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Discriminative Speaker Adaptation using

Articulatory Features

Florian Metze

interACT center, Universität Karlsruhe (TH); Karlsruhe, Germany 1

Abstract

This paper presents an automatic speech recognition system using acoustic models
based on both sub-phonetic units and broad, phonological features such as Voiced
and Round as output densities in a hidden Markov model framework. The aim of
this work is to improve speech recognition performance particularly on conversa-
tional speech by using units other than phones as a basis for discrimination between
words. We explore the idea that phones are more of a short-hand notation for a bun-
dle of phonological features, which can also be used directly to distinguish competing
word hypotheses.

Acoustic models for different features are integrated with phone models using
a multi-stream approach and log-linear interpolation. This paper presents a new
lattice based discriminative training algorithm using the maximum mutual infor-
mation criterion to train stream weights. This algorithm allows us to automatically
learn stream weights from training or adaptation data and can also be applied to
other tasks.

Decoding experiments conducted in comparison to a non-feature baseline system
on the large vocabulary English Spontaneous Scheduling Task show reductions in
word error rate of about 20% for discriminative model adaptation based on articu-
latory features, slightly outperforming other adaptation algorithms.
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1 Introduction

Virtually all current statistical automatic speech recognition (ASR) systems
use phones as the basic units for modeling speech and discrimination be-
tween different speech sounds. This approach, however, has limitations for
modeling spontaneous and conversational speech, where changes in pronunci-
ation result in acoustic realizations that cannot be described appropriately by
phonetic models Saraçlar and Khudanpur (2000), resulting in reduced perfor-
mance of ASR systems Weintraub et al. (1996). A possible remedy is to model
individual articulatory events at the sub-phonetic level Ostendorf (1999), an
approach which is also closer to linguistic theory, which regards features such
as Voiced or Round as the basic units of speech Halle (1992); Jakobson
et al. (1952); Chomsky and Halle (1968) and sees phones as a shorthand no-
tation for a bundle of distinctive features commonly characterizing a region
of speech. Consequently, there have been various approaches to integrating
linguistic knowledge into ASR’s statistical modeling approach Schmidbauer
(1989); Espy-Wilson (1994); King and Taylor (2000); Eide (2001); Kirchhoff
et al. (2002); Livescu et al. (2003); Deng et al. (2005).

The aim of this work is to pragmatically improve a phone-based ASR sys-
tem by combining phone-based acoustic models with broader units based on
distinctive features as a basis for discrimination between words. This combi-
nation approach should allow for a better trade-off between generalization and
specialization in acoustic modeling. For example, the words bit and pit could
be discriminated by calculating likelihoods for the first sound of the acous-
tic segment in question being Voiced and Unvoiced, which, when viewed
from phonological feature theory, is the discriminating feature between the two
words Chomsky and Halle (1968), instead of the standard (context-dependent)
phonetic model. Applying the principles behind Hyper-/ Hypo-theory (H&H
theory) Lindblom (1990) at the articulatory feature level, knowledge about the
discriminative feature will be sufficient for the listener to discriminate between
these two words. Given enough contextual information, only the discriminative
feature will be stressed, as it is needed to convey the message to the recipient,
while other features will be reduced (“undershot”) to reduce the speaker’s
articulatory effort. Soltau et al. (2002b); Soltau (2005) presents a case study
on how features as described above change under different speaking styles,
and how detection of these changes can be used to improve automatic speech
recognition in a simple contrasting word task. Following Stüker et al. (2003),
feature detectors can also be ported across languages, which may facilitate the
development of ASR systems in new languages in the future.

Apart from the feature inventory and the feature to phone mapping, no fur-
ther expert knowledge is used for the construction of the speech recognizer
and no claim as to the relation of articulatory features with actual articula-
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tory processes is being made. The term “articulatory” reflects the observation
that most of the names used in distinctive feature theory are derived from
articulation rather than perception.

In contrast to work using articulatory data gained through measurements
Wrench and Richmond (2000); Frankel and King (2001), the approach pre-
sented in this work does not explicitly model trajectories of a physical articu-
lator. Also, unlike “inverse filtering” approaches Schroeter and Sondhi (1994),
we do not assume the presence of a real articulator, whose movement is being
estimated from the speech signal. Moreover, the proposed approach does not
use “feature-based” preprocessing, which tries to combine a distinctive fea-
ture representation of speech with the original waveform representation in the
front-end as in Eide (2001). In our experiments, phone-based and articulatory
feature-based acoustic models are trained and evaluated separately using the
same front-end processing and their output is combined at the score computa-
tion stage during decoding only. Also, the term “articulatory feature” does not
refer to characteristic properties of the speech signal, found only at a specific
point in time, as is the case in “landmark-based” automatic speech recognition
Stevens (2002); Hasegawa-Johnson and al. (2005), but is a continuous process.

Our usage of the term “articulatory features” is consistent with Kirchhoff et al.
(2002). This work showed that the performance of a phone-based ASR system
can be improved by incorporating information from a feature-based system,
particularly under noisy conditions. While following the same general idea,
our approach does not construct a speech recognition system based on feature
units only, which is then combined with a phone based system, instead we use
a multi-stream model Bourlard et al. (1996) to directly integrate individual
feature based units in the acoustic model of an hidden Markov model (HMM)
based system. The parameters for this combination are learned from data using
the maximum mutual information based approach presented here, allowing
the feature streams to “correct” mistakes the recognizer would make if it were
evaluating the standard models alone.

In our model, stream weights can be set at the HMM state level and can
therefore be used to model articulatory processes. This allows modeling con-
text dependencies of individual features at the HMM state level and allows
feature values to become “unspecified” by setting the weight to 0, but does
not allow them to flip from e.g. “present” to “absent”. The complexity of
the approach presented thus is reduced significantly and existing algorithms
can be re-used. By tying states using a phonetic decision tree, the amount of
speech data needed to set stream weights can be reduced to a few seconds,
making the approach suitable for speaker adaptation.

