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Abstract: 
In this article, we focus on creating a large vocabulary speech recognition system for the Slovenian 
language. Currently, state-of-the-art recognition systems are able to use vocabularies with sizes of 
20,000 to 100,000 words. These systems have mostly been developed for English, which belongs to a 
group of uninflectional languages. Slovenian, as a Slavic language, belongs to a group of inflectional 
languages. Its rich morphology presents a major problem in large vocabulary speech recognition. 
Compared to English, the Slovenian language requires a vocabulary approx. ten times greater for the 
same degree of text coverage. Consequently, the difference in vocabulary size causes a high degree of 
OOV (out-of-vocabulary words). Therefore OOV words have a direct impact on recognizer efficiency. 
The characteristics of inflectional languages have been considered when developing a new search 
algorithm with a method for restricting the correct order of sub-word units, and to use separate 
language models based on sub-words. This search algorithm combines the properties of sub-word-
based models (reduced OOV) and word-based models (the length of context). The algorithm also 
enables better search-space limitation for sub word models. Using sub-word models, we increase 
recognizer accuracy and achieve a comparable search space to that of a standard word-based 
recognizer. Our methods were evaluated in experiments on a SNABI speech database. 
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Main text: 
 
1. Introduction 
 
The natural development of language has caused its variability and ambiguity. The result is about 6 000 
known languages today. They differ to a great extend in word formation rules. Homonym 
disambiguation is another big challenge today. From the speech recognition point of view, it would be 
logical to classify all languages by their common sources, the results of which could also be seen in 
various multilingual recognition experiments. The reason for such presumptions is the fact that similar 
languages share the same or, at least, similar grammatical and phonetical attributes as their sources. In 
general, development in speech recognition is moving towards the customisation of recognizers for use 
with different language groups. This article refers to large-vocabulary speech recognition with 
emphasis on inflectional languages, among which is the Slovenian language. Its rich morphology, 
therefore, represents a major problem in large vocabulary speech recognition, which is reflected in a 
high degree of OOV words and a much more varied word order, in comparison to the English 
language. A common word order in English would be SVO (subject, verb, object) structure, whereas 
this is not the case in Slavic languages; the only exceptions being Macedonian and Bulgarian. 
However, freer word order reduces the efficiency of the statistical language modeling commonly used 
in large vocabulary speech recognition. Besides the Upper Sorbian language, Slovenian is the only 
language to include additional word forms for dual, which causes an even greater number of words. 
Another feature of the Slovenian language is the category of verbal aspect and palatalization, where the 
next sound causes a change in the previous sound, creating even more new word forms.  
The afore-mentioned features of inflectional languages prevent straightforward usage of the state of the 
art recognition systems technology developed for English.  
  
This article is divided into six chapters. Sub-word modeling is covered in the following chapter. The 
main advantage of sub-word-based models compared to word-based is a smaller OOV ratio. The core 
part of this chapter describes the morphological structure of the Slovenian language. The third chapter 
discusses those problems encountered in the recognition of different sub-word units. A mathematical 
formula is presented for recognition process with word and sub-word units. The definition of a novel 
search algorithm follows, for the recognition of inflectional languages. We treat it from the point of 
acoustical and language modeling. We also present different improvements in the proposed search 
algorithm. The fourth chapter describes the experimental system setup and captures speech recognition 
results with different search algorithms and with different vocabulary units. Recognition error, 
recognition speed, and the size of search space, expressed as the average number of active instances are 
compared. Discussion on improvements in recognition results are presented in chapter five when using 
a new search algorithm with extended context in speech recognition of the Slovenian language. The 
last chapter provides a summary of the presented works, achievements, and ideas for future work. 
 
2. Sub-word Modeling 
 
2.1 Current review of inflectional languages in the field of speech recognition  
 
An extensive vocabulary presents the major problem in large vocabulary speech recognition of an 
inflectional language. Restricting the size of vocabulary to satisfy memory and speed requirements can 
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cause additional recognition error. The solution, in the case of recognizing the speech of inflectional 
(Slavic), tonal (Chinese) and agglutinative (Japanese, Finnish, Korean, Turkish, Hungarian, and 
German which presents agglutinative features in its open lexicon but not in its case system) languages 
was shown when using sub-word units as basic speech recognition units. In (Geuntner, 1995) words 
were split into morphemes, which were then used as individual units. Using much shorter units than 
words in the cases of slightly inflectional languages (i.e. German) or highly inflectional languages (i.e. 
Serbian and Croatian) did not result in decreasing recognition error overall, because the positions of 
different types of morphemes (suffixes, prefixes, etc.) was not considered. Another suggestion was to 
use units larger than morphemes, such as stems, the stem being that part of the word which is common 
to all words belonging to the same word family or vocabulary entries (lemma). Lemma defines basic 
dictionary entry with different definitions for individual word forms. Stems were used to build 
language models, whereas the vocabulary still contains words. Another lacking feature of the new 
language model was information about the ending. The results of this scheme were again 
unsatisfactory, with no improvement in recognition error for German, Serbian and Croatian. In (Byrne 
et al., 2000) stems and endings were also used for building sub-word language models for speech 
recognition of Czech language. A common vocabulary was used with stems and endings marked with 
special characters. Stems with an empty ending (words) did not differ from stems with a non empty 
ending. By using sub-word units, the number of OOV words decreased and the recognition accuracy 
increased; however the evaluation of recognition error was performed at a sub-word level. In (Byrne et 
al., 2001) a two-pass strategy realized with finite state transducers was taken-up. In the first pass, a 
standard sub-word bigram language model was used to build the N-best list of sentences and in the 
second pass an interpolated sub-word trigram language model was used. Stems were predicted from 
previous stems, and the previous stem and ending were used for predicting endings. Despite its 
contribution to decreasing the amount of OOV words, a recognition process using sub-word units did 
not reduce total recognition error. They did not include information about which endings could follow 
a particular stem. In (Ircing and Psutka, 2002), besides the sub-word language model, also a language 
model based on word categories was used for speech recognition of Czech language. The sub-word 
model did not include endings and was only able to predict the sequences of stems. The received 
recognition error was decreased by 4% absolute, in comparison to word-based recognition. Similar 
procedures were also used on an agglutinative language, namely Hungarian. In (Szarvas and Furui, 
2003), a finite state transducer was selected for speech recognition. In addition to these basic 
components described in (Mohri et al., 2002), they added two additional components: phonological 
rules and morphosyntactic rules. With the latter they filtered out the ungrammatical combinations 
(incorrect sub-word order), and with a basic trigram sub-word language model the error rate decreased 
by 18%, relatively. Similar methods were also applied on other agglutinative and tonal languages such 
as Korean (Choi et al., 2004, Kwon and Park, 2003), Japanese (Ohtsuki et al., 1999) or Turkish 
(Cilingir, 2003, Erdogan et al., 2005). All these languages have common characteristic of rapid growth 
in vocabulary and with it OOV words. The main difference between inflectional and agglutinative 
languages is in the number of morphemes per word. Agglutinative languages tend to have a high rate of 
morphemes per word, whereas in the case of inflectional languages, a word is typically composed by 
adding one inflectional morpheme to the base form. 
 
