of the baseline features with the voicing measure has given a relative im-

provement of 3% in WER. Similar to the small-vocabulary task, adding the

spectrum derivative feature results in further improvement. The improvement

is 1% relative to the system using the additional voicing measure which is

less than the improvement obtained when combining the spectrum derivative

feature solely with the baseline features, cf. Table 5. On the EPPS corpus,

the additional voicing measure has given improvements similar to the VM

II corpus. Nevertheless, the additional spectrum derivative measure has not

resulted in further improvements in WER.

4.4 Feature Combination using DMC on Top of LDA

Although DMC is applicable to any acoustic feature set, the focus of the recog-

nition tests presented in this work has been on the combination of LDA com-

bined features. The output of LDA can be interpreted as a new separate acous-

tic feature. Consequently, acoustic models trained on LDA output vectors can
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 be combined in a straightforward way using the DMC framework.

Recognition tests using DMC for feature combination have been carried out

using the standard word-conditioned tree search algorithm with integrated

log-linear model combination. The integration of the log-linear model into

a standard search method facilitates a single-pass recognition. Weighting of

the language model and the acoustic models based on the different acoustic

features happens on demand and can be implemented in a straightforward

way.

Table 7 shows recognition results obtained by nesting LDA into DMC. For

each corpus, the first two lines represent the baseline results using the

MFCC feature with and without speaker normalization, cf. Table 2. The sec-

ond group shows the recognition results for the LDA based combination of

MFCC and VTLN features with the voicing measure (V). In the final experi-

ment, the acoustic models trained in the second group, i.e. LDA(MFCC+V)

and LDA(VTLN+V), have been combined using DMC. On both corpora,

the DMC based combination resulted in improvements in WER compared

to the LDA(VTLN+V) system. The most remarkable improvement has been

obtained on the evaluation set of the EPPS corpus. On this corpus, the

DMC based feature combination has lead to an improvement in WER of 4%

relative to the best LDA based system.

5 Summary and Outlook

In this paper, we have analyzed the combination of several acoustic features

both on feature and on model level. Besides considering four state-of-the-art

baseline acoustic features, we have investigated the extraction of two articula-
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 tory motivated features. An autocorrelation based voicing measure has been

studied first followed by the novel spectrum derivative feature. The articula-

tory motivated features have been first tested separately in combination with

one of the baseline MFCC, MF-PLP, PLP, or VTLN features. The combina-

tion has been carried out by using LDA. The conclusions are summarized as

follows:

• Additional articulatory motivated features can improve the performance of

state-of-the-art acoustic features.

• On the small-vocabulary SieTill task, combination of MFCC feature with

one of the voicing or spectrum derivative features resulted in a relative

improvement of 11% in WER compared to the MFCC feature alone.

• Improvements were obtained also on the large-vocabulary VM II and

EPPS tasks. The additional voicing feature led to consistent improvements

of up to 3% relative to using the baseline feature alone. On the VM II cor-

pus, the use of the spectrum derivative feature resulted in improvements

comparable to those obtained by using the voicing feature. However, no

significant improvements in WER could be observed on the EPPS corpus.

The combination of baseline acoustic features with both of the voicing and

spectrum derivative features gave further improvements in WER. Experimen-

tal results can be summarized as follows:

• Similar improvements were obtained by using the MFCC or the speaker

adapted VTLN features as baseline.

• Improvements were consistent over the three different corpora.

• When adding the spectrum derivative feature, the relative improvements

over systems already using the additional voicing feature were significantly
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 less than those obtained by combining the spectrum derivative feature with

only the baseline features.

• Experiments on the small-vocabulary SieTill task gave a relative improve-

ment of 16% in WER when adding the voicing and the spectrum derivative

features to the MFCCs. On large-vocabulary tasks, improvements of up to

4% were obtained relative to the best performing single feature systems.

Finally, DMC was shown to improve recognition results starting from models

based on LDA combined acoustic features. The conclusions are:

• LDA based feature combination can be nested into DMC in a straightfor-

ward way.