To model long-term dependencies and asynchrony between articulatory fea-
tures at the sub-phonetic level, several researchers are investigating Bayesian
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networks Livescu et al. (2003); Frankel et al. (2004) or trajectory models Deng
et al. (2005). This approach usually results in very complex systems, unsuit-
able for direct decoding of current large vocabulary tasks. To overcome this
obstacle or to integrate articulatory features with an existing baseline system,
several researchers use a separate late integration step Li et al. (2005).

This paper is laid out as follows: Section 2 introduces the database and detec-
tors for articulatory features from the acoustic signal, Section 3 describes the
stream architecture used to combine detectors with a standard phone recog-
nizer, Section 4 develops the theory for the discriminative training of stream
weights and Section 5 describes our experiments in discriminative speaker
adaptation using articulatory features on the “English Spontaneous Schedul-
ing Task” (ESST) corpus. Finally, Section 6 summarizes our experiments on
AF-based ASR and offers an interpretation of the results.

2 Detectors for Articulatory Features

A first step toward incorporating articulatory features in a speech recognition
system is to train dedicated “detectors” for these features in order to examine
whether it is possible to reliably extract the feature information from the
acoustic signal. By “detector”, we mean a pair of acoustic models which can
be used to classify a given speech frame as either “feature present” or “feature
absent” by comparing their output on the data given.

Our experiments were performed on the ESST (English Spontaneous Schedul-
ing Task) database collected during the Verbmobil project Waibel et al. (2000);
IPSK (2000). This database consists of American speakers, who were simu-
lating dialogs to schedule meetings and arrange travel plans to Germany with
a business partner. The participants were in separate rooms, talking over a
telephone, but could usually see each other. Many also knew their conversa-
tion partner. The ESST dialogs contain a large num ber of spontaneous effects
(partial words etc.) and also contain a high proportion of foreign (mostly Ger-
man) proper names (restaurants, businesses, places, ...) pronounced by native
American speakers without knowledge of German.

For training, we used the ESST data as listed in Appendix A.1, approximately
32h of audio data recorded with 16kHz/ 16bit using high quality head-mounted
microphones, which the participants wore in addition to the phones they held
to be able to talk to their conversation partner. Pre-processing of the au-
dio data consisted of the computation of mel-frequency cepstral coefficients
(MFCCs) using a 10ms frame shift followed by a linear discriminant analy-
sis (LDA) transform computed on a ±3 frames context window, cutting the
output vector to 32 dimensions. Vocal tract length normalization (VTLN)
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warping factors were determined using maximum likelihood (ML) Zhan and
Westphal (1997). Per-dialog cepstral mean subtraction (CMS) and cepstral
variance normalization (CVN) were also applied.

The ESST test set consists of 58 recordings from 16 speakers with a total du-
ration of 2h25. The speakers belonging to test set 1825 used in this experiment
are listed in Appendix A.1.

Detectors for articulatory features were built in exactly the same way as acous-
tic models for existing speech recognizers. Appendix A.2 lists the 68 phonolog-
ical features 2 used as linguistic questions during clustering of JRTk context
decision trees Finke et al. (1997) and the phones in which each feature is
present. Using phonetic time alignments from an existing speech recognition
system and the canonic mapping between phones and features, we partitioned
the training data into “feature present” and “feature absent” regions for these
68 features and trained acoustic models using maximum likelihood (ML). We
used Gaussian mixture models (GMMs) with 256 Gaussians per model and
diagonal covariances. Models for silence, noise, filler, and garbage regions were
also trained and shared between all features, so that the feature detectors use
140 Gaussian mixture models (GMM) in total. We trained feature models on
middle states of a tri-state left-to-right HMM topology only, assuming that
features such as Voiced would be more pronounced in the middle of a phone
than at the beginning or at the end, where the transition into neighboring
sounds has already begun. Begin, middle, and end states each contribute be-
tween 30% and 35% of total speech data. Using this approach, training times
can be reduced significantly without degrading performance Metze and Waibel
(2002).

To visualize the behaviour of the feature detectors, Figure 1 shows the score
difference ∆g on ESST example data for different features. This is defined as

∆g(o, f) = log p(o|f)− log p(o|f̄)− L0(f)

which consists of log p(o|f), the log likelihood of a feature f being present given
o, the observation vector, minus log p(o|f̄), the log likelihood of a feature be-
ing absent, minus L0(f), an a-priori normalization value computed from the
distribution of the feature on the training data. The detector output indeed
approximates the canonical feature values quite well: Fricatives and their
point of articulation (Alveolar and Labial) can be identified quite easily,
while /L/ is wrongly being classified as a Vowel. Deviations from canonical

2 Earlier work Metze and Waibel (2002, 2003) nominally used a higher number of
features, as six phone groups were included under two different names, e.g. the phone
group (F V) was attributed with both feature names Lab-Fr and Labiodental.
For the experiments presented here, one of the duplicate names was removed in
order to retain unique identifiers for the automatic weight training.

5



 

 

 

ACCEPTED MANUSCRIPT 

 
Alignment:

Vowel

Voiced

Fricative

Alveolar

Labial

Fig. 1. Score difference ∆g for several features f on part of the phrase “... as far
as flying ...” in spontaneous speech (ESST). Positive values mean feature present
while negative values mean feature absent. The numbers at the bottom represent
the frame numbers for this excerpt: 1sec = 100 frames.

pronunciations are visible for example in the de-voicing of /z/ before /f/. The
phonetic reference segmentation was automatically generated by Viterbi align-
ment using phonetic acoustic models, as hand labeled data was not available
for this data.

