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This paper presents an automatic speech recognition system using acoustic models based on both sub-phonetic units and broad, phonological features such as Voiced and Round as output densities in a hidden Markov model framework. The aim of this work is to improve speech recognition performance particularly on conversational speech by using units other than phones as a basis for discrimination between words. We explore the idea that phones are more of a short-hand notation for a bundle of phonological features, which can also be used directly to distinguish competing word hypotheses.

Acoustic models for different features are integrated with phone models using a multi-stream approach and log-linear interpolation. This paper presents a new lattice based discriminative training algorithm using the maximum mutual information criterion to train stream weights. This algorithm allows us to automatically learn stream weights from training or adaptation data and can also be applied to other tasks.

Decoding experiments conducted in comparison to a non-feature baseline system on the large vocabulary English Spontaneous Scheduling Task show reductions in word error rate of about 20% for discriminative model adaptation based on articulatory features, slightly outperforming other adaptation algorithms.

Introduction

Virtually all current statistical automatic speech recognition (ASR) systems use phones as the basic units for modeling speech and discrimination between different speech sounds. This approach, however, has limitations for modeling spontaneous and conversational speech, where changes in pronunciation result in acoustic realizations that cannot be described appropriately by phonetic models [START_REF] Saraçlar | Properties of pronunciation change in conversational speech recognition[END_REF], resulting in reduced performance of ASR systems [START_REF] Weintraub | Effect of speaking style on LVCSR performance[END_REF]. A possible remedy is to model individual articulatory events at the sub-phonetic level [START_REF] Ostendorf | Moving Beyond the 'Beads-on-a-String' Model of Speech[END_REF], an approach which is also closer to linguistic theory, which regards features such as Voiced or Round as the basic units of speech [START_REF] Halle | Phonological features[END_REF]; [START_REF] Jakobson | Preliminaries to speech analysis[END_REF]; [START_REF] Chomsky | The Sound Pattern of English[END_REF] and sees phones as a shorthand notation for a bundle of distinctive features commonly characterizing a region of speech. Consequently, there have been various approaches to integrating linguistic knowledge into ASR's statistical modeling approach [START_REF] Schmidbauer | Robust statistic modelling of systematic variabilities in continuous speech incorporating acoustic-articulatory relations[END_REF]; [START_REF] Espy-Wilson | A feature-based semivowel recognition system[END_REF]; [START_REF] King | Detection of phonological features in continuous speech using neural networks[END_REF]; [START_REF] Eide | Distinctive Features For Use in an Automatic Speech Recognition System[END_REF]; [START_REF] Kirchhoff | Combining acoustic and articulatory feature information for robust speech recognition[END_REF]; [START_REF] Livescu | Hidden feature models for speech recognition using dynamic Bayesian networks[END_REF]; [START_REF] Deng | A hidden trajectory model with bi-directional target-filtering: Cascaded vs. integrated implementation for phonetic recognition[END_REF].

The aim of this work is to pragmatically improve a phone-based ASR system by combining phone-based acoustic models with broader units based on distinctive features as a basis for discrimination between words. This combination approach should allow for a better trade-off between generalization and specialization in acoustic modeling. For example, the words bit and pit could be discriminated by calculating likelihoods for the first sound of the acoustic segment in question being Voiced and Unvoiced, which, when viewed from phonological feature theory, is the discriminating feature between the two words [START_REF] Chomsky | The Sound Pattern of English[END_REF], instead of the standard (context-dependent) phonetic model. Applying the principles behind Hyper-/ Hypo-theory (H&H theory) [START_REF] Lindblom | Explaining phonetic variation: a sketch of the H&H theory[END_REF] at the articulatory feature level, knowledge about the discriminative feature will be sufficient for the listener to discriminate between these two words. Given enough contextual information, only the discriminative feature will be stressed, as it is needed to convey the message to the recipient, while other features will be reduced ("undershot") to reduce the speaker's articulatory effort. [START_REF] Soltau | Compensating for Hyperarticulation by Modeling Articulatory Properties[END_REF]; [START_REF] Soltau | Compensating hyperarticulation for automatic speech recognition[END_REF] presents a case study on how features as described above change under different speaking styles, and how detection of these changes can be used to improve automatic speech recognition in a simple contrasting word task. Following [START_REF] Stüker | Integrating Multilingual Articulatory Features into Speech Recognition[END_REF], feature detectors can also be ported across languages, which may facilitate the development of ASR systems in new languages in the future.

Apart from the feature inventory and the feature to phone mapping, no further expert knowledge is used for the construction of the speech recognizer and no claim as to the relation of articulatory features with actual articula-tory processes is being made. The term "articulatory" reflects the observation that most of the names used in distinctive feature theory are derived from articulation rather than perception.

In contrast to work using articulatory data gained through measurements [START_REF] Wrench | Continuous speech recognition using articulatory data[END_REF]; [START_REF] Frankel | ASR -Articulatory speech recognition[END_REF], the approach presented in this work does not explicitly model trajectories of a physical articulator. Also, unlike "inverse filtering" approaches [START_REF] Schroeter | Techniques for estimating vocal tract shapes from the speech signal[END_REF], we do not assume the presence of a real articulator, whose movement is being estimated from the speech signal. Moreover, the proposed approach does not use "feature-based" preprocessing, which tries to combine a distinctive feature representation of speech with the original waveform representation in the front-end as in [START_REF] Eide | Distinctive Features For Use in an Automatic Speech Recognition System[END_REF]. In our experiments, phone-based and articulatory feature-based acoustic models are trained and evaluated separately using the same front-end processing and their output is combined at the score computation stage during decoding only. Also, the term "articulatory feature" does not refer to characteristic properties of the speech signal, found only at a specific point in time, as is the case in "landmark-based" automatic speech recognition [START_REF] Stevens | Toward a model for lexical access based on acoustic landmarks and distinctive features[END_REF]; [START_REF] Hasegawa-Johnson | Landmark-based speech recognition: Report of the 2004 Johns-Hopkins summer workshop[END_REF], but is a continuous process.