• DMC based combination of highly optimized feature combination setups

can improve the WER significantly. On the EPPS corpus, the application

of DMC gave a relative improvement of 4% in WER compared to the best

LDA based system.

• The best recognition results were obtained by using the voicing measure

in combination with the MFCC and the VTLN features. On both large-

vocabulary corpora, the LDA based method nested into DMC gave relative

improvements of 4% in WER compared to the best single feature systems

(VTLN).

Future work includes the optimization of the articulatory features presented

and further development of additional acoustic features. In particular, the

spectrum derivative feature will be compared to a closely related spectral

flatness feature proposed in (A. H. Gray and Markel, 1974). Furthermore,

alternative combination methods and especially system combination on the

level of the recognition output will be investigated for its potential in feature

combination.
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 Table 1

Settings of the RWTH recognition system for the SieTill, VM II, and EPPS corpora.

corpus name SieTill VM II EPPS

train eval train eval train dev eval

speech seg. [h] 11.6 11.7 61.5 1.6 40.8 3.7 3.5

# speakers 362 356 857 16 154 16 36

lexicon vocabulary size 11 10 157 54 265

language type zerogram class-trigram trigram

model test test dev eval

perplexity 11 62.0 87 99

feature sample rate [kHz] 8 16 16

extraction # MFCCs 12 16 16

LDA window 11 11 9

LDA output 30 45 45

model units type whole-word triphone triphone

gender dep. yes no no

across-word no yes yes

HMM # states per unit 39 (ave.) 3 6

topology # silence states 1 1 1

state type none decision tree decision tree

tying # GMMs 215 3 501 4 501

emission # densities 7k 396k 446k

modeling pooled covar. yes yes yes

diagonal covar. yes yes yes
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Table 2

Word error rates for baseline acoustic features. SieTill and VM II corpora: results

only on evaluation set. EPPS corpus: results on both development/evaluation sets.

corpus acoustic error rates [%]

feature del ins WER

SieTill MFCC 0.3 0.5 1.8

VM II MFCC 4.5 2.9 21.0

VTLN 3.8 2.9 19.1

MF-PLP 5.2 2.3 21.0

PLP 5.9 2.3 21.4

EPPS MFCC 4.3/3.8 1.4/1.7 14.7/15.3

VTLN 4.3/3.7 1.3/1.5 14.2/14.1

MF-PLP 4.2/3.7 1.5/1.7 14.8/15.3

PLP 4.3/3.5 1.6/1.8 15.4/15.8
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 Table 3

Word error rates obtained by the LDA based combination of baseline features

(MFCC, VTLN, MF-PLP, PLP) and the voicing feature (V). SieTill and VM

II corpora: results only on evaluation set. EPPS corpus: results on both devel-

opment/evaluation sets.

corpus baseline V error rates [%]

feature del ins WER

SieTill MFCC no 0.3 0.5 1.8

yes 0.3 0.4 1.6

VM II MFCC no 4.5 2.9 21.0

yes 4.6 2.7 20.3

VTLN no 3.8 2.9 19.1

yes 4.1 2.7 18.7

MF-PLP no 5.2 2.3 21.0

yes 4.7 2.6 20.5

PLP no 5.9 2.3 21.4

yes 4.6 3.0 20.6

EPPS MFCC no 4.3/3.8 1.4/1.7 14.7/15.3

yes 3.9/3.4 1.5/1.9 14.3/14.8

VTLN no 4.3/3.7 1.3/1.5 14.2/14.1

yes 4.0/3.3 1.5/1.6 13.8/14.0

MF-PLP no 4.2/3.7 1.5/1.7 14.8/15.3

yes 3.7/3.2 1.7/2.0 14.3/15.2

PLP no 4.3/3.5 1.6/1.8 15.4/15.8

yes 4.5/3.7 1.4/1.6 15.1/15.4
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Table 4

Difference confusion matrix generated by subtracting the confusion matrix ob-

tained by using the LDA based combination of the MFCC and voicing features

from the one obtained by using solely the MFCC feature. Larger improvements

and degradations are emphasized.

spoken

recognized ’1’ ’2’ ’3’ ’4’ ’5’ ’6’ ’7’ ’8’ ’9’ ’0’ ’zwo’