Per-frame (binary) classification rates on the 1825 test set range between
70.5% for Coronal and 99.3% for Fricative Metze (2005). Overall classi-
fication accuracy is 87.3% when measured on all speech states. Metze (2005)
finds a 1% absolute degradation between controled and spontaneous speech,
which confirms our impression from visual inspection of Figure 1 that feature
detection works robustly, even if it is difficult to compare a 1% degradation
on a two-class problem with the doubling of error rates usually observed on
LVCSR tasks Weintraub et al. (1996). Detection rates are about 3% higher
when measured on middle states only. Although not directly comparable be-
cause of different feature systems being used, the numbers reported here are in
the same range as for example the results reported in King and Taylor (2000)
for the detection of phonological features on the TIMIT database using neural
networks.

3 Stream Architecture for Including Articulatory Features in ASR

To discriminate between all speech sounds, several feature classifiers need to
be combined. Kirchhoff et al. (2002) combined individual multi-valued articu-
latory feature streams using a neural network and then combined the resulting
classifier with a standard acoustic model using empirically optimized parame-
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ters during acoustic score computation. As our goal is not to build a recognizer
based on articulatory features alone, we regard all acoustic models as indepen-
dent knowledge sources in the “Discriminative Model Combination” (DMC)
Beyerlein (1998) framework.

DMC aims at an optimal integration of several given models into one log-linear
model combination and can use discriminative methods such as minimum
classification error (MCE) to optimize the combination coefficients. In our
case, we will combine the acoustic model of an existing recognizer, which can
discriminate between several thousand states, with 68 feature acoustic models,
which can only discriminate between “feature present”, “feature absent”, and
noise states. M + 1 individual likelihood-based classifiers on an observation
o for classes s can be combined by using log-linear interpolation with stream
weights Λ := {λ0, λ1, . . . , λM}:

p(o|s) := C(Λ)
M∏
i=0

pi(o|s)λi (1)

The global normalization constant C(Λ) is necessary to conserve probability
mass while the individual stream weights λi are subject to the constraint∑

i λi = 1. In log-space, the above multiplication of exponentially weighted
terms simplifies to a linearly weighted sum. Different combinations of the
classifiers can be achieved by choosing different weights vectors Λ. The λi

therefore are free parameters, which need to be optimized. Neglecting the
global normalization constant C(Λ), which is not needed when comparing
acoustic scores during ASR decoding, the calculations in log-likelihood domain
can now be written as:

log p(o|s) =
M∑
i=0

λi log pi(o|s) (2)

The only constraint needed is Σλi = const in order to ensure the comparability
of acoustic scores during decoding. Which GMM to evaluate for every model
pi(o|s) is determined using decision trees: for i = 0, the cluster tree of an
existing recognizer, which will usually have several thousand leafs, determines
the states of the HMM to be used for the multi-stream system. The feature
streams 0 < i ≤ M only contain six acoustic models, which are usually tied
to several HMM states:

• The SIL, GARBAGE, +BREATH+, +FILLER+ models correspond directly to
the respective HMM states (i.e. models in stream 0)

• The “feature present” model in stream i is used for all HMM states whose
phonetic identity is an element of the phone set defining the feature (see
Appendix A.2)

• The “feature absent” model is used for all other states in that stream
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Fig. 2. Top nodes of ESST phonetic context decision tree for begin states as used in
the “main” stream: YES answers go to the right, NO answers to the left. Breath,
filler, silence, and garbage are modeled without dependency on context.

Assuming that the feature modeled by stream i = 10 is Lateral, this stream
would use the LATERAL(|) acoustic model (as leafs in a decision tree, these
are denoted by (|) in their name) for all HMM states belonging to phones
/L/ and /XL/ (which carry the LATERAL attribute), while NON LATERAL(|)

would be used for all other non-silence/ -noise/ -garbage/ -filler states.

As an example for the two different kinds of trees being used, the first few
nodes of the phonetic ESST tree for begin states (denoted by -b in their name
in the tree) used in stream i = 0 are shown in Figure 2. Starting from the
“root” node marked null, the phonetic context decision tree for phone AA

branches off at the 0=AA question. Further questions can for example be asked
about the phonetic identity of the left neighbor (-1=N), linguistic features of
the phone two to the left (-2=VLS-PL) or other properties of the phonetic
context: -1=WB 0=WB indicates that both the current and previous phone are
at word boundaries (WB tag). Parts of the tree for the phone AA are shown,
including models (i.e. leafs such as AA(|)-b(16)). Different trees exist for
middle and end states as a result of the automatic clustering process.

Figure 3 by contrast shows the complete decision tree for the Syllabic ar-
ticulatory feature stream (i > 0). The only acoustic models used (apart from
dedicated silence, breath, noise, and filler models) are the models SYLLABIC(|)
for feature present and NON SYLLABIC(|) for feature absent. No questions for
phonetic identity or context are being used. The same decision tree is used for
begin, middle, and end HMM states, only the acoustic models for noises will
be different for these positions to match the setup in stream 0.
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Fig. 3. Complete ESST decision tree for middle states of the Syllabic feature
stream. The same tree is being used for begin and end states, too, only the models
attached to the breath, filler, silence, and garbage leafs will be different.

As a three-stream example, the acoustic score computed for the begin state
of a /v/ sound is the weighted sum of a V(|)-b(i) phone model score, the
FRICATIVE(|) feature model score, and the VOICED(|) score. /f/ by con-
trast is modeled as the weighted sum of F(|)-b(j), FRICATIVE(|), and
NON VOICED(|). i and j are model indices enumerating different leafs for the
same base phone in the context clustering tree.

As the stream weights λi can be different for every HMM state, this structure
allows modeling asynchrony in feature transitions at the state (though not
at the frame) level. For example the weight for Voiced can be reduced for
the end states of a consonant to model de-voicing in the vicinity of unvoiced
sounds or the weight of specific point of articulation streams can be reduced
at the state level instead of at phonetic transitions only, while the weight of
broader classes such as vowel qualities is increased to model coarticulation or
sloppy speech.