In addition to sub-word modeling, there is another solution founded on the adaptation of vocabulary 
(Carki et al., 2000; Geuntner et al., 1998a, 1998b), but is only appropriate for processes (i.e. generating 
transcriptions) that are not limited by time scale. 
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The first continuous speech recognition experiments for Slovenian were published in (Rotovnik et al., 
2002). Word-based and sub-word-based recognition systems were reported. When using sub-word 
models, increased recognition performance only occurred if the comparison between word and sub-
word units were executed on the same length of context. Experiments were performed with a HVite 
recognizer (Woodland et al., 1994). Later, in (Rotovnik et al., 2003), the recognizer was replaced by a 
trace_projector recognizer (Deshmukh et al., 1999), which is also used in this article. The results from 
a standard recognizer are comparable with those published in section 4.6 of this article. 
 
In comparison to published work we would like to present the following points of this paper:  
 
- distinguish between different types of sub-word units,  
- how to deal with empty ending,  
- restrict sets of endings for a particular stem,  
- enlarge the context of language model history in search algorithms.  
 
These terms will be discussed in detail in the following sections. 
 
2.2 Morphological Structure of the Slovenian Language 
 
This subsection presents the essential characteristics of the Slovenian language. Since most of the 
existing work and progress in the field of speech recognition has been done for the English language, 
we will compare the characteristics of Slovenian with those of the English language. The structure of 
language indirectly influences speech recognition efficiency. The Slovenian language shares its 
characteristics with many other inflectional languages, especially those of the Slavic family (Comrie 
and Corbett, 2001). Slavic languages are divided into three main groups: 
• Southern: Slovenian, Serbian, Croatian, Bosnian, Macedonian and Bulgarian, 
• Eastern: Russian, Ukrainian, Belarusian and Rusyn, 
• Western: Czech, Slovak, Polish, Kashubian, Upper and Lower Sorbian. 
In Slovenian, the parts of speech are divided into two classes, according to their inflectional 
characteristics: 
• Inflectional category: nouns (substantive words), adjectives (adjectival words), verbs and adverbs. 
• Non-inflectional category: prepositions, conjunctions, particles and interjections. 
Slovenian words often exhibit clearer morphological patterns in comparison to English words. 
Morpheme is the smallest part of a word with its own meaning (or several meanings). In order to form 
different morphological patterns (declinations, conjugations, gender, number inflections), two parts of 
a word are distinguished: stem and ending. The stem is that part of the inflected word that carries its 
meaning; while an ending specifically denotes categories of case, person, gender and number, or the 
final part of a word, regardless of its morphemic structure. Stems can contain at least one morpheme, 
while endings usually contain one single item. The concept of grammatical categories will be 
introduced to outline the Slovenian inflectional morphology. In general, Slovenian shares its 
grammatical categories with other Slavic languages.  
 
The Slovenian language distinguishes between three types of gender: masculine, feminine and neuter, 
whilst English does not. Slovenian nouns have six cases: nominative, genitive, dative, accusative, 
locative and instrumental. This multiple choice of cases enables a more flexible word order in 
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Slovenian compared to English. Some Slavic languages distinguish all seven cases (Czech, Polish). 
The Slovenian word forms, not only differ in cases, but also in declination for all the three types of 
gender. The grammatical category of number is expressed in the ending and differs according to the 
quantity it expresses: one (singular), two (dual), and three or more (plural). Three types for the 
grammatical category of person (1st, 2nd, 3rd person) reflect the relationships between communication 
participants. The grammatical category of voice denotes the relationship between the object of the 
action and its executor. As with most European languages (derived from the Indo-European branch of 
languages), Slovenian has two voice categories: active and passive voice. Another grammatical 
category, mood, denotes the feeling of the speaker towards the act, state, course etc. which is defined 
by the verb. The three types of mood in Slovenian are: indicative, imperative and conditional. As in the 
English language, there are three degrees of comparison: positive, comparative and superlative. There 
are four tenses in the Slovenian language: present, past, past perfect and future. Table 1 shows different 
word forms for the word "nesti". For some words in Slovenian, it is possible to count up to 100 
different word forms. These properties have already been successfully used in language modeling for 
Slovenian (Sepesy et al., 2003). There is one additional feature of the Slovenian language– 
morphologically speaking, some morphemes can alternate in consonants or vowels, and some in both 
simultaneously (table 2). Slovenian contains up to one thousand different combinations of 
morphological categories, while English only has about 30. Consequently, the word order in English is 
more rigid which means a greater contribution to building language models with lower perplexities. 
English words have less grammatical information encoded within a word. Grammatical features are 
evident from the relative order of words in a sentence. In the Slovenian language, the grammatical 
information is determined by a word's inflection. Consequently, word order in Slovenian is more 
relaxed. This characteristic of highly inflective languages causes high perplexity values, which could 
not be resolved by replacing a bigram model with higher order models. In this paper we do not address 
the problem of relaxed word order. The solution for decreasing very high OOV rate proves to be the 
use of sub-word or morphological units for language modeling. On the other hand, sub-word units 
introduce garbage words and the language model becomes less constrained but more robust.  
 
3. Recognition using Sub-word Units 
 
3.1 Statistical Speech Recognition 
 
State-of-the-art recognition systems (Beyerlein et al., 2002; Evermann and Woodland, 2003; Kanthak 
et al., 2002; Mohri et al., 2002) use a statistical approach for speech recognition, based on the Bayes 
decision rule. The basic structure of such a system is presented in figure 1. It includes four 
components: acoustic analyzer, search algorithm, acoustic model, and language model. An input 
module called an acoustic analyzer transforms an analog speech signal into a sequence of acoustic 
features, which includes information about the spoken elements. The second module is the recognizer 
which, together with the stochastic models, represents the core of the recognition system. Stochastic 
models, acoustic, and language models present a source of information for the search algorithm in the 
recognizer. Most of the current state-of-the-art systems use Hidden Markov Models (HMM) to model 
acoustic production process (Rabiner, 1989). HMM's are stochastic finite automata consisting of states 
and transitions with attached probabilities (emission and transition probability respectively). The search 
algorithm uses the information provided by the acoustic model and the language model to determine 
the best word sequence: 
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The search problem described in Equation (1) can be efficiently solved after applying Viterbi 
approximation and using dynamic programming (Bellman, 1957). This so-called Bayes decision rule 
contains two types of stochastic models: 
• The m-gram language model represents the a-priori probability of a given word set (first part of Eq. 
(1)). 
• The acoustic model presents the conditional probability for the observed sequence of acoustic feature 

vectors, when the speaker has spoken a word sequence.  Probability  ( )1| , N
t tp x s w  is emission 

probability distribution attached to state ts . ( )1 1| , N
t tp s s w−  represents the transition probability 

attached to the transition between 1ts −  and ts . 
 
