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Abstract

Major progress is being recorded regularly on both the
technology and exploitation of Automatic Speech Recogniti
(ASR) and spoken language systems. However, there are still
technological barriers to flexible solutions and user &atin
under some circumstances. This is related to several fctor
such as the sensitivity to the environment (backgrounde)pis
or the weak representation of grammatical and semantic know
edge.

Current research is also emphasizing deficiencies in dgalin
with variation naturally present in speech. For instarfee)ack
of robustness to foreign accents precludes the use by specifi
populations. Also, some applications, like directory stssice,
particularly stress the core recognition technology du¢h&o
very high active vocabulary (application perplexity). Thare
actually many factors affecting the speech realizatiogioreal,
sociolinguistic, or related to the environment or the spedler-
self. These create a wide range of variations that may not be
modeled correctly (speaker, gender, speaking rate, véfcat,e
regional accent, speaking style, non stationarity.. peeslly
when resources for system training are scarce. This papérs o
lines current advances related to these topics.

1. Introduction

Itis well known that the speech signal not only conveys the
linguistic information (the message) but also a lot of infiar
tion about the speaker himself: gender, age, social andmabi
origin, health and emotional state and, with a rather streng
liability, his identity. Beside intra- speaker variabjlifemo-
tion, health, age), it is also commonly admitted that theakpe
uniqueness results from a complex combination of physielog
cal and cultural aspects [91, 210].

Characterization of the effect of some of these specific vari
ations, together with related techniques to improve ASR ro-
bustness is a major research topic. As a first obvious theme,
the speech signal is non-stationary. The power spectral den
sity of speech varies over time according to the source kigna
which is the glottal signal for voiced sounds, in which casé-i
fects the pitch, and the configuration of the speech artiotda
(tongue, jaw, lips...). This signal is modeled, through déid
Markov Models (HMMs), as a sequence of stationary random
regimes. At a first stage of processing, most ASR front-enes a
alyze short signal frames (typically covering 30 ms of spgec
on which stationarity is assumed. Also, more subtle signal-a
ysis techniques are being studied in the framework of ASR.

The effects of coarticulation have