4 Discriminative Combination of Knowledge Sources

Guessing the weights λi for the feature streams, will generally not lead to
optimal performance. As the features needed for discrimination will depend
on phonetic or lexical context, it is also not feasible in practice to apply rules,
which could for example be obtained from linguistic knowledge Metze and
Waibel (2003), so that the feature weights need to be learned automatically
from training or adaptation data.

The problem of combining information from two (synchronous) sources using
multi-stream HMMs has been studied in the context of audio-visual speech
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recognition and multi-band speech recognition, mostly to improve robustness
against environmental noise. In these experiments, a number of techniques for
estimating stream weights in a multi-stream HMM approach have been inves-
tigated: while maximum likelihood (ML) can be used by optimizing likelihood
ratios Tamura et al. (2004), any likelihood-based approach introduces some-
what arbitrary auxiliary conditions Potamianos and Graf (1998). Gradient
descent methods are used to optimize maximum entropy (MaxEnt) Gravier
et al. (2002) or minimum classification error (MCE) based criteria Potami-
anos and Graf (1998); Miyajima et al. (2000); Gravier et al. (2002). State
dependent audio-visual stream weights have been estimated in Gravier et al.
(2002) with inconsistent results: while MaxEnt performed better than MCE for
global weights, state-dependent weights were better estimated using the latter.
Miyajima et al. (2000) shows that MCE-based stream combination works for
individual classifiers trained both using ML and MCE. Tam and Mak (2000)
show improvements on multi-band speech recognition Bourlard et al. (1996)
using the same discriminative approaches to stream weight estimation.

In the above experiments, no more than two streams were combined, all
streams can discriminate between (nearly) all states by themselves, and the
computation of the optimization criterion was always based on N -best lists.
As the MCE criterion gave the best results unless restricted to the global
weights case, the above experiments are covered by the DMC framework as a
general, principled approach to the combination of several knowledge sources
in the case where different classifiers are based on different observations.

After initial experiments Stüker et al. (2003) using DMC to optimize the
weights in the stream combination approach proved the feasibility of the multi-
stream AF approach, we focused on an optimization criterion which can be
computed on lattices instead of n-best lists. Lattices are better suited to repre-
sent spontaneous speech, as the high number of pronunciation variants, func-
tion words, filler words, or other spontaneous effects, which are usually output
by the recognizer can be represented in compact form. This avoids having a
large number of entries in the n-best list, which only differ in spontaneous
effects without carrying discriminative information, instead leading to long
training times and numerical instability.

We therefore derived an optimization algorithm for the stream weights λ from
Maximum Mutual Information (MMI) estimation. Brown (1987) shows that
the uncertainty in a hypothesized word sequence can be minimized by choosing
the acoustic model parameters Ψ so as to maximize the mutual information
between the training word sequences W = {W1, . . . ,WR} and the training
observation sequences O = {O1, . . . , OR}, which in turn requires maximizing
the function

FMMI(Ψ) =
R∑

r=1

log
pΨ(Or|Wr)P (Wr)∑

ŵ pΨ(Or|ŵ)P (ŵ)
(3)
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In our case, the acoustic model parameters Ψ := {λi,s, µl, cl; Σl} contain the
weights λi,s, which depend on the HMM state s and the stream i as well as
Gaussian mixture model parameters µ, c, Σ enumerated by l, irrespective of i
and s. P (Wr) is the probability of the word sequence Wr as determined by the
language model, and the denominator sums over all possible word sequences
ŵ. In practice, ŵ is restricted to all word sequences with a certain minimum
probability contained in the recognizer output lattice.

Given a set of stream weights λ
(I)
i , we can compute an improved set of param-

eters by evaluating a weight update equation of the form

λ
(I+1)
i = λ

(I)
i + ε

∂

∂λi

F (Λ)

provided the learning rate ε was chosen appropriately.

Specializing the unified framework presented in Macherey (1998); Schlüter
(2000) to the MMI case, we can formally differentiate the MMI criterion (Equa-
tion 3) with respect to a stream- and state-dependent parameter λi,s:

∂FMMI

∂λi,s

=
R∑

r=1

(
∂

∂λi,s

log pΨ(Or|Wr)P (Wr)−
∂

∂λi,s

log
∑
ŵ

pΨ(Or|ŵ)P (ŵ)

)

For a single utterance r with duration Tr frames and observations Or :=
{o1

r, . . . , o
Tr
r }, we can compute the partial derivatives with respect to λi,s of the

individual terms using the Markov property of the state sequences described
by ŵ and Wr Schlüter (2000) and write:

∂

∂λi,s

log pΨ(Or|Wr) =
Tr∑
t=1

pΨ(st = s|Or, Wr)
∂

∂λi,s

log pΨ(ot
r|s)

The notation can be simplified by introducing the Forward-Backward (FB)
probabilities

γr,t(s; Wr) := pΨ(st = s|Or, Wr) and

γr,t(s) := pΨ(st = s|Or)

The conditional FB probability γr,t(s; Wr) describes the probability of a time
alignment of Wr given Or containing state s at time t. The generalized FB
probability γr,t(s) describes the probability of state s at time t, accumulated
over the set of alternative word sequences. The γ values can readily be com-
puted from the output word lattice of an ASR system Kemp and Schaaf (1997);
Schlüter (2000).

As in our case the HMM’s emission distributions pΨ are given by Equation 2
and we do only want to vary the stream weights λi, we can write
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 ∂

∂λi,s

log pΨ(Or|Wr) =
∂

∂λi

log
∏
j

pj(Or|Wr)
λj

=
∂

∂λi

∑
j

λj log pj(Or|Wr)

= log pi(Or|Wr)

which allows us to write

∂FMMI

∂λi

=
R∑

r=1

Tr∑
t=1

(γr,t(s; Wr)− γr,t(s)) log pi(o
t
r|s)

Defining

ΦNUM
i :=

R∑
r=1

∑
s∈Wr

γr,t(s; Wr) log pi(o
t
r|s)

ΦDEN
i :=

R∑
r=1

∑
s∈{ŵ}

γr,t(s) log pi(o
t
r|s)

the update equation can now be written as follows:

λ
(I+1)
i = λ

(I)
i + ε(ΦNUM

i − ΦDEN
i ) (4)

Here, the enumeration s ∈ Wr is over all reference states (“numerator lattice”)
and s ∈ {ŵ} is over all states given by the recognizer output (“denominator
lattice”). For brevity, the summation over t is implicitely included as a function
of the enumeration of s. To avoid over-fitting, different HMM states s can be
updated together, i.e. their accumulated statistics Φ can be tied, using the
phonetic decision tree of the main stream.