In developing a search algorithm for a large vocabulary speech recognition system, Equation (1) is 
decomposed into the contributions of the individual recognition units (i.e. words, stems, endings, 
syllables, etc.) of the word sequence 1

Nw . A word-based language model is used in recognition 
processes, when using words as recognition units. We will be assuming that recognition units are 
represented by a string of phonemes, which are defined by a pronunciation dictionary and modeled on 
the basis of tri-phone context. During the search, the recognition units are organized in a tree structure 
which combines equal unit prefixes. For different language model history a separate tree copy is 
generated. In this article we will restrict our explorations to recognition units internal context only, due 
to the complexity of the subject matter. The development of search algorithms of sub-word units has 
been limited by standard word-based recognizer.  
 
3.2 Recognition problems with different sub-word units 
 
3.2.1 Search space problem 
 
Recognition process is, time-wise, very wasteful, because probability for every possible sequence of 
states should be calculated and the most probable one selected. But in large vocabulary continuous 
speech recognition, the number of possible sequences is immense, even for a very short speech 
segment. Different methods have, therefore, been developed to limit this search space, which has also 
led to the development of different recognition algorithm schemes. Selecting basic units of recognition, 
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therefore, additionally complicates the selection of a recognition algorithm, and search-space 
restraining techniques. 
 
3.2.2 Selection of basic recognition units 
 
There are different techniques for limiting search space, such as using a dictionary of the most common 
words or using sub-word units: syllables, morphemes, lemmas, stems, endings etc. or anything  that is 
shorter than the word and is in the vocabulary. If we use units shorter than words for recognition, 
differences may arise that can interfere with the results of the search algorithm. Here are the most 
important differences: 
 
• In a word-structured dictionary, every unit (word) is followed by a silence or an unit boundary. With 
sub-word units, when the context is not allowed to extend across unit boundaries (search algorithm 
limitation), words will contain more than one unit boundary. From an acoustic point of view, the 
boundaries between words are defined by longer silence sections, but continuous speech has almost no 
instances of complete silence which can be distinguished easily. On the other hand, people use the 
logical meanings of words to define the boundaries between them. One of the possible solutions to this 
problem, therefore, might be in using a special dictionary unit, which marks the unit boundary that 
would allow the recognition system to use its language-model probability for discerning the boundaries 
between sub-word units. Combined sub-word units between the boundaries will then present a whole 
word. The second solution, which we have used in our experiments, is dividing words into two units at 
the most. The second unit will present the word ending and also the boundary between sub-word units. 
When we mentioned dividing words into two units at the most, we also added non-splitable words with 
an empty ending into the dictionary. This, consequently, enabled the existence of two identical sub-
word units, where the first one would end with a silence, and the second one continues with the 
appropriate ending. Since it is not possible to distinguish these two sub-word units on the basis of 
acoustic information (they have the same transcription), we looked for the information in a language 
model. When building a language model, we used different notations to separate distinctive units, 
which resulted in a better performance of the language model. 
 
• In general, recognition systems can use different sub-word recognition units, and their selection 
presents a very important factor in recognition process. The search space is directly limited by the unit 
set in the dictionary, because it only allows limited state sequences. By defining the size of the 
dictionary and by selecting the proper units we can, therefore, influence the size of search space. 
Acoustic and language models, on the other hand, indirectly determine the search space, assigning 
different probabilities to different units. Selecting basic recognition units is a compromise between two 
contrary features: 

- how successfully the sub-word-based set will model words (from the qualitative and 
quantitative point-of-view), and 

- how successfully the sub-word-based set will limit search space. 
With shorter sub-word units we can obtain a better coverage of the whole word corpus whilst 
simultaneously enabling grammatically incorrect, yet similar, words. On the other hand, effective 
language models are difficult to build using very short units (for example phonemes). At the same time, 
using a word-based dictionary will not enable complete word coverage, but will still efficiently restrict 
search space. 
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• In addition to limiting search space, the purpose of the dictionary is also to define transcriptions and 
pronunciations of basic recognition units – sequences of HMM states. In Slovenian, the pronunciation 
of basic units can be fairly accurately determined from their written forms. This is completely opposite 
to English, where you would have to know the whole word to conclude the pronunciation of its parts. 
So in some languages, pronunciation will determine the set of basic sub-word recognition units. 
 
• Selecting phonemic models is closely connected to the sub-word units. If we decide to take context 
into consideration, then every phoneme will form several models, depending on its phonemic context. 
The lengths of basic units will also influence the number of acoustic models, especially when the 
recognition system does not use cross-unit acoustic models. It is obvious that, when using context 
dependent models, longer units will contain more information compared to shorter ones, because they 
include fewer boundaries, which disable the use of context. The use of cross-unit models will cause a 
surplus of computations, which depend on the length of the basic units. Usually extending context over 
the boundaries of basic units will demand the use of additional tree copies of the dictionary and, if the 
units are short, this will often mean including more new tree copies, as opposed to using longer units. 
In those cases where the word is split into no more than two parts, we also have to consider the lengths 
of the sub-word unit parts. The longer part will have better acoustic differentiation, while the 
differentiation of the shorter second part will, consequently, be nontrivial. For this reason it is very 
important to find a compromise between word decompositions and the length of sub-word units. 
 
As can be seen, choosing the right sub-word unit for large vocabulary continuous speech recognition 
depends on more than one parameter (its length, context, pronunciation, coverage), in addition to the 
search algorithm used. In the following subsections, we will present an algorithm for specific types of 
sub-word units, which will successfully replace words as basic recognition units in the speech 
recognition process. 
 