’1’ /aIns/ -12 3 3 0 -1 2 1 0 1 0 -1

’2’ /tsvaI/ 1 -16 -16 0 -1 0 0 0 1 0 0

’3’ /draI/ 2 9 6 0 0 0 0 0 3 1 0

’4’ /fi:5/ -1 -1 0 -4 1 0 0 1 0 1 0

’5’ /fYnf/ 2 0 1 1 -6 -1 -1 0 -1 -2 0

’6’ /zEks/ 0 1 1 0 -1 -4 0 -1 1 0 0

’7’ /zi:b@n/ 1 -1 -1 -2 1 1 0 0 0 0 0

’8’ /axt/ 0 0 3 0 0 -1 1 -2 0 0 0

’9’ /nOYn/ 3 -1 4 0 3 0 0 0 -6 10 0

’0’ /nUl/ 0 2 1 0 2 0 0 0 -1 -12 1

’zwo’ /tsvo:/ 0 3 -1 2 1 2 0 0 1 1 -2
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Table 5

Word error rates obtained by the LDA based combination of baseline fea-

tures (MFCC, VTLN) and the spectrum derivative feature (SD). SieTill and VM

II corpora: results only on evaluation set. EPPS corpus: results on both develop-

ment/evaluation sets.

corpus baseline SD error rates [%]

feature del ins WER

SieTill MFCC no 0.3 0.5 1.8

yes 0.3 0.4 1.6

VM II MFCC no 4.5 2.9 21.0

yes 4.5 2.9 20.3

VTLN no 3.8 2.9 19.1

yes 3.7 3.0 18.6

EPPS MFCC no 4.3/3.8 1.4/1.7 14.7/15.3

yes 4.5/4.0 1.2/1.5 14.7/15.1

VTLN no 4.3/3.7 1.3/1.5 14.2/14.1

yes 4.0/3.3 1.5/1.7 14.2/14.1
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 Table 6

Word error rates obtained by the LDA based combination of increasing number

of acoustic features. SieTill and VM II corpora: results only on evaluation set.

EPPS corpus: results on both development/evaluation sets.

corpus acoustic error rates [%]

feature del ins WER

SieTill MFCC 0.3 0.5 1.8

+V 0.3 0.4 1.6

+SD 0.2 0.3 1.5

VM II MFCC 4.5 2.9 21.0

+V 4.6 2.7 20.3

+SD 4.4 2.9 20.1

VTLN 3.8 2.9 19.1

+V 4.1 2.7 18.7

+SD 3.9 2.9 18.4

EPPS MFCC 4.3/3.8 1.4/1.7 14.7/15.3

+V 3.9/3.4 1.5/1.9 14.3/14.8

+SD 4.2/3.7 1.4/1.6 14.4/14.9

VTLN 4.3/3.7 1.3/1.5 14.2/14.1

+V 4.0/3.3 1.5/1.6 13.8/14.0

+SD 3.6/3.1 1.6/1.8 13.7/14.0
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Table 7

Word error rate obtained by nesting of discriminative model combination (DMC)

based and linear discriminant analysis (LDA) based feature combination methods.

VM II corpus: results only on evaluation set. EPPS corpus: results on both devel-

opment/evaluation sets.

corpus acoustic error rates [%]

features del ins WER

VM II MFCC 4.5 2.9 21.0

VTLN 3.8 2.9 19.1

LDA(MFCC+V) 4.6 2.7 20.3

LDA(VTLN+V) 4.1 2.7 18.7

DMC[(LDA(MFCC+V)+

LDA(VTLN+V)] 4.1 2.5 18.4

EPPS MFCC 4.3/3.8 1.4/1.7 14.7/15.3

VTLN 4.3/3.7 1.3/1.5 14.2/14.1

LDA(MFCC+V) 3.9/3.4 1.5/1.9 14.3/14.8

LDA(VTLN+V) 4.0/3.3 1.5/1.6 13.8/14.0

DMC[(LDA(MFCC+V)+

LDA(VTLN+V)] 4.1/3.5 1.2/1.4 13.6/13.5
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