The simple structure of Equation 4 violates the normalization requirement of
a probability density function (PDF). However, as mentioned in Section 3,
Equation 2 already is no PDF and does not need to be. In order to ensure
comparable acoustic scores needed during beam search (decoding), the λi,s

need to be constrained to positive values and be re-normalized after every
iteration of update Equation 4 to ensure ∀s :

∑
i λi,s = const.

The update equations presented here do not guarantee convergence of the λi,s

to an optimum. As long as ε is small enough however, FMMI (Equation 3)
will improve in each iteration. As in Povey (2005), word error rate does not
improve for later iterations in MMI training, although the optimality criterion
continues to improve monotonically for small values of the training parameter.

An example of the evolution of FMMI during training of λ on ESST data is
shown in Figure 4, together with the evolution of word accuracy on the training
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data. The following settings were used: step size ε = 2 · 10−8, initial stream
weight λ

(0)
i6=0 = 1 · 10−4, lattice density d = 10, language model weight lz = 26.

The optimization criterion FMMI increases (nearly) monotonically, while word
error rate on the data levels out after three iterations of training.
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Fig. 4. Correspondence between Maximum Mutual Information optimization crite-
rion FMMI and Word Accuracy (WA) in %.

5 MMI Experiments on Spontaneous Speech

To investigate the performance of the proposed AF-based model on sponta-
neous speech, we tested the feature detectors built on ESST data by integrat-
ing them with phone based acoustic models on the ESST task. The task and
pre-processing up to the LDA step were already described in Section 2.

For training the baseline phone models, 32h from the ESST corpus were
merged with 66h Broadcast News ’96 data, for which manually annotated
speaker labels are available, for robustness. Various systems trained on ESST
only reached comparable performance on the ESST test set, but perform worse
on other data. The system is trained using 6 iterations of ML training and
uses 4000 context dependent (CD) acoustic models (HMM states), 32 Gaus-
sians per model with diagonal covariance matrices and a global semi-tied co-
variance matrix (STC) Gales (1999) in a 40-dimensional feature space. The
characteristics of the training and test sets used in the following experiments
are summarized in Table 1.
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 Table 1
Data sets used in this work. The ESST test set 1825 is the union of the development
set ds2 and the evaluation set xv2.

Data Set Training Test

BN ESST 1825 ds2 xv2

Duration 66h 32h 2h25 1h26 0h59

Utterances 22700 16400 1825 1150 675

Recordings 6473 2208 58 32 26

Speakers 175 248 16 9 7

Table 2
Baseline WER on the ESST task using a system trained on ESST and BN ’96. The
second part of the table gives WERs for a system using 24 and 44 Gaussians per
codebook (instead of 32) and using 5200 models (instead of 4000). The last two
systems have a number of parameters comparable to the multi-stream AF systems
presented later.

ESST Test Set 1825 ds2 xv2 # Gaussians

WER baseline 25.0% 24.1% 26.1% 128k

WER 24 Gaussians 25.6% 25.0% 26.3% 96k

WER 44 Gaussians 24.9% 24.4% 25.4% 176k

WER 5.2k models 25.0% 24.3% 25.8% 166k

The ESST test vocabulary contains 9400 words including pronunciation vari-
ants (7100 base forms) while the language model perplexity is 43.5 with an
out of vocabulary (OOV) rate of 1%. The language model is a tri-gram model
trained on ESST data containing manually annotated semantic classes for
most proper names (persons, locations, numbers, etc.). Generally, systems
run in less than 4 times real-time on Pentium 4-class machines.

The baseline results on the ESST VM-II test set are shown in Table 2. The
decoding experiments were conducted using the Ibis decoder Soltau et al.
(2002a) and used a decoding and a language model rescoring pass. The word
lattice resulting from the decoding pass was rescored with the same language
model, but using a higher language model weight. This approach was found
beneficial because the language model’s influence is reduced during search and
pruning in the first pass, resulting in denser lattices. The ML baseline system
was optimized for performance on the ds2 set.
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 Table 3
WER on the ESST task using global stream weights when adapting on test sets
1825 and ds2.

ESST Test set

AFs adapted on 1825 ds2 xv2

No AF training 25.0% 24.1% 26.1%

1825 23.7% 22.8% 24.9%

ds2 23.6% 22.6% 24.9%

5.1 MMI training of Articulatory Feature Weights

As the stream weight estimation process can introduce a scaling factor for the
acoustic model, we verified that the baseline system can not be improved by
widening the beam or by readjusting the weight of the language model vs. the
acoustic model. The baseline system can also not be improved significantly
by varying the number of parameters, either through increasing the number
of Gaussians per codebook or increasing the number of codebooks as shown
in the lower part of Table 2. The multi-stream articulatory feature based
(AF) system introduces 140 additional codebooks with 256 Gaussians each
for modeling the articulatory features, bringing the total number of Gaussians
to 164k. The stream weights without tying contribute 69*4k=276k extra float
parameters, which are equivalent to an extra 4k Gaussians, bringing the total
number to 168k. The systems including articulatory feature detectors therefore
contain about the same number of parameters as the baseline systems “44
Gaussians” and “5.2k models” presented in Table 2, which do not consistently
perform better than the baseline system.