3.3 Recognition using word-based models 
 
In recognition with word internal acoustic models, the contextual dependency between phonemes is 
only present within the word. Figure 2 shows a chain of stochastic models for the string "jaz sem" 
(meaning "I am"). HMM for the given word string is composed of three-state HMM triphones for the 
individual words. Only part of the phonetic context between word boundaries is taken into 
consideration. In our case, this would mean that the right-hand context of the last phoneme in »jaz« and 
the left-hand context of the second word "sem" will be marked as unknown. When a word is comprised 
of only one phoneme, the left-hand and the right-hand contexts are both marked as unknown. We use a 
special phoneme symbol "/" for marking all the boundaries between words. By eliminating contextual 
dependency at word borders, the HMM of a given word depends solely on the word itself, and can be 
directly determined from a pronunciation vocabulary. With the Viterbi approximation, the acoustical 
model contribution in the Bayes decision rule (Equation 1) can be broken down into the contributions 
of individual words for a word sequence 1

Nw  by using optimization over finite times 1
Nt  of individual 

words (Sixtus and Ney, 2002): 
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current word nw  and its starting and ending times. The decision rule for recognition with word internal 
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3.4 Sub-word recognition with sub-word models 
 
3.4.1 Acoustical modeling 
 
Sub-word acoustic models can be defined similarly to those of word-based. The main difference 
between them is in the emergence of new unit boundaries. As can be seen in Figure 3, the use of sub-
word units can indirectly generate a larger number of monophones and biphones. Adding the mark "0" 
at the beginning of word "jaz" means a stem with an empty ending (word "jaz" was not decomposed). 
In our case, the tri-phone was broken down into a biphone and a monophone. This diminishes the 
quality and the differentiation of the acoustic model, but retains the complexity of the search space in 
the sense of independent recognition units. Because of this, it is not so complicated to include acoustic 
models with sub-word recognition units into those commonly accessible recognition systems which use 
word units. As can be seen in the following subsection, this process will also create some redundancy. 
Word sequence 1

Nw  will be replaced with stems and endings in a sub-word model. To simplify the 
mathematical formulation, we will assume that the decomposition is known and each word nw  is 
decomposed into a stem no  and an ending nk  (we will not discern between empty and non-empty-
ending stems): 
 

( ) ( )1 1 2 1 1 2 2, ,..., , , , ,..., ,N
N N Nw w w w o k o k o k= =                                                                    (Eq. 4) 

 
If we additionally consider transformations 2 1n no u −→  and 2n nk u→ , we can form a new Eq. (5) : 
 

( )2
1 1 1 2 2, ,..., ,...,N N

N Nw u u u u u= =                                                                                      (Eq. 5) 
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Because the stem no  and the ending nk  follow each other directly, we replaced them with a sequence 
2
1

Nu , which will double the number of units in comparison to word sequence 1
Nw . In the case of the 

word-based acoustic model, individual word contributions were optimized over their finite times 1
Nt , 

while in sub-word acoustic models they were optimized over finite times 2
1

Nt  of sub-word units. By 
taking into consideration the transformation above, we obtain the following equation for the acoustical 
model contribution with sub-word recognition units:  
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3.4.2 Language modeling 
 
When we exchange the sequence of words with that of sub-words, we get the following record of the 
language model: 
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When the recognition process is based on sub-word units, a word-based language model is of limited 
use. In the case of (Eq. (7)) language model probabilities can be applied only on transitions between 
words. The result is less accurate beam pruning and a much larger search space. Using word-based 
language models we can compose only those stems and endings which constitute words already in the 
language model. Consequently, the problem of OOV words is unsolved. Consequently we use a sub-
word-based language model for recognition with sub-word units (Eq. (8)). In this language model, the 
probabilities of some OOV words are also captured (if the word consists of known sub-words), and 
language model probabilities can easily be integrated into the search network. 
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On the basis of this, we can present the corresponding sub-word bigram and trigram models: 
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Eq. (9) shows that, in the case of a bigram model, the ending nk  depends on the previous stem no  and 
stem 1no +  is predicted from the previous ending nk . In (Sepesy, 2002), it was proven that the 

connection between the stem and the ending ( )1|n no k −  is very weak and only makes a minor 
contribution to the success of a sub-word language model. Using a trigram sub-word model will predict 
the current unit (stem or ending) from previous consecutive units. Predicting stem no  from the 
previous stem  1no −  and the previous ending 1nk −   will, in this case, present a similar contribution to 

that of the bigram word-based language model, whereas the part  ( )1| ,n n nk o k −  equals the contribution 
of a bigram sub-word model. In this way we can establish that, in the case of using sub-word language 
models, its order should be twice as high when compared to the order of a word-based language model, 
to cover the same amount of information. 
 
3.4.3 Bayes decision rule 
 
When we combine the contribution of an a priori probability for a sub-word language model (Eq. 8) 
and the contribution of a conditional probability for a sub-word unit internal acoustical model (Eq. 6) 
into a Bayes decision rule of the optimal word sequence, the following equation can be given: 
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As can be seen, when compared to the Bayes decision rule for word-based models, twice as many time 
limits must be optimized. Since basic recognition units are consequently shorter, the probabilities of 
partial hypotheses are of greater similarity, which, in turn, will reduce the efficiency of beam pruning, 
and increase the search space. The result is a demand for a more optimal search algorithm for sub-word 
models. The following section proposes a novel extended search algorithm, which will limit the search 
space and stimulate recognition times. 
 
3.5 Sub-word recognition with stem-ending models and correct sub-word order 
 
In the previous section, we did not limit the order of the recognized units. This problem is partly 
reduced by the language model, which gives nonsensical pairs (stem-stem or ending-ending) a very 
small probability (on the basis of smoothing technique), and even then the search network will contain 
all combinations until they are removed from it, with the help of pruning techniques. Increasing search 
space will have a negative effect on memory usage and the speed of evaluating the best hypothesis. 
Figure 4 shows the additional parts of trees, which are combined to represent incorrect pairs in the 
search network. By considering the correct sequence of units in the search network, we can claim with 
some certainty that the search space will decrease, however its positive contribution to the final result 
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will lessen due to the use of smoothing techniques. If we sum up Eq. (4) and include the correct order 
of stem no   and ending nk ,  we can divide the total contribution of the acoustic model into 

contributions of individual stems no   and endings nk   in word order 1
Nw . Here, the contributions are 

optimized over finite times of stems and endings 2
1

Nt : 
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Eq. (12) indicates that the contribution of a conditional probability for a sub-word unit internal acoustic 
model does not consider stem-stem and ending-ending pairs, while the number of optimizations after 
ending times is still twice the size, as in the case of word-based models. The use of sub-word language 
models will remain the same despite the limitations. Nonsensical sequences in the language model only 
appear through back-off weights. By joining the contributions of acoustic and language model 
probabilities, we get the following equation of Bayes decision rule for using bigram language models: 
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3.5.1 Sub-word recognition with stem-ending models with correct sub-word order and a limited set of 
endings for separate stems 
 
When decomposing words into sub-word units it is possible to define a finite set of endings for a given 
stem (based on a training corpus), with the purpose of limiting the expansion of the recognized stem 
into a limited tree of endings. We suggest using a tree list to build separate trees of endings for 
individual stems (Figure 5). Although realization using a tree list increases static search space for the 
size of all trees of endings, we decided to use it, because of its simplicity. The conditional probability 
now additionally includes the existence of sequence n no k , which affects the design of Eq. (12): 
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The  ( ),n np k o  represents the probability of a correct possible ending nk  , which can follow stem  no , 
and is defined as: 
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                                                                                      (Eq. 15) 

 
As we can see, conditional probability is only calculated for certain predefined n no k   pairs. Since we 
are still using the same language models, the Bayes decision rule is the same as defined by Eq. (13), 
except that we also have to include Eq. (15). 
 