Our usage of the term "articulatory features" is consistent with [START_REF] Kirchhoff | Combining acoustic and articulatory feature information for robust speech recognition[END_REF]. This work showed that the performance of a phone-based ASR system can be improved by incorporating information from a feature-based system, particularly under noisy conditions. While following the same general idea, our approach does not construct a speech recognition system based on feature units only, which is then combined with a phone based system, instead we use a multi-stream model [START_REF] Bourlard | Multi-Stream Speech Recognition[END_REF] to directly integrate individual feature based units in the acoustic model of an hidden Markov model (HMM) based system. The parameters for this combination are learned from data using the maximum mutual information based approach presented here, allowing the feature streams to "correct" mistakes the recognizer would make if it were evaluating the standard models alone.

In our model, stream weights can be set at the HMM state level and can therefore be used to model articulatory processes. This allows modeling context dependencies of individual features at the HMM state level and allows feature values to become "unspecified" by setting the weight to 0, but does not allow them to flip from e.g. "present" to "absent". The complexity of the approach presented thus is reduced significantly and existing algorithms can be re-used. By tying states using a phonetic decision tree, the amount of speech data needed to set stream weights can be reduced to a few seconds, making the approach suitable for speaker adaptation.

To model long-term dependencies and asynchrony between articulatory features at the sub-phonetic level, several researchers are investigating Bayesian networks [START_REF] Livescu | Hidden feature models for speech recognition using dynamic Bayesian networks[END_REF]; [START_REF] Frankel | Articulatory feature recognition using dynamic Bayesian networks[END_REF] or trajectory models [START_REF] Deng | A hidden trajectory model with bi-directional target-filtering: Cascaded vs. integrated implementation for phonetic recognition[END_REF]. This approach usually results in very complex systems, unsuitable for direct decoding of current large vocabulary tasks. To overcome this obstacle or to integrate articulatory features with an existing baseline system, several researchers use a separate late integration step [START_REF] Li | A study on knowledge source integration for candidate rescoring in automatic speech recognition[END_REF].

This paper is laid out as follows: Section 2 introduces the database and detectors for articulatory features from the acoustic signal, Section 3 describes the stream architecture used to combine detectors with a standard phone recognizer, Section 4 develops the theory for the discriminative training of stream weights and Section 5 describes our experiments in discriminative speaker adaptation using articulatory features on the "English Spontaneous Scheduling Task" (ESST) corpus. Finally, Section 6 summarizes our experiments on AF-based ASR and offers an interpretation of the results.

Detectors for Articulatory Features

A first step toward incorporating articulatory features in a speech recognition system is to train dedicated "detectors" for these features in order to examine whether it is possible to reliably extract the feature information from the acoustic signal. By "detector", we mean a pair of acoustic models which can be used to classify a given speech frame as either "feature present" or "feature absent" by comparing their output on the data given.

Our experiments were performed on the ESST (English Spontaneous Scheduling Task) database collected during the Verbmobil project [START_REF] Waibel | Multilingual Speech Recognition[END_REF]; [START_REF] Ipsk | Bayerisches Archiv für Sprachsignale[END_REF]. This database consists of American speakers, who were simulating dialogs to schedule meetings and arrange travel plans to Germany with a business partner. The participants were in separate rooms, talking over a telephone, but could usually see each other. Many also knew their conversation partner. The ESST dialogs contain a large num ber of spontaneous effects (partial words etc.) and also contain a high proportion of foreign (mostly German) proper names (restaurants, businesses, places, ...) pronounced by native American speakers without knowledge of German.

For training, we used the ESST data as listed in Appendix A.1, approximately 32h of audio data recorded with 16kHz/ 16bit using high quality head-mounted microphones, which the participants wore in addition to the phones they held to be able to talk to their conversation partner. Pre-processing of the audio data consisted of the computation of mel-frequency cepstral coefficients (MFCCs) using a 10ms frame shift followed by a linear discriminant analysis (LDA) transform computed on a ±3 frames context window, cutting the output vector to 32 dimensions. Vocal tract length normalization (VTLN) warping factors were determined using maximum likelihood (ML) [START_REF] Zhan | Speaker normalization based on frequency warping[END_REF]. Per-dialog cepstral mean subtraction (CMS) and cepstral variance normalization (CVN) were also applied.

The ESST test set consists of 58 recordings from 16 speakers with a total duration of 2h25. The speakers belonging to test set 1825 used in this experiment are listed in Appendix A.1.

Detectors for articulatory features were built in exactly the same way as acoustic models for existing speech recognizers. Appendix A.2 lists the 68 phonological features2 used as linguistic questions during clustering of JRTk context decision trees [START_REF] Finke | The Karlsruhe Verbmobil Speech Recognition Engine[END_REF] and the phones in which each feature is present. Using phonetic time alignments from an existing speech recognition system and the canonic mapping between phones and features, we partitioned the training data into "feature present" and "feature absent" regions for these 68 features and trained acoustic models using maximum likelihood (ML). We used Gaussian mixture models (GMMs) with 256 Gaussians per model and diagonal covariances. Models for silence, noise, filler, and garbage regions were also trained and shared between all features, so that the feature detectors use 140 Gaussian mixture models (GMM) in total. We trained feature models on middle states of a tri-state left-to-right HMM topology only, assuming that features such as Voiced would be more pronounced in the middle of a phone than at the beginning or at the end, where the transition into neighboring sounds has already begun. Begin, middle, and end states each contribute between 30% and 35% of total speech data. Using this approach, training times can be reduced significantly without degrading performance [START_REF] Metze | A Flexible Stream Architecture for ASR using Articulatory Features[END_REF].