Results after one iteration of stream weight estimation on the 1825 and ds2

data sets using step size ε = 4 · 10−8, initial stream weight λ0
i6=0 = 3 · 10−3, and

lattice density d = 10 are shown in Table 3. While adaptation works slightly
better when adapting and testing on the same corpus (22.6% vs. 22.8% word
error rate (WER) on ds2), there is no loss in WER (24.9%) on xv2 when
adapting the weights on ds2 instead of 1825, which has no speaker overlap
with xv2, so generalization on unseen test data is good for global stream
weights, i.e. weights which do not depend on s.

5.2 Speaker-specific Articulatory Feature Weights

The ESST test 1825 set is suitable to test speaker-specific properties of artic-
ulatory features, because it contains 16 speakers in 58 different recordings. As
1825 provides between 2 and 8 dialogs per speaker, it is possible to adapt the
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system to individual speakers in a round-robin experiment, i.e. to decode every
test dialog with weights adapted on all remaining dialogs from that speaker
in the 1825 test set. Using speaker-specific, but global (G), weights computed
with the above settings, the resulting WER is 21.5%. No adaptation parame-
ters were optimized on the ds2 test set, so that the full set 1825 can be used
for these experiments.

The training parameters were chosen to display improvements after the first
iteration of training without converging in further iterations. Consequently,
training a second iteration of global (i.e. context independent) weights does
not improve the performance of the speaker adapted system. Although state-
dependent (SD) stream weights can be trained starting from uniform weights,
in our experiments we reached best results when computing state-dependent
feature weights on top of global weights using the experimentally determined
smaller learning rate of εSD = 0.2·εG. In this case, speaker and state dependent
AF stream weights further reduce the word error rate to 19.8% (see bottom
part of Table 4).

5.3 Comparison with ML Speaker Adaptation

When training speaker-dependent articulatory feature weights in Section 5.2,
we were effectively performing supervised speaker adaptation (on separate
adaptation data) with articulatory feature weights. To compare the perfor-
mance of AFs to other approaches to speaker adaptation, we adapted the
baseline acoustic models to the test data using supervised maximum likelihood
linear regression (MLLR) Leggetter and Woodland (1994) and constrained
MLLR (or “feature space adaptation”, FSA) Gales (1997).

The results in Table 4 show that AF adaptation performs as well as FSA in
the case of supervised adaptation on the ds2 data 3 and better by about 1.3%
absolute in the speaker adaptation case, despite using significantly less param-
eters (69 for the AF case vs 40*40=1.6k for the FSA case). While supervised
FSA is equivalent to AF adaptation when adapting and decoding on the ds2

data in a “cheating experiment” for diagnostic purposes (22.5% vs 22.6%), su-
pervised FSA only reaches a WER of 22.8% when decoding every ESST dialog
with acoustic models adapted to the other dialogs available for this speaker.
AF-based adaptation reaches 21.5% for the global (G) case and 19.8% for the
state dependent (SD) case. The SD-AF case has 68*4000=276k free param-
eters, but decision-tree based tying using a minimum count reduces these to

3 The ESST data has very little channel variation so that the models that were
trained on both ESST and BN can be optimized slightly on ESST data by using
global ML based adaptation.
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 Table 4
Word error rates on the three ESST sets using different kinds of adaptation: “on
speaker” refers to adaptation on all dialogs of the speaker, except the one currently
decoded (“round-robin”, “leave-one-out” method). Speaker-based AF adaptation
outperforms speaker adaptation based on FSA and MLLR.

Adaptation Type 1825 ds2 xv2

None 25.0% 24.1% 26.1%

FSA on ds2 22.5% 25.4%

FSA on speaker 22.8% 21.6% 24.3%

Full MLLR on speaker 20.9% 19.8% 22.4%

MMI-MAP on ds2 14.4% 26.2%

MMI-MAP on speaker 20.5% 19.5% 21.7%

AF on ds2 (G) 22.6% 24.9%

AF on ds2 (SD) 22.5% 26.5%

AF on speaker (G) 21.5% 20.1% 23.6%

AF on speaker (SD) 19.8% 18.6% 21.7%

4.3k per speaker. Per-speaker MLLR uses 4.7k parameters in the transfor-
mation matrices on average per speaker, but performs worse than AF-based
adaptation by about 1% absolute (see Table 4).

5.4 Comparison with Discriminative Speaker Adaptation

In a non-stream setup, discriminative speaker adaptation approaches have
been published using conditional maximum likelihood linear regression (CM-
LLR) Gunawardana and Byrne (2001) and MMI-MAP Povey et al. (2003).
In supervised adaptation experiments on the Switchboard corpus, which are
similar to the experiments presented in the previous section, CMLLR reduced
word error rate over the baseline, but failed to outperform conventional MLLR
adaptation Gunawardana and Byrne (2001), which was already tested in Sec-
tion 5.3. We therefore compared AF-based speaker adaptation to MMI-MAP
as described in Povey et al. (2003).

The results are given in Table 4. Using a comparable number of parameters
for adaptation, AF-based adaptation performs slightly better than MMI-MAP
(19.8% WER vs. 20.5%). When adapting on ds2, MMI-MAP outperforms AF
based adaptation, but for both approaches to discriminative adaptation, the
gains do not carry over to the validation set xv2.
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5.5 Weights Learned

A stream i will only contribute in a multi-stream setup as defined by Equa-
tion 2, if it has a sufficiently high weight λi associated with it. The weight can
therefore be seen as a measure of the importance of this stream for discrim-
ination. Features that help to avoid phonetic confusions the baseline system
makes will therefore have a high weight, while the weight of streams that do
not contribute discriminative information will be reduced.

The global feature weights learned by MMI training on ESST data are shown
in Table A.1 in Appendix A.3. The most important questions are for the
Vowel/ Consonant distinction and then for vowel qualities (Low-Vow,
Cardvowel, Back-Vow, Round-Vow, Lax-Vow). These are followed
by questions on point (Bilabial, Palatal) and manner (Stop) of articu-
lation. The least important questions are for voicing and consonant groups,
which span several points of articulation (Apical, Vls-Pl, Vls-Fr), par-
ticularly Sibilants and similar features (Strident, Alveolar). Similar
(Consonant, Consonantal and Round, Round-Vow) features receive
similar weights while complementary (Vowel, Consonant and Voiced,
Unvoiced) features receive nearly identical weights.