The idea to limit the set of endings for each individual stem is not used to improve the recognition 
accuracy, but to speed up the recognizer. Although, when using the additional knowledge source 
(morphological lexicon) to define all possible pairs n no k , accuracy improvement could be expected as 
well. In this case we would be able to distinguish between linguistically correct (but in training corpus 
unobserved) and linguistically incorrect n no k  sequences. 
 
3.6 Sub-word Recognition using Stem-ending Models with Correct Sub-word Order, and Separate Sub-
word Language Models (stem-stem, stem-ending) 
 
The weakness of sub-word language models, when we compare them to word-based models, is in the 
length of context covered at the same language model order. As we have already mentioned, search 
space, in the case of sub-word models, is increased despite the same order. The reason for this increase 
is the larger number of time limits, over which conditional probabilities are calculated. At the same 
time shorter sub-word units become acoustically similar, which will additionally reduce the efficiency 
of search-space pruning techniques. The idea behind the following algorithm was, therefore, to 
preserve the same context length, as with word-based models, by combining sub-word stem-stem and 
stem-ending language models. Figure 6 illustrates changes in the sequence of probabilities for sub-
word models. In basic search algorithm probability  ( )|n np k o  is followed by probability  ( )1 |n np o k+  

but in our new search algorithm, instead of the latter, we have used probability ( )1 |n np o o+ . The 
design of conditional probability for the acoustic model is the same as in Eq. (12). The a-priori 
probability of the separate sub-word language model for predicting stems and endings is defined by the 
following equation: 
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Transition from Eq. (8) to Eq. (16) uses the decomposition of each word into exactly one stem and one 
ending (Eq. (4)). Here, we have used an equation for a bigram model. If we compare Eq. (16) with Eq. 
(9) and Eq. (10), we can see that, compared to previous sub-word models, the latter has retained the 
context length of a trigram-gram sub-word model and is, therefore, comparable to a bigram word-based 
model. This will increase search space, when compared to previous sub-word models. Order expansion 
from bigram to trigram language model is straight forward. In case of trigram language model stem 
context covers two previously stems and the prediction of ending remains the same. By considering Eq. 
(16), we can define Bayes decision rule for recognition using separate sub-word models – for bigram 
language models as: 
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3.6.1 Sub-word recognition with stem-ending models with correct sub-word order, limited set of 
endings for separate stems, and separate sub-word language models (stem-stem, stem-ending) 
 
In the previous section we presented an extended search algorithm, which will increase context length 
and, consequently, search space. One of the upgrades in the new search algorithm is the idea of limiting 
search space using a finite set of endings for an individual stem (subsection 3.5.1). Mathematical 
integration of sub-word models into Bayes decision rule for extended search algorithm with limiting 
sets of endings, is very similar to Eq. (13), plus the addition of Eq. (15): 
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         (Eq. 18) 

 
3.6.2 Search space improvement 
 
The drawback of the new algorithm with extended context is the fact that it increases search space and 
slows down recognition speed. We prevented rapid growth in search space by joining those stem trees, 
which originate in the identical previous tree of endings, into a common tree (Figure 7), which will 
then only hold the current best partial hypothesis in every timeframe. This reduced the size of search 
space to that of the standard word-based search algorithm. Figure 7 illustrates that only one tree (the 
beginning of the next word) extends from the recognized word (stem + ending), while in the previous 
version of the algorithm with extended context, every ending was followed by another tree. If we 
compare this new search algorithm with the basic sub-word algorithm, the major differences are in the 
way they handle context. A basic sub-word algorithm, which does not distinguish between different 
types of sub-word units, will concatenate basic units regardless of whether they were stems or endings, 
whereas the new algorithm with extended context and limited set of endings will always perform a 
composition on stems. This algorithm will define the optimal ending for every stem in a search space, 
merging of stems, and predict stems from previous stems. If the stems maintain the same amount of 
linguistic information as the words, the presented algorithm would be very similar to a word-based 
search algorithm, regarding the size of search space.  
 
4. Experiments 
 
4.1. Speech database 
 
Algorithms were evaluated using the studio part of the SNABI speech database (Ka�i� et al., 2000). 
The database was composed of 6 subcorpuses, which contained 1,530 different sentences. The database 
contained the speech of 52 speakers, where each speaker read more than 200 sentences, while 21 
speakers also read a text passage of 91 sentences. The complete database consists of approx. 14 hours 
of speech. To increase the training set, we also used the telephone part of SNABI speech database, 
which has the same structure as the studio part, except that it is larger. It contains the speech of 82 
speakers and, together with the studio part, contains approximately 40 hours of speech. 
For the test set, we used 80 minutes of speech material from the studio part of SNABI speech database, 
which was speaker and domain-independent. The set was divided into two parts: 
• Development set of approx. 15 minutes (195 sentences) was used for finding the optimum scaling 
factors,  
• Evaluation set (from now on referred to as test set) of approx. 65 minutes (779 sentences) for 
evaluating the system’s performance, representing approx. 10 % of the studio part of the SNABI 
speech database. 
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4.2 Text database 
 
For training language models, we used a corpus of newspaper articles. It was obtained from the 
archives of the Slovenian newspaper VE�ER, spanning the period from 1998 to 2003. The corpus size 
is 105 million words, 660,000 of them different. Speech source and text source differ in their content, 
since the speech database includes speech that was read, while the text corpus captures daily news. 
Currently, the two databases are the only ones appropriate for large vocabulary Slovenian speech 
recognition. All language models used for the evaluation of speech systems were built on the basis of 
text corpus VE�ER. 
 
4.3 Vocabulary statistics 
 
Experiments were performed on two different vocabulary sizes: 20,000 and 60,000 basic units. Words 
were transcribed on the basis of the morphological lexicon and transcriptions for those entries lacking 
one were generated automatically from morphological and phonological rules. For word-based models, 
we used the text corpus to select an appropriate amount of the most common words. With sub-word 
models we first used a data-driven method to split the vocabulary of words and then added the most 
common sub-word units from the text corpus to expand the new vocabulary. In this way, 660,000 
different words were split into 327,000 different stems and 2,943 different endings. 
 