To visualize the behaviour of the feature detectors, Figure 1 shows the score difference ∆ g on ESST example data for different features. This is defined as

∆ g (o, f ) = log p(o|f ) -log p(o| f ) -L 0 (f )
which consists of log p(o|f ), the log likelihood of a feature f being present given o, the observation vector, minus log p(o| f ), the log likelihood of a feature being absent, minus L 0 (f ), an a-priori normalization value computed from the distribution of the feature on the training data. The detector output indeed approximates the canonical feature values quite well: Fricatives and their point of articulation (Alveolar and Labial) can be identified quite easily, while /L/ is wrongly being classified as a Vowel. Deviations from canonical pronunciations are visible for example in the de-voicing of /z/ before /f/. The phonetic reference segmentation was automatically generated by Viterbi alignment using phonetic acoustic models, as hand labeled data was not available for this data.

Per-frame (binary) classification rates on the 1825 test set range between 70.5% for Coronal and 99.3% for Fricative [START_REF] Metze | Articulatory Features for Conversational Speech Recognition[END_REF]. Overall classification accuracy is 87.3% when measured on all speech states. [START_REF] Metze | Articulatory Features for Conversational Speech Recognition[END_REF] finds a 1% absolute degradation between controled and spontaneous speech, which confirms our impression from visual inspection of Figure 1 that feature detection works robustly, even if it is difficult to compare a 1% degradation on a two-class problem with the doubling of error rates usually observed on LVCSR tasks [START_REF] Weintraub | Effect of speaking style on LVCSR performance[END_REF]. Detection rates are about 3% higher when measured on middle states only. Although not directly comparable because of different feature systems being used, the numbers reported here are in the same range as for example the results reported in [START_REF] King | Detection of phonological features in continuous speech using neural networks[END_REF] for the detection of phonological features on the TIMIT database using neural networks.

Stream Architecture for Including Articulatory Features in ASR

To discriminate between all speech sounds, several feature classifiers need to be combined. [START_REF] Kirchhoff | Combining acoustic and articulatory feature information for robust speech recognition[END_REF] combined individual multi-valued articulatory feature streams using a neural network and then combined the resulting classifier with a standard acoustic model using empirically optimized parame-ters during acoustic score computation. As our goal is not to build a recognizer based on articulatory features alone, we regard all acoustic models as independent knowledge sources in the "Discriminative Model Combination" (DMC) Beyerlein (1998) framework. DMC aims at an optimal integration of several given models into one log-linear model combination and can use discriminative methods such as minimum classification error (MCE) to optimize the combination coefficients. In our case, we will combine the acoustic model of an existing recognizer, which can discriminate between several thousand states, with 68 feature acoustic models, which can only discriminate between "feature present", "feature absent", and noise states. M + 1 individual likelihood-based classifiers on an observation o for classes s can be combined by using log-linear interpolation with stream weights Λ := {λ 0 , λ 1 , . . . , λ M }:

p(o|s) := C(Λ) M i=0 p i (o|s) λ i (1)
The global normalization constant C(Λ) is necessary to conserve probability mass while the individual stream weights λ i are subject to the constraint i λ i = 1. In log-space, the above multiplication of exponentially weighted terms simplifies to a linearly weighted sum. Different combinations of the classifiers can be achieved by choosing different weights vectors Λ. The λ i therefore are free parameters, which need to be optimized. Neglecting the global normalization constant C(Λ), which is not needed when comparing acoustic scores during ASR decoding, the calculations in log-likelihood domain can now be written as:

log p(o|s) = M i=0 λ i log p i (o|s) (2)
The only constraint needed is Σλ i = const in order to ensure the comparability of acoustic scores during decoding. Which GMM to evaluate for every model p i (o|s) is determined using decision trees: for i = 0, the cluster tree of an existing recognizer, which will usually have several thousand leafs, determines the states of the HMM to be used for the multi-stream system. The feature streams 0 < i ≤ M only contain six acoustic models, which are usually tied to several HMM states:

• The SIL, GARBAGE, +BREATH+, +FILLER+ models correspond directly to the respective HMM states (i.e. models in stream 0) • The "feature present" model in stream i is used for all HMM states whose phonetic identity is an element of the phone set defining the feature (see Appendix A.2) • The "feature absent" model is used for all other states in that stream Assuming that the feature modeled by stream i = 10 is Lateral, this stream would use the LATERAL(|) acoustic model (as leafs in a decision tree, these are denoted by (|) in their name) for all HMM states belonging to phones /L/ and /XL/ (which carry the LATERAL attribute), while NON LATERAL(|) would be used for all other non-silence/ -noise/ -garbage/ -filler states.

As an example for the two different kinds of trees being used, the first few nodes of the phonetic ESST tree for begin states (denoted by -b in their name in the tree) used in stream i = 0 are shown in Figure 2. Starting from the "root" node marked null, the phonetic context decision tree for phone AA branches off at the 0=AA question. Further questions can for example be asked about the phonetic identity of the left neighbor (-1=N), linguistic features of the phone two to the left (-2=VLS-PL) or other properties of the phonetic context: -1=WB 0=WB indicates that both the current and previous phone are at word boundaries (WB tag). Parts of the tree for the phone AA are shown, including models (i.e. leafs such as AA(|)-b( 16)). Different trees exist for middle and end states as a result of the automatic clustering process.

Figure 3 by contrast shows the complete decision tree for the Syllabic articulatory feature stream (i > 0). The only acoustic models used (apart from dedicated silence, breath, noise, and filler models) are the models SYLLABIC(|) for feature present and NON SYLLABIC(|) for feature absent. No questions for phonetic identity or context are being used. The same decision tree is used for begin, middle, and end HMM states, only the acoustic models for noises will be different for these positions to match the setup in stream 0. As the stream weights λ i can be different for every HMM state, this structure allows modeling asynchrony in feature transitions at the state (though not at the frame) level. For example the weight for Voiced can be reduced for the end states of a consonant to model de-voicing in the vicinity of unvoiced sounds or the weight of specific point of articulation streams can be reduced at the state level instead of at phonetic transitions only, while the weight of broader classes such as vowel qualities is increased to model coarticulation or sloppy speech.