While a statistically significant analysis of the features selected by the al-
gorithm has not been carried out so far, Metze (2005) compares the stream
weights presented in this work (which are computed on spontaneous speech)
to stream weights computed by the same system on the corpus of read speech
in BN F0-type conditions also used in Metze and Waibel (2002). This exper-
iment indicates that for spontaneous speech identification of vowel qualities
such as Mid-Vow as well as generic classes such as Fricative or Plosive
is more important, while read speech requires AFs to help with the recogni-
tion of diphthongs, lip rounding and sounds introduced into the pronunciation
lexicon to model “reduced” realizations. Both speaking styles do not need fea-
ture streams for classes such as Voiced, Obstruent, or Strident, which
either seem to be rarely confused by standard phonetic models or for which
the feature streams cannot contribute additional information.

While preliminary, these results are consistent with the findings in Eskénazi
(1993), which concludes that the articulatory targets of vowels are not nor-
mally reached in casual speech, so that a “feature” recognizer, which aims to
detect more general vowel classes in spontaneous speech, seems plausible.
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CD = 0.9. The learned weights

(left) and the word accuracy on ds2 and xv2 (right) do not depend on initial values
λ(1).

5.6 Phone Recognizer as Second Stream

The proposed algorithm can also be used to compute weights to optimally
combine two normal phone-based acoustic models. We tested this approach
with a context independent (CI) recognizer, which would normally be used
during construction of the context decision tree. The CI acoustic models are
trained in exactly the same way as the standard CD models with 4000 context
dependent models; however, there is no context decision tree and the number
of Gaussians is 143 ∗ 60 = 8580 (143 codebooks with 60 Gaussians each),
which is approximately the same number of parameters as in a 16-stream
feature model and represents about 7% of the number of parameters in the
full CD system (see Table 2). The baseline performance of the CI system is
38.2% WER on 1825, 37.9% on ds2, and 38.5% on xv2.

Building a two-stream system “CD+CI” of CD and CI models, similar to
Stemmer et al. (2003) (although we are using state likelihoods instead of phone
posteriors here) allows training the weights of the two streams using the MMI
criterion as for the feature streams. Training weights on the ds2 data results
in a best performance of 23.3% on the ds2 data set during 4 iterations of
training, which compares to 24.1% for the CD only baseline system. On the
xv2 evaluation set, the respective numbers are 26.1% for the baseline and
25.5% for the CD+CI system. The training of this system is shown in Figure
5. For the CD+CI system, the final weights and the performance attained after
training are independent of the starting weights λ(1). These results show that
the presented algorithm can also be used to integrate other types of models
into a log-likelihood combination scheme, which shows the numerical stability
of the algorithm and its robustness against changes in the initial values.
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6 Summary

This paper presents an automatic speech recognition system combining stan-
dard phone-based acoustic models with models of broad, phonologically moti-
vated articulatory features such as Voiced or Round. Combining these two
types of classifiers in a multi-stream approach with discriminatively trained
stream weights allows adapting the recognizer to the articulatory character-
istics of an individual speaker or speaking style better than an MLLR or
MMI-MAP based approach. Combination weights are computed on training
or adaptation data using a newly developed MMI based algorithm.

Feature streams can model phonologically distinctive categories individually
as opposed to phones, which always model a “bundle” of articulatory proper-
ties. The results presented support the view that systems based on articulatory
features can capture spontaneous effects occurring in individual speakers bet-
ter than a purely phone based approach. We demonstrated that combining
phone models with relatively simple detectors for articulatory features can
significantly improve the performance of a speech recognizer, while other ap-
proaches, such as direct adaptation of the phone-based models or a non-AF
multi-stream system improve performance to a lesser extent. Using AF-based
speaker adaptation, word error rate on the ESST task could be reduced from
25.0% to 19.8%, while MLLR speaker adaptation using a comparable number
of parameters reached 20.9%. Discriminative MMI-MAP speaker adaptation
reduces WER to 20.5%. Using global, speaker-independent AF weights trained
on the development test set, the WER on the evaluation test set was reduced
from 26.1% to 24.9% while MLLR adaptation reached 25.4%.

While an in-depth and statistically significant analysis of the features selected
by the algorithm has not been carried out so far, the results reported here
indicate that for spontaneous speech the articulatory features mainly help
with identification of vowel qualities such as Mid-Vow, which is consistent
with findings in Eskénazi (1993). Although more research is needed, this result
indicates that the algorithm for the computation of feature weights presented
here might also be a useful tool in speech analysis and eventually lead to more
insights into the speech production and recognition processes in Humans.
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A Appendix

A.1 ESST Data Sets

ESST training data was taken from Verbmobil phase 1 (VM-I) and phase 2
(VM-II) and consists of the English language data distributed on Verbmobil
CDs 6, 8, 9, 10, 13, 23, 28, 31, 32, 39, 42, 43, 47, 50, 51, 52, 55, 56 unless
dialog is marked as test data (see below).

ESST test data was taken from VM-II corpus only:

Development test data ds2: 32 recordings containing the 9 speakers AHS,
BJC, CLW, DRC, JLF, MBB, SNC, VNC, WJH

Validation data xv2: 26 recordings containing the 7 speakers BAT, BMJ,

DNC, JDH, KRA, RGM, TAJ

Full test set 1825: ds2 ∪ xv2

A.2 ESST Phone Set and Features

ESST phone set: 45 phones (IY IH EH AE IX AX AH UW UH AO AA EY AY

OY AW OW L R Y W ER AXR M N NG CH JH DH B D G P T K Z ZH V F TH

S SH HH XL XM XN) plus 4 other sounds (SIL GARBAGE +FILLER+ +BREATH+)

ESST feature set: 68 features (left column) defined as sets composed of
phones (right).