4.3.1 Sub-word generation 
 
Word decomposition (Sepesy, 2002) was based on a predefined list of endings. Words are decomposed 
using the longest-match principle. The list of endings is searched for the longest ending that could be 
mapped to the finishing part of the word. These algorithms often exhibit over-stemming – producing 
stems that are too short. Restriction was added to determine that the remaining stem should be of a 
predefined minimum length. An empty ending is added if a word cannot be decomposed. Automatic 
generation of endings is based on a method called stemming (Popovi�, 1992) and includes three steps: 
  
1 A list is created of all words, which were written in reversed character order. 
2 Words are arranged alphabetically; thus words, sharing a common ending, appear together on the list.  
3 Initial characters of adjacent words on the list are compared, to find a maximum match. 
There are two restrictions to avoid over-stemming. The first restriction limits the minimum length of 
the stem, while the second restriction says that the first character of an ending match must be a vowel, 
because consonants carry more information about the meaning of the word than vowels do (Dimec et 
al., 1999). As a consequence of the second restriction, words are decomposed at a consonant-vowel 
pair in most cases. 
 
4.3.2 Unknown words in test set 
 
As we have already mentioned, the advantage of sub-word-based models in recognition is a much more 
extensive coverage of a test set, which results in a lower number of unknown words (OOV words). 
Figure 8 shows the correlation between the number of OOV words and the number of units in the 
vocabulary, for the vocabulary of words and the vocabulary of sub-word units. At a vocabulary size of  
20,000 most common units from the training set, and with word-based models, the OOV rate on the 
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test set is 17,5 %, but is much smaller (2,7 %) when using sub-word vocabulary. By increasing the size 
of vocabulary, this distinction is decreased and with 60,000 units is reduced to 8,7 %. It takes 660,000 
words or 330,000 distinct sub-word units to cover the complete training set.  
 
4.4 Acoustic models 
 
Word internal triphone acoustic models with sixteen Gaussian mixtures were used for all recognition 
experiments. Table 3 shows the statistics of acoustic models. The models were trained over the SNABI 
speech database. The table includes the number of trained acoustic models, total number of acoustic 
models and the total number of states. The number of all acoustic models depends on the structure and 
size of the vocabulary and presents the number of models, needed for complete vocabulary coverage. 
Word-based models contain 5,389 states after state-tying. Sub-word models and word models share 
some common triphones, the difference only arises at the end of the stem and the beginning of the 
ending. For sub-word models, two biphones are used in the transition from stem to ending, whereas 
word models use two triphones in that position – the reason lies in using sub-word unit internal tri-
phone models. If we wanted to keep the context, we would get cross sub-word unit acoustic models in 
this position, which, however, is beyond the scope of this article. Decomposing words into stems and 
endings, and using unit internal triphone models (also containing biphones and monophones) can, 
therefore, create new biphones, as seen in this table. If we compare the number of acoustic models, we 
can see that their number is greater in case of sub-word-based models for both vocabulary sizes. This is 
caused by an additional set of words in the sub-word vocabulary, because we first split the word-based 
vocabulary and then complemented the sub-word vocabulary with the most frequent sub-word units 
from the word corpus. This increased the number of different words and triphones but decreased the 
number of states for sub-word acoustic models, when compared to word-based ones. The reason for the 
decline was a different set of acoustic units for the training set (substituting triphones with biphones at 
decomposition point), which causes different tying of states. 
 
4.5 Language models 
 
We used SRILM V-1.3 toolkit (Stolcke, 2002) to build and evaluate the language models referred to in 
this article. Table 4 shows the perplexity and the size of separate types of language models. If we use 
the same procedure to calculate the perplexity of sub-word-based models, we obtain the value for 
perplexity at the sub-word level, however the results are not intercomparable. Perplexity depends on 
the vocabulary. Although both vocabularies are of the same size, their contents differ to a great extend. 
Sub-word perplexity would have been much smaller than the one for word level, mostly due to 
excellent predictions of probability for endings, which is the reason why we have also calculated 
perplexity at the word level for sub-word-based models. The overall high perplexity values of language 
models are partially a result of poor coverage of the target language (determined by the recognition test 
set) by the training corpus of the language model. When the perplexity of the sub-word-based language 
models is compared to the word-based model, the values were relatively higher, because as the units 
become fewer and smaller the language model becomes less constrained. If we compare basic sub-
word models to word-based ones, the weakness of bigram sub-word models comes to the surface when 
calculating the perplexity: smaller context coverage causes a rise in perplexity. By restricting the order 
of sub-word units (New_SB) the perplexity was reduced. The number of bigrams for these models also 
increased, due to an increase in context when compared to basic sub-word models. Extending the 
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context to trigram modelling improved the perplexity. Consequently the complexity of models 
increased (comparing the No. of 3-grams against the No. of 2-grams). As in the case of bigram models 
restriction of sub-word units order improved the results. 
 
4.6 Recognition results 
 
Firstly, we conducted recognition experiments on a vocabulary size of 20,000 units for different 
vocabulary types and versions of search algorithms. Using a trace_projector recognizer, we performed 
experiments on word-based models and basic sub-word models. We evaluated recognition error for 
words and sub-word units, recognition speed and the size of search space, expressed in the form of the 
average number of active models. 
 
4.6.1 Recognition results for a vocabulary of 20,000 recognition units 
 
Using word-based models (Standard_WB), bigram language model and a vocabulary with 20,000 
units, we achieved a recognition error of 53, 3 % (Table 5). One source for error was found to be OOV 
words. Another source of errors is different word forms, derived from common lemma, which are 
phonetically very similar. By restricting search space we managed to influence the speed of recognition 
and optimize it according to the best recognition results. Speed values in other models and search 
algorithms will be presented relative to the speed of the standard recognition system, achieved with a 
word-based model. In this case, the recognition speed was 24.9-times the value of real time. We must 
also mention that we did not directly focus on the problem of reducing search space for word-based 
models and that we used a standard Viterbi search algorithm with beam pruning and restricting the 
number of active models. The same recognizer was used for the first part of the experiments with sub-
word models (Basic_SB). By using these, we decreased the extent of OOV words and, consequently, 
total word error rate by 3 % absolute. Due to the increase in search space, recognition times were also 
increased by 14,1 % relative. Table 5 shows the increase in the average number of active models for 
relative was 11,6 %. As we have already mentioned, using a basic search algorithm with sub-word 
models was not optimal, in the sense of finding the best path, because it also includes incorrect 
combinations (sequence of endings or sequence of stems with a non-empty ending). That is why we 
additionally integrated techniques for restricting the order of sub-word units (New_SB+Order) into the 
search algorithm. This, however, had no greater impact on recognition accuracy. A slight degradation 
in recognition error (0,1 %) is due to the elimination of correct partial hypotheses, which influence the 
beam-pruning procedure and limit the number of active models with their partial results. Alternatively, 
recognition speed was lower by only 2,8 % relative, compared to word-based models, at an almost 
identical average number of active models. The next experiments used the new search algorithm with 
extended context, which includes a longer context at the sub-word level. By increasing context, the 
basic version of the new algorithm (New_SB+ExtContext) increased the search space and reduced 
recognition speed, while recognition error was decreased absolutely by 3,2%, when compared to a 
basic search algorithm with sub-word models, and 6,2 % when compared to word-based models. 
Search space was efficiently reduced by restricting the number of endings per stem 
(New_SB+ExtContext+LimEnding). Compared to a basic search algorithm with extended context 
(New_SB+ExtContext), the new one reduced the number of active models by 2,8 % relative. By 
restricting the number of endings, we had to rearrange the source code of the new search algorithm. 
This also resulted in a recognition speed, which increased by 8,3 %. Since the search algorithm with  
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restricting the number of endings (New_SB+ExtContext+LimEnding) was still slower than the 
standard algorithm with word-based models (36,1 %), we additionally reduced the search space for the 
new algorithm with extended context by grouping trees of stems, originating from the same previous 
tree of endings, into a common tree  (New_SB+ExtContext+LimEnding+Group). Recognition error did 
not increase, but search space decreased, which enabled the same recognition speed than with word-
based models. We can see that the best version of this new search algorithm with extended context 
(New_SB+ExtContext+LimEnding+Group) has decreased the number of active models when 
compared to the search algorithm with order limitation (New_SB+Order), and come very close to the 
standard search algorithm with word-based models. 
 