Discriminative Combination of Knowledge Sources

Guessing the weights λ i for the feature streams, will generally not lead to optimal performance. As the features needed for discrimination will depend on phonetic or lexical context, it is also not feasible in practice to apply rules, which could for example be obtained from linguistic knowledge [START_REF] Metze | Using Articulatory Features for Speaker Adaptation[END_REF], so that the feature weights need to be learned automatically from training or adaptation data.

The problem of combining information from two (synchronous) sources using multi-stream HMMs has been studied in the context of audio-visual speech recognition and multi-band speech recognition, mostly to improve robustness against environmental noise. In these experiments, a number of techniques for estimating stream weights in a multi-stream HMM approach have been investigated: while maximum likelihood (ML) can be used by optimizing likelihood ratios [START_REF] Tamura | A stream-weight optimization method for audio-visual speech recognition using multi-stream HMMs[END_REF], any likelihood-based approach introduces somewhat arbitrary auxiliary conditions [START_REF] Potamianos | Discriminative training of HMM stream exponents for audio-visual speech recognition[END_REF]. Gradient descent methods are used to optimize maximum entropy (MaxEnt) [START_REF] Gravier | Maximum entropy and MCE based HMM stream weight estimation for audio-visual ASR[END_REF] or minimum classification error (MCE) based criteria Potamianos and Graf (1998); [START_REF] Miyajima | Audio-visual speech recognition using MCE-based HMMs and model-dependent stream weights[END_REF]; [START_REF] Gravier | Maximum entropy and MCE based HMM stream weight estimation for audio-visual ASR[END_REF]. State dependent audio-visual stream weights have been estimated in [START_REF] Gravier | Maximum entropy and MCE based HMM stream weight estimation for audio-visual ASR[END_REF] with inconsistent results: while MaxEnt performed better than MCE for global weights, state-dependent weights were better estimated using the latter. [START_REF] Miyajima | Audio-visual speech recognition using MCE-based HMMs and model-dependent stream weights[END_REF] shows that MCE-based stream combination works for individual classifiers trained both using ML and MCE. [START_REF] Tam | Optimization of sub-band weights using simulated noisy speech in multi-band speech recognition[END_REF] show improvements on multi-band speech recognition [START_REF] Bourlard | Multi-Stream Speech Recognition[END_REF] using the same discriminative approaches to stream weight estimation.

In the above experiments, no more than two streams were combined, all streams can discriminate between (nearly) all states by themselves, and the computation of the optimization criterion was always based on N -best lists. As the MCE criterion gave the best results unless restricted to the global weights case, the above experiments are covered by the DMC framework as a general, principled approach to the combination of several knowledge sources in the case where different classifiers are based on different observations.

After initial experiments [START_REF] Stüker | Integrating Multilingual Articulatory Features into Speech Recognition[END_REF] using DMC to optimize the weights in the stream combination approach proved the feasibility of the multistream AF approach, we focused on an optimization criterion which can be computed on lattices instead of n-best lists. Lattices are better suited to represent spontaneous speech, as the high number of pronunciation variants, function words, filler words, or other spontaneous effects, which are usually output by the recognizer can be represented in compact form. This avoids having a large number of entries in the n-best list, which only differ in spontaneous effects without carrying discriminative information, instead leading to long training times and numerical instability.

We therefore derived an optimization algorithm for the stream weights λ from Maximum Mutual Information (MMI) estimation. [START_REF] Brown | The acoustic modeling problem in automatic speech recognition[END_REF] shows that the uncertainty in a hypothesized word sequence can be minimized by choosing the acoustic model parameters Ψ so as to maximize the mutual information between the training word sequences W = {W 1 , . . . , W R } and the training observation sequences O = {O 1 , . . . , O R }, which in turn requires maximizing the function

F MMI (Ψ) = R r=1 log p Ψ (O r |W r )P (W r ) ŵ p Ψ (O r | ŵ)P ( ŵ) (3) 
In our case, the acoustic model parameters Ψ := {λ i,s , µ l , c l ; Σ l } contain the weights λ i,s , which depend on the HMM state s and the stream i as well as Gaussian mixture model parameters µ, c, Σ enumerated by l, irrespective of i and s. P (W r ) is the probability of the word sequence W r as determined by the language model, and the denominator sums over all possible word sequences ŵ. In practice, ŵ is restricted to all word sequences with a certain minimum probability contained in the recognizer output lattice.

Given a set of stream weights λ (I)

i , we can compute an improved set of parameters by evaluating a weight update equation of the form

λ (I+1) i = λ (I) i + ∂ ∂λ i F (Λ)
provided the learning rate was chosen appropriately.

Specializing the unified framework presented in [START_REF] Macherey | Implementierung und Vergleich diskriminativer Verfahren für Spracherkennung bei kleinem Vokabular[END_REF]; [START_REF] Schlüter | Investigations on discriminative training criteria[END_REF] to the MMI case, we can formally differentiate the MMI criterion (Equation 3) with respect to a stream-and state-dependent parameter λ i,s :

∂F MMI ∂λ i,s = R r=1 ∂ ∂λ i,s log p Ψ (O r |W r )P (W r ) - ∂ ∂λ i,s log ŵ p Ψ (O r | ŵ)P ( ŵ)
For a single utterance r with duration T r frames and observations O r := {o 1 r , . . . , o Tr r }, we can compute the partial derivatives with respect to λ i,s of the individual terms using the Markov property of the state sequences described by ŵ and W r [START_REF] Schlüter | Investigations on discriminative training criteria[END_REF] and write:

∂ ∂λ i,s log p Ψ (O r |W r ) = Tr t=1 p Ψ (s t = s|O r , W r ) ∂ ∂λ i,s log p Ψ (o t r |s)
The notation can be simplified by introducing the Forward-Backward (FB) probabilities γ r,t (s; W r ) := p Ψ (s t = s|O r , W r ) and γ r,t (s) := p Ψ (s t = s|O r )

The conditional FB probability γ r,t (s; W r ) describes the probability of a time alignment of W r given O r containing state s at time t. The generalized FB probability γ r,t (s) describes the probability of state s at time t, accumulated over the set of alternative word sequences. The γ values can readily be computed from the output word lattice of an ASR system [START_REF] Kemp | Estimating confidence using word lattices[END_REF]; [START_REF] Schlüter | Investigations on discriminative training criteria[END_REF].