CONSONANT P B F V TH DH T D S Z SH ZH

CH JH K G HH M N NG R Y W L

ER AXR XL XM XN

CONSONANTAL P B F V TH DH T D S Z SH ZH

CH JH K G HH M N NG XL XM XN

OBSTRUENT P B F V TH DH T D S Z SH ZH

CH JH K G

SONORANT M N NG R Y W L ER AXR

XL XM XN

SYLLABIC AY OY EY IY AW OW EH IH AO

AE AA AH UW UH IX AX ER AXR

XL XM XN

VOWEL AY OY EY IY AW OW EH IH AO

AE AA AH UW UH IX AX

DIPHTHONG AY OY EY AW OW

CARDVOWEL IY IH EH AE AA AH AO UH UW

IX AX

VOICED B D G JH V DH Z ZH M N NG W

R Y L ER AY OY EY IY AW OW

EH IH AO AE AA AH UW UH AXR

IX AX XL XM XN

UNVOICED P F TH T S SH CH K

CONTINUANT F TH S SH V DH Z ZH W R Y

L ER XL

LATERAL L XL

ANTERIOR P T B D F TH S SH V DH Z ZH

M N W Y L XM XN

CORONAL T D CH JH TH S SH DH Z ZH N

L R XL XN

APICAL T D N

HIGH-CONS K G NG W Y

BACK-CONS K G NG W

LABIALIZED R W ER AXR

STRIDENT CH JH F S SH V Z ZH

SIBILANT S SH Z ZH CH JH

BILABIAL P B M W

LABIAL P B M W F V

ALVEOLAR-RIDGE T D N S Z L

ALVEOPALATAL SH ZH CH JH

ALVEOLAR T D N S Z L SH ZH CH JH

RETROFLEX R ER AXR

PALATAL Y
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GLOTTAL HH

STOP P B T D K G M N NG

PLOSIVE P B T D K G

NASAL M N NG XM XN

FRICATIVE F V TH DH S Z SH ZH HH

AFFRICATE CH JH

APPROXIMANT R L Y W

LAB-PL P B

ALV-PL T D

VEL-PL K G

VLS-PL P T K

VCD-PL B D G

LAB-FR F V

DNT-FR TH DH

ALV-FR SH ZH

VLS-FR F TH SH

VCD-FR V DH ZH

ROUND AO OW UH UW OY AW OW

HIGH-VOW IY IH UH UW IX

MID-VOW EH AH AX

LOW-VOW AA AE AO

FRONT-VOW IY IH EH AE

CENTRAL-VOW AH AX IX

BACK-VOW AA AO UH UW

TENSE-VOW IY UW AE

LAX-VOW IH AA EH AH UH

ROUND-VOW AO UH UW

REDUCED-VOW IX AX

REDUCED-CON AXR

REDUCED IX AX AXR

LH-DIP AY AW

MH-DIP OY OW EY

BF-DIP AY OY AW OW

Y-DIP AY OY EY

W-DIP AW OW

ROUND-DIP OY AW OW

W-GLIDE UW AW OW W

LIQUID L R

LW L W

Y-GLIDE IY AY EY OY Y

LQGL-BACK L R W

A.3 ESST MMI Stream Weights

Table A.1
Feature weights as learned by MMI training on ESST data: weight is regarded as a
measure of importance of this feature.

Feature Weight Feature Weight Feature Weight

VOWEL 0.016926 CENTRAL-VOW 0.007760 APPROXIMANT 0.006006

CONSONANT 0.016926 MH-DIP 0.007694 AFFRICATE 0.005970

LOW-VOW 0.016866 W-GLIDE 0.007428 ALV-PL 0.005796

CARDVOWEL 0.016134 LW 0.007418 GLOTTAL 0.005742

SYLLABIC 0.015692 REDUCED-VOW 0.007412 RETROFLEX 0.005732

BACK-VOW 0.014194 OBSTRUENT 0.007340 ALV-FR 0.005580

ROUND-VOW 0.013140 PLOSIVE 0.007226 HIGH-VOW 0.005562

ROUND 0.011844 W-DIP 0.007146 STRIDENT 0.005484

CONSONANTAL 0.010746 FRONT-VOW 0.007134 ALVEOPALATAL 0.005406

BILABIAL 0.010330 VCD-FR 0.006886 LIQUID 0.005220

LAX-VOW 0.010242 LABIALIZED 0.006832 APICAL 0.005214

CONTINUANT 0.010060 DNT-FR 0.006808 LAB-FR 0.005194

LAB-PL 0.009762 LQGL-BACK 0.006802 LATERAL 0.005038

STOP 0.009570 ANTERIOR 0.006784 LH-DIP 0.004840

VCD-PL 0.009354 HIGH-CONS 0.006690 VLS-PL 0.004692

Y-DIP 0.008552 BACK-CONS 0.006616 VLS-FR 0.003932

LABIAL 0.008416 REDUCED-CON 0.006576 CORONAL 0.002360

PALATAL 0.008348 SONORANT 0.006552 ALVEOLAR-RIDGE 0.002260

DIPHTHONG 0.008288 REDUCED 0.006524 ALVEOLAR 0.002068

NASAL 0.008232 VEL-PL 0.006450 UNVOICED 0.002002

MID-VOW 0.008020 ROUND-DIP 0.006436 VOICED 0.002000

FRICATIVE 0.007938 BF-DIP 0.006216 SIBILANT 0.001212

Y-GLIDE 0.007872 TENSE-VOW 0.006128
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Recognizer Helps to Recognize Words Better. In: Proc. ICASSP 2003. Vol. 1.
Hong Kong, pp. 736–739.

Stevens, K. N., Apr. 2002. Toward a model for lexical access based on acoustic
landmarks and distinctive features. JASA 111 (4).
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