In all afore-mentioned experiments bigram language models were applied. Next recognition 
experiments include trigram language models. Results were reported only for standard search 
algorithms with word-based (Standard_WB) and sub-word-based (Basic_SB) models and for the best 
new search algorithm with extended context (New_SB+ExtContext+LimEnding+Group). When 
comparing recognition results obtained with word-based trigram language model against bigram 
language model recognition error decreased by 3.1% absolute, but recognition speed was more than 
two-times higher. It was caused by increased context of partial hypothesis which needs to be separately 
stored before they were merged in search process. When comparing standard search algorithms with 
word-based and sub-word-based models the last one decreased recognition error by 2.3% absolute. As 
in the case of bigram language model recognition time increased for 17.1% relative. The new search 
algorithm with extended context achieved smallest recognition error (absolutely 44.7%) with almost 
the same recognition time compared to standard search algorithm with word-based models. 
 
4.6.2 Recognition results for a vocabulary of 60,000 recognition units 
 
Enlarging the vocabulary to 60,000 units we achieved 45.7-times the real-time speed with word-based 
models (and bigram language model) and we decreased recognition error by 8,7% absolute (Table 6) 
when comparing the results of the smaller vocabulary, where the number of missing words decreased 
by 10 % absolute (Figure 8). With the basic search algorithm and sub-word model, recognition results 
improved by just 0.7%, while the number of OOV words decreased by 1,5%. This was caused by the 
acoustic and language interchangeability of units – shorter acoustic models, which represent 
vocabulary entries, achieve tighter acoustic discrimination compared to longer acoustic models. It is 
also true that probabilities, received from language models in the case of shorter vocabulary units, 
make a smaller contribution to the search algorithm than longer vocabulary units. The reason is in the 
compression of linguistic information (with a certain set of sub-word units we can describe a much 
larger set of words), which smoothes out probabilities between individual units. Lower probabilities 
between individual basic models cause less accurate restriction in the search space, and increase the 
probability of incorrect hypotheses, which also influences recognition error. By using the search 
algorithm with extended context, we decreased recognition error by 3% absolute, in comparison to the 
smaller vocabulary, while the greatest difference in comparison to the basic search algorithm with sub-
word models is in the inclusion of longer context and restricting the search space to the correct order of 
hypotheses. This algorithm achieved the lowest recognition error (44,1 %) among all bigram language 
models. The relationship between the performance speeds of search algorithms remained the same as 
with a 20,000-unit vocabulary, because the new search algorithm 
(New_SB+ExtContext+LimEnding+Group) helped to achieve a practically identical speed to that of 
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the word-based-model algorithm (only 0,5 % difference) and a similar speed was also achieved using 
the search algorithm with order limitation (New_SB+Order). The average number of active models 
also remained in a similar relationship to the recognition results, as in the case of the smaller-sized 
vocabulary. 
 
With trigram language models similar improvements were achieved as in experiments with a 
vocabulary size of 20,000 units. Standard search algorithm with word-based models (Standard_WB) 
achieved the best result among all word-based recognition experiments (absolutely 42.3%). The 
recognition time increased for 113% compared to standard search algorithm with bigram language 
models. Standard search algorithm with sub-word-based models did not improve the results of word-
based models (increase WER for 5.4% absolute), but we achieved almost the same recognition error 
(absolutely 42.0%) with the new search algorithm. 
 
5. Final discussion of experimental results 
 
The usage of standard recognition systems for successful recognition of Slavic languages is not always 
suitable because of their rich morphology. The biggest problem is in words with common word forms, 
which increase vocabulary size and decrease the acoustic separability of units, and, therefore, have a 
negative influence on word error rate. Due to the reduced efficiency of pruning techniques (beam 
pruning), search space increases, which results in longer recognition times. One solution for reducing 
vocabulary size is using sub-word units, which, however, does not solve the similarity problem. 
Instead, it increases the similarity, because of unit shortness. 
 
The recognition problem for inflectional languages was addressed by replacing words with sub-word 
units: stems and endings. We did not limit ourselves to using the basic search algorithm. Instead, we 
included features of inflectional languages into the design of a new search algorithm. We added the 
possibility of restricting the correct order of sub-word units. By differentiating between sub-word units, 
we also incorporated separate pruning techniques for stems, endings and stems with an empty ending. 
The effect was positive, showing a smaller search space when compared to the basic search algorithm 
(10%), and similar search space size when compared to the standard word-based search algorithms. 
Recognition accuracy remained the same. Next we extended the context by using separate sub-word 
bigram (trigram) language models. Such a design increased the context of sub-word models to the 
context of word-based language models. The introduction of longer context had a positive effect on 
recognition efficiency, because error rate decreased by at least 3% absolute, when compared to the 
basic search algorithm with sub-word models. We limited the increase in search space by limiting the 
number of endings for individual stems, which we used to restrict the growth of stem trees. This 
resulted in the same recognition accuracy and higher recognition speeds by at least 3% relative 
compared to the search algorithm with the extended-context. The next improvement in speed and 
search space was made by combining the trees of stems, which were derived from the same tree of 
endings and combined into one common tree. With the new search algorithm we achieved the smallest 
search space amongst all search algorithms, using sub-word models and identical search space 
compared with standard word-based search algorithm. With a vocabulary size of 20,000 units and 
bigram language models the new search algorithm with sub-word models decreased error rate by 3.2% 
absolute compared with basic search algorithm with sub-word models and 6.3% absolute compared 
with the standard word-based search algorithm.  
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Comparing the new search algorithm with basic search algorithm with sub-word models, bigram or 
trigram language models and a vocabulary size of 60,000 units it retained a performance gain (error 
rate decreased by at least 5.5% absolute) but improvement over standard word-based search algorithm 
was not achieved. One reason could be the decomposition algorithm. It is based on a data driven 
approach, with no emphasis on language-specific characteristics. The algorithm over-stem (or under-
stem) some word forms in order to produce the minimal number of modelling units. Consequentially, 
words having the same lemma received different stems. Using morphological lexicon, decomposition 
could be derived from the information about lemmas. Using this information, words having the same 
lemma could obtain the same stem. Another problem is acoustic separability. We could control the 
length of the sub-word units and, consequently, acoustic separability, but at the same time we would 
violate the morphological rules and weaken the power of the language model. By enlarging the 
vocabulary the problem of acoustic confusability is even more evident. Larger vocabulary contains 
more candidates for acoustic confusability. Increasing the size of word-based vocabulary would also 
increase the acoustic confusability, because of more inflected word-forms included.  
 