As in our case the HMM's emission distributions p Ψ are given by Equation 2and we do only want to vary the stream weights λ i , we can write

ACCEPTED MANUSCRIPT ∂ ∂λ i,s log p Ψ (O r |W r ) = ∂ ∂λ i log j p j (O r |W r ) λ j = ∂ ∂λ i j λ j log p j (O r |W r ) = log p i (O r |W r )
which allows us to write

∂F MMI ∂λ i = R r=1 Tr t=1 (γ r,t (s; W r ) -γ r,t (s)) log p i (o t r |s) Defining Φ NUM i := R r=1 s∈Wr γ r,t (s; W r ) log p i (o t r |s) Φ DEN i := R r=1 s∈{ ŵ} γ r,t (s) log p i (o t r |s)
the update equation can now be written as follows:

λ (I+1) i = λ (I) i + (Φ NUM i -Φ DEN i ) (4) 
Here, the enumeration s ∈ W r is over all reference states ("numerator lattice") and s ∈ { ŵ} is over all states given by the recognizer output ("denominator lattice"). For brevity, the summation over t is implicitely included as a function of the enumeration of s. To avoid over-fitting, different HMM states s can be updated together, i.e. their accumulated statistics Φ can be tied, using the phonetic decision tree of the main stream.

The simple structure of Equation 4 violates the normalization requirement of a probability density function (PDF). However, as mentioned in Section 3, Equation 2 already is no PDF and does not need to be. In order to ensure comparable acoustic scores needed during beam search (decoding), the λ i,s need to be constrained to positive values and be re-normalized after every iteration of update Equation 4to ensure ∀s : i λ i,s = const.

The update equations presented here do not guarantee convergence of the λ i,s to an optimum. As long as is small enough however, F MMI (Equation 3) will improve in each iteration. As in [START_REF] Povey | Discriminative training for large vocabulary speech recognition[END_REF], word error rate does not improve for later iterations in MMI training, although the optimality criterion continues to improve monotonically for small values of the training parameter. 

MMI Experiments on Spontaneous Speech

To investigate the performance of the proposed AF-based model on spontaneous speech, we tested the feature detectors built on ESST data by integrating them with phone based acoustic models on the ESST task. The task and pre-processing up to the LDA step were already described in Section 2.

For training the baseline phone models, 32h from the ESST corpus were merged with 66h Broadcast News '96 data, for which manually annotated speaker labels are available, for robustness. Various systems trained on ESST only reached comparable performance on the ESST test set, but perform worse on other data. The system is trained using 6 iterations of ML training and uses 4000 context dependent (CD) acoustic models (HMM states), 32 Gaussians per model with diagonal covariance matrices and a global semi-tied covariance matrix (STC) [START_REF] Gales | Semi-Tied Covariance Matrices for Hidden Markov Models[END_REF] in a 40-dimensional feature space. The characteristics of the training and test sets used in the following experiments are summarized in Table 1. The ESST test vocabulary contains 9400 words including pronunciation variants (7100 base forms) while the language model perplexity is 43.5 with an out of vocabulary (OOV) rate of 1%. The language model is a tri-gram model trained on ESST data containing manually annotated semantic classes for most proper names (persons, locations, numbers, etc.). Generally, systems run in less than 4 times real-time on Pentium 4-class machines.

The baseline results on the ESST VM-II test set are shown in Table 2. The decoding experiments were conducted using the Ibis decoder Soltau et al. (2002a) and used a decoding and a language model rescoring pass. The word lattice resulting from the decoding pass was rescored with the same language model, but using a higher language model weight. This approach was found beneficial because the language model's influence is reduced during search and pruning in the first pass, resulting in denser lattices. The ML baseline system was optimized for performance on the ds2 set. 

MMI training of Articulatory Feature Weights

As the stream weight estimation process can introduce a scaling factor for the acoustic model, we verified that the baseline system can not be improved by widening the beam or by readjusting the weight of the language model vs. the acoustic model. The baseline system can also not be improved significantly by varying the number of parameters, either through increasing the number of Gaussians per codebook or increasing the number of codebooks as shown in the lower part of Table 2. The multi-stream articulatory feature based (AF) system introduces 140 additional codebooks with 256 Gaussians each for modeling the articulatory features, bringing the total number of Gaussians to 164k. The stream weights without tying contribute 69*4k=276k extra float parameters, which are equivalent to an extra 4k Gaussians, bringing the total number to 168k. The systems including articulatory feature detectors therefore contain about the same number of parameters as the baseline systems "44 Gaussians" and "5.2k models" presented in Table 2, which do not consistently perform better than the baseline system.

Results after one iteration of stream weight estimation on the 1825 and ds2 data sets using step size = 4 • 10 -8 , initial stream weight λ 0 i =0 = 3 • 10 -3 , and lattice density d = 10 are shown in Table 3. While adaptation works slightly better when adapting and testing on the same corpus (22.6% vs. 22.8% word error rate (WER) on ds2), there is no loss in WER (24.9%) on xv2 when adapting the weights on ds2 instead of 1825, which has no speaker overlap with xv2, so generalization on unseen test data is good for global stream weights, i.e. weights which do not depend on s.

Speaker-specific Articulatory Feature Weights

The ESST test 1825 set is suitable to test speaker-specific properties of articulatory features, because it contains 16 speakers in 58 different recordings. As 1825 provides between 2 and 8 dialogs per speaker, it is possible to adapt the system to individual speakers in a round-robin experiment, i.e. to decode every test dialog with weights adapted on all remaining dialogs from that speaker in the 1825 test set. Using speaker-specific, but global (G), weights computed with the above settings, the resulting WER is 21.5%. No adaptation parameters were optimized on the ds2 test set, so that the full set 1825 can be used for these experiments.

The training parameters were chosen to display improvements after the first iteration of training without converging in further iterations. Consequently, training a second iteration of global (i.e. context independent) weights does not improve the performance of the speaker adapted system. Although statedependent (SD) stream weights can be trained starting from uniform weights, in our experiments we reached best results when computing state-dependent feature weights on top of global weights using the experimentally determined smaller learning rate of SD = 0.2• G . In this case, speaker and state dependent AF stream weights further reduce the word error rate to 19.8% (see bottom part of Table 4).

Comparison with ML Speaker Adaptation

When training speaker-dependent articulatory feature weights in Section 5.2, we were effectively performing supervised speaker adaptation (on separate adaptation data) with articulatory feature weights. To compare the performance of AFs to other approaches to speaker adaptation, we adapted the baseline acoustic models to the test data using supervised maximum likelihood linear regression (MLLR) [START_REF] Leggetter | Speaker adaptation of HMMs using linear regression[END_REF] and constrained MLLR (or "feature space adaptation", FSA) [START_REF] Gales | Maximum likelihood linear transformations for HMM-based speech recognition[END_REF].

The results in Table 4 show that AF adaptation performs as well as FSA in the case of supervised adaptation on the ds2 data 3 and better by about 1.3% absolute in the speaker adaptation case, despite using significantly less parameters (69 for the AF case vs 40*40=1.6k for the FSA case). While supervised FSA is equivalent to AF adaptation when adapting and decoding on the ds2 data in a "cheating experiment" for diagnostic purposes (22.5% vs 22.6%), supervised FSA only reaches a WER of 22.8% when decoding every ESST dialog with acoustic models adapted to the other dialogs available for this speaker. AF-based adaptation reaches 21.5% for the global (G) case and 19.8% for the state dependent (SD) case. The SD-AF case has 68*4000=276k free parameters, but decision-tree based tying using a minimum count reduces these to Table 4 Word error rates on the three ESST sets using different kinds of adaptation: "on speaker" refers to adaptation on all dialogs of the speaker, except the one currently decoded ("round-robin", "leave-one-out" method). Speaker-based AF adaptation outperforms speaker adaptation based on FSA and MLLR. 4.3k per speaker. Per-speaker MLLR uses 4.7k parameters in the transformation matrices on average per speaker, but performs worse than AF-based adaptation by about 1% absolute (see Table 4).

Comparison with Discriminative Speaker Adaptation

In a non-stream setup, discriminative speaker adaptation approaches have been published using conditional maximum likelihood linear regression (CM-LLR) [START_REF] Gunawardana | Discriminative speaker adaptation with conditional maximum likelihood linear regression[END_REF] and MMI-MAP [START_REF] Povey | MMI-MAP and MPE-MAP for acoustic model adaptation[END_REF].

In supervised adaptation experiments on the Switchboard corpus, which are similar to the experiments presented in the previous section, CMLLR reduced word error rate over the baseline, but failed to outperform conventional MLLR adaptation [START_REF] Gunawardana | Discriminative speaker adaptation with conditional maximum likelihood linear regression[END_REF], which was already tested in Section 5.3. We therefore compared AF-based speaker adaptation to MMI-MAP as described in [START_REF] Povey | MMI-MAP and MPE-MAP for acoustic model adaptation[END_REF].

The results are given in Table 4. Using a comparable number of parameters for adaptation, AF-based adaptation performs slightly better than MMI-MAP (19.8% WER vs. 20.5%). When adapting on ds2, MMI-MAP outperforms AF based adaptation, but for both approaches to discriminative adaptation, the gains do not carry over to the validation set xv2.

Weights Learned

A stream i will only contribute in a multi-stream setup as defined by Equation 2, if it has a sufficiently high weight λ i associated with it. The weight can therefore be seen as a measure of the importance of this stream for discrimination. Features that help to avoid phonetic confusions the baseline system makes will therefore have a high weight, while the weight of streams that do not contribute discriminative information will be reduced. While a statistically significant analysis of the features selected by the algorithm has not been carried out so far, [START_REF] Metze | Articulatory Features for Conversational Speech Recognition[END_REF] compares the stream weights presented in this work (which are computed on spontaneous speech) to stream weights computed by the same system on the corpus of read speech in BN F0-type conditions also used in [START_REF] Metze | A Flexible Stream Architecture for ASR using Articulatory Features[END_REF]. This experiment indicates that for spontaneous speech identification of vowel qualities such as Mid-Vow as well as generic classes such as Fricative or Plosive is more important, while read speech requires AFs to help with the recognition of diphthongs, lip rounding and sounds introduced into the pronunciation lexicon to model "reduced" realizations. Both speaking styles do not need feature streams for classes such as Voiced, Obstruent, or Strident, which either seem to be rarely confused by standard phonetic models or for which the feature streams cannot contribute additional information.

While preliminary, these results are consistent with the findings in [START_REF] Eskénazi | Trends in speaking styles research[END_REF], which concludes that the articulatory targets of vowels are not normally reached in casual speech, so that a "feature" recognizer, which aims to detect more general vowel classes in spontaneous speech, seems plausible. 

CD =0.9 ds2, λ (1) CD =0.1 xv2, λ 

Phone Recognizer as Second Stream

The proposed algorithm can also be used to compute weights to optimally combine two normal phone-based acoustic models. We tested this approach with a context independent (CI) recognizer, which would normally be used during construction of the context decision tree. The CI acoustic models are trained in exactly the same way as the standard CD models with 4000 context dependent models; however, there is no context decision tree and the number of Gaussians is 143 * 60 = 8580 (143 codebooks with 60 Gaussians each), which is approximately the same number of parameters as in a 16-stream feature model and represents about 7% of the number of parameters in the full CD system (see Table 2). The baseline performance of the CI system is 38.2% WER on 1825, 37.9% on ds2, and 38.5% on xv2.

Building a two-stream system "CD+CI" of CD and CI models, similar to [START_REF] Stemmer | A Phone Recognizer Helps to Recognize Words Better[END_REF] (although we are using state likelihoods instead of phone posteriors here) allows training the weights of the two streams using the MMI criterion as for the feature streams. Training weights on the ds2 data results in a best performance of 23.3% on the ds2 data set during 4 iterations of training, which compares to 24.1% for the CD only baseline system. On the xv2 evaluation set, the respective numbers are 26.1% for the baseline and 25.5% for the CD+CI system. The training of this system is shown in Figure 5. For the CD+CI system, the final weights and the performance attained after training are independent of the starting weights λ (1) . These results show that the presented algorithm can also be used to integrate other types of models into a log-likelihood combination scheme, which shows the numerical stability of the algorithm and its robustness against changes in the initial values. This paper presents an automatic speech recognition system combining standard phone-based acoustic models with models of broad, phonologically motivated articulatory features such as Voiced or Round. Combining these two types of classifiers in a multi-stream approach with discriminatively trained stream weights allows adapting the recognizer to the articulatory characteristics of an individual speaker or speaking style better than an MLLR or MMI-MAP based approach. Combination weights are computed on training or adaptation data using a newly developed MMI based algorithm.

Feature streams can model phonologically distinctive categories individually as opposed to phones, which always model a "bundle" of articulatory properties. The results presented support the view that systems based on articulatory features can capture spontaneous effects occurring in individual speakers better than a purely phone based approach. We demonstrated that combining phone models with relatively simple detectors for articulatory features can significantly improve the performance of a speech recognizer, while other approaches, such as direct adaptation of the phone-based models or a non-AF multi-stream system improve performance to a lesser extent. Using AF-based speaker adaptation, word error rate on the ESST task could be reduced from 25.0% to 19.8%, while MLLR speaker adaptation using a comparable number of parameters reached 20.9%. Discriminative MMI-MAP speaker adaptation reduces WER to 20.5%. Using global, speaker-independent AF weights trained on the development test set, the WER on the evaluation test set was reduced from 26.1% to 24.9% while MLLR adaptation reached 25.4%.

While an in-depth and statistically significant analysis of the features selected by the algorithm has not been carried out so far, the results reported here indicate that for spontaneous speech the articulatory features mainly help with identification of vowel qualities such as Mid-Vow, which is consistent with findings in [START_REF] Eskénazi | Trends in speaking styles research[END_REF]. Although more research is needed, this result indicates that the algorithm for the computation of feature weights presented here might also be a useful tool in speech analysis and eventually lead to more insights into the speech production and recognition processes in Humans.

A Appendix

A.1 ESST Data Sets

ESST training data was taken from Verbmobil phase 1 (VM-I) and phase 2 (VM-II) and consists of the English language data distributed on Verbmobil CDs 6,8,9,10,13,23,28,31,32,39,42,43,47,50,51,52,55,56 unless dialog is marked as test data (see below). 

Fig. 1 .

 1 Fig. 1. Score difference ∆ g for several features f on part of the phrase "... as far as flying ..." in spontaneous speech (ESST). Positive values mean feature present while negative values mean feature absent. The numbers at the bottom represent the frame numbers for this excerpt: 1sec = 100 frames.

Fig. 2 .

 2 Fig. 2. Top nodes of ESST phonetic context decision tree for begin states as used in the "main" stream: YES answers go to the right, NO answers to the left. Breath, filler, silence, and garbage are modeled without dependency on context.

Fig. 3 .

 3 Fig. 3. Complete ESST decision tree for middle states of the Syllabic feature stream. The same tree is being used for begin and end states, too, only the models attached to the breath, filler, silence, and garbage leafs will be different. As a three-stream example, the acoustic score computed for the begin state of a /v/ sound is the weighted sum of a V(|)-b(i) phone model score, the FRICATIVE(|) feature model score, and the VOICED(|) score. /f/ by contrast is modeled as the weighted sum of F(|)-b(j), FRICATIVE(|), and NON VOICED(|). i and j are model indices enumerating different leafs for the same base phone in the context clustering tree.

Fig. 4 .

 4 Fig. 4. Correspondence between Maximum Mutual Information optimization criterion F MMI and Word Accuracy (WA) in %.

Fig. 5 .

 5 Fig. 5. Four iterations of MMI training of global stream weights for a two-stream "CD+CI" system for initial values of λ (1) CD = 0.1 and λ (1) CD = 0.9. The learned weights (left) and the word accuracy on ds2 and xv2 (right) do not depend on initial values λ (1) .

  ESST test data was taken from VM-II corpus only:Developmenttest data ds2: 32 recordings containing the 9 speakers AHS, BJC, CLW, DRC, JLF, MBB, SNC, VNC, WJH Validation data xv2: 26 recordings containing the 7 speakers BAT, BMJ, DNC, JDH, KRA, RGM, TAJ Full test set 1825: ds2 ∪ xv2 A.2 ESST Phone Set and Features ESST phone set: 45 phones (IY IH EH AE IX AX AH UW UH AO AA EY AY OY AW OW L R Y W ER AXR M N NG CH JH DH B D G P T K Z ZH V F TH S SH HH XL XM XN) plus 4 other sounds (SIL GARBAGE +FILLER+ +BREATH+) ESST feature set: 68 features (left column) defined as sets composed of phones (right). CONSONANT P B F V TH DH T D S Z SH ZH CH JH K G HH M N NG R Y W L ER AXR XL XM XN CONSONANTAL P B F V TH DH T D S Z SH ZH CH JH K G HH M N NG XL XM XN OBSTRUENT P B F V TH DH T D S Z SH ZH CH JH K G SONORANT M N NG R Y W L ER AXR XL XM XN SYLLABIC AY OY EY IY AW OW EH IH AO AE AA AH UW UH IX AX ER AXR XL XM XN VOWEL AY OY EY IY AW OW EH IH AO AE AA AH UW UH IX AX DIPHTHONG AY OY EY AW OW CARDVOWEL IY IH EH AE AA AH AO UH UW IX AX VOICED B D G JH V DH Z ZH M N NG W R Y L ER AY OY EY IY AW OW EH IH AO AE AA AH UW UH AXR IX AX XL XM XN UNVOICED P F TH T S SH CH K CONTINUANT F TH S SH V DH Z ZH W

Table 1

 1 Data sets used in this work. The ESST test set 1825 is the union of the development set ds2 and the evaluation set xv2.

	Data Set	Training		Test	
		BN	ESST 1825 ds2	xv2
	Duration	66h	32h	2h25 1h26 0h59
	Utterances 22700 16400 1825 1150 675
	Recordings 6473	2208	58	32	26
	Speakers	175	248	16	9	7

Table 2

 2 Baseline WER on the ESST task using a system trained on ESST and BN '96. The second part of the table gives WERs for a system using 24 and 44 Gaussians per codebook (instead of 32) and using 5200 models (instead of 4000). The last two systems have a number of parameters comparable to the multi-stream AF systems presented later.

	ESST Test Set	1825	ds2	xv2	# Gaussians
	WER baseline	25.0% 24.1% 26.1%	128k
	WER 24 Gaussians 25.6% 25.0% 26.3%	96k
	WER 44 Gaussians 24.9% 24.4% 25.4%	176k
	WER 5.2k models	25.0% 24.3% 25.8%	166k

  The global feature weights learned by MMI training on ESST data are shown in TableA.1 in Appendix A.3. The most important questions are for the Vowel/ Consonant distinction and then for vowel qualities (Low-Vow, Cardvowel, Back-Vow, Round-Vow, Lax-Vow). These are followed by questions on point (Bilabial, Palatal) and manner (Stop) of articulation. The least important questions are for voicing and consonant groups, which span several points of articulation (Apical, Vls-Pl, Vls-Fr), particularly Sibilants and similar features (Strident, Alveolar). Similar (Consonant, Consonantal and Round, Round-Vow) features receive similar weights while complementary (Vowel, Consonant and Voiced, Unvoiced) features receive nearly identical weights.

  Table A.1 Feature weights as learned by MMI training on ESST data: weight is regarded as a measure of importance of this feature.

				FRONT-VOW	IY IH EH AE
				CENTRAL-VOW	AH AX IX
				BACK-VOW	AA AO UH UW
				TENSE-VOW	IY UW AE
				LAX-VOW	IH AA EH AH UH
				ROUND-VOW	AO UH UW
				REDUCED-VOW	IX AX
				REDUCED-CON	AXR
				REDUCED	IX AX AXR
				LH-DIP	AY AW
				MH-DIP	OY OW EY
				BF-DIP	AY OY AW OW
				Y-DIP	AY OY EY
				W-DIP	AW OW
	FR	SH ZH		ROUND-DIP	OY AW OW
	VLS-FR	F TH SH	W-GLIDE	UW AW OW W
	VCD-FR	V DH ZH	LIQUID	L R
	ROUND	AO OW UH UW OY AW OW	LW	L W
	HIGH-VOW	IY IH UH UW IX	Y-GLIDE	IY AY EY OY Y
	MID-VOW	EH AH AX	LQGL-BACK	L R W
	LOW-VOW	AA AE AO	
	A.3 ESST MMI Stream Weights	
	Feature		Weight Feature	Weight Feature	Weight
	VOWEL		0.016926 CENTRAL-VOW	0.007760 APPROXIMANT	0.006006
	CONSONANT		0.016926 MH-DIP	0.007694 AFFRICATE	0.005970
	LOW-VOW		0.016866 W-GLIDE	0.007428 ALV-PL	0.005796
	CARDVOWEL	0.016134 LW	0.007418 GLOTTAL	0.005742
	SYLLABIC		0.015692 REDUCED-VOW 0.007412 RETROFLEX	0.005732
	BACK-VOW		0.014194 OBSTRUENT	0.007340 ALV-FR	0.005580
	ROUND-VOW	0.013140 PLOSIVE	0.007226 HIGH-VOW	0.005562
	ROUND		0.011844 W-DIP	0.007146 STRIDENT	0.005484
	CONSONANTAL 0.010746 FRONT-VOW	0.007134 ALVEOPALATAL	0.005406
	BILABIAL		0.010330 VCD-FR	0.006886 LIQUID	0.005220
	LAX-VOW		0.010242 LABIALIZED	0.006832 APICAL	0.005214
	CONTINUANT	0.010060 DNT-FR	0.006808 LAB-FR	0.005194
	LAB-PL		0.009762 LQGL-BACK	0.006802 LATERAL	0.005038
	STOP		0.009570 ANTERIOR	0.006784 LH-DIP	0.004840
	VCD-PL		0.009354 HIGH-CONS	0.006690 VLS-PL	0.004692
	Y-DIP		0.008552 BACK-CONS	0.006616 VLS-FR	0.003932
	LABIAL		0.008416 REDUCED-CON	0.006576 CORONAL	0.002360
	PALATAL		0.008348 SONORANT	0.006552 ALVEOLAR-RIDGE 0.002260
	DIPHTHONG		0.008288 REDUCED	0.006524 ALVEOLAR	0.002068
	NASAL		0.008232 VEL-PL	0.006450 UNVOICED	0.002002
	MID-VOW		0.008020 ROUND-DIP	0.006436 VOICED	0.002000
	FRICATIVE		0.007938 BF-DIP	0.006216 SIBILANT	0.001212
	Y-GLIDE		0.007872 TENSE-VOW	0.006128

Earlier work[START_REF] Metze | Articulatory Features for Conversational Speech Recognition[END_REF] Waibel (2002, 2003) nominally used a higher number of features, as six phone groups were included under two different names, e.g. the phone group (F V) was attributed with both feature names Lab-Fr and Labiodental.For the experiments presented here, one of the duplicate names was removed in order to retain unique identifiers for the automatic weight training.

The ESST data has very little channel variation so that the models that were trained on both ESST and BN can be optimized slightly on ESST data by using global ML based adaptation.
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