6. Conclusion 
 
In this article we presented a new search algorithm with sub-word models, which restricts search space 
by using sub-word units in the correct order, limiting the number of endings for an individual stem, 
using separate sub-word language models (extended context), and combining the trees of stems, which 
were derived from the same tree of endings, into one common tree. The result was the smallest search 
space amongst all search algorithms, using sub-word models and identical search space, compared with 
standard word-based search algorithm. Using higher order sub-word-based language models (trigram), 
did not contribute so much to the performance of new search algorithm, because the problem of free 
word order arise. The essential feature of sub-word-based language model is the capability of modeling 
dependencies within a word. In general sub-word-based language models are less constrained and lead 
to increases in word-based perplexity. Therefore, such models would still have to be combined with 
ones that could produce probabilities for larger units (i.e. words, classes of words). One promising way 
for the future would be to combine those models, which capture different dependencies in language. 
 
This recognition system is designed to be extendable to other inflectional languages and, with minor 
modifications, also used for other languages which include inflectional morphology. However, in 
recognition using sub-word models, some problems remain: How to preserve acoustic separability with 
shorter units. One of the possible solutions might be the integration of new knowledge sources from the 
field of speech understanding, or incorporating higher-level linguistic information (semantic and 
grammatical analysis) into the decoding process. 
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Figure legends: 
 
Figure 1: Structure of automatic speech recognition system. 
Figure 2: An example of HMM model for word sequence "jaz sem" (I am). 
Figure 3: An example of HMM model for sub-word sequence "0jaz se -m". 
Figure 4: An illustration of redundant sub-word units in two consecutive trees. 
Figure 5: Search network with a limited set of endings for each stem. 
Figure 6: Structure of trees at limited search space. 
Figure 7: Structure of search space in the search algorithm with extended context which uses grouping of stems, 
originating from the same previous stem trees, into a following common tree. 
Figure 8: Diagram of OOV rate in test set. 
 
 
 
Tables: 
 
 

Table 1: An example of different word forms for the word "nesti" (to carry).  

Infinitive/supine nesti nest  
Present nesem neseš nese (singular) 

neseva neseta neseta (dual) 
nesemo nesete nesejo/neso (plural) 

Passive participle -n nesen nesena neseno  
54 possible different word forms (3 genders * 6 cases * 3 
categories of person) 

Passive participle -� neso� neso�a neso�e  
Active participle -l nesel nesla nesli nesle neslo  
Imperative nesi nesiva nesita nesimo nesite 
Nominal nesenje 

18 possible different word forms (6 cases * 3 categories of 
person)  
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Table 2: Morpheme alternations.  

Verb Participle Ending / Rule 

prevoziti (to drive) prevožen (-iti) / z->ž 

pustiti   (to leave) puš�en (-iti) / s->š� 

roditi    (to bear) rojen (-iti) / d->j 

zahvaliti (to thank) zahvaljen (-iti) / l->lj 

pisati    (to write) pišem (-ati) / s->š 

prenesem  (to 
transport) 

prenašam (-em)  / es->aš 

vtaknem   (to put into) vtikam (-em)  / ak->ik  

za�nem    (to begin) za�enjam (-em)  / ne->enj 

 
 
 

Table 3: Statistics of acoustic models. 

Models Word-based (WB) Sub-word (SB) 

Vocabulary size 20,000 60,000 20,000 60,000 

Trained models 4462 5247 4768 7059 

Total models 5103 6484 7290 10792 

States 5389 4905 

 
 
 
 

Table 4: Language models statistics. 

Models Word-based 
(WB) 

Sub-word 
(Basic_SB) 

Sub-word 
(New_SB) 

Vocabulary size 20,000 60,000 20,000 60,000 20,000 60,000 

Perplexity (bigram) 366 686 1872 2485 1365 1821 

No. of 2-grams 5.22M 7.72M 3.68M 4.84M 6.93M 8.85M 

Perplexity (trigram) 315 602 995 1351 843 1146 

No. of 3-grams 17.55M 23.08M 21.21M 24.42M 28.28M 31.92M 

OOV [%] 17.5 8.7 2.7 1.2 2.7 1.2 
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Table 5: Recognition results for different search algorithms at the size of 20,000 units. The speed is 

expressed relative to the speed of standard algorithm with word-based models and bigram language model 

which achieved 24.9-times the real time.  

Experiments WER[%] Speed  No. of active models 

Bigram LM 

Standard_WB 53.3 1.000 25254 

Basic_SB 50.3 1.141 28198 

New_SB+Order 50.4 1.028 25546 

New_SB+ExtContext 47.1 1.474 35733 

New_SB+ExtContext+LimEnding 47.1 1.361 34754 

New_SB+ExtContext+LimEnding+Group 47.0 1.004 25928 
 

Trigram LM 

Standard_WB 50.2 2.241 50673 

Basic_SB 47.9 2.624 59934 

New_SB+ExtContext+LimEnding+Group 44.7 2.254 51514 

 
 
 

Table 6: Recognition results in using different search algorithms and vocabulary size of 60,000 units. The 

speed is expressed relative to the speed of standard algorithm with word-based models and bigram 

language model which achieved 45.7-times the real time). 

Experiments WER[%] Speed  No. of active models 

Bigram LM 

Standard_WB 44.6 1.000 31174 

Basic_SB 49.7 1.130 35082 

New_SB+Order 49.7 1.028 31714 

New_SB+ExtContext 44.1 1.529 44744 

New_SB+ExtContext+LimEnding 44.1 1.483 43620 

New_SB+ExtContext+LimEnding+Group 44.1 1.005 32473 
 

Trigram LM 

Standard_WB 42.3 2.137 59949 

Basic_SB 47.7 2.602 71031 

New_SB+ExtContext+LimEnding+Group 42.0 2.148 60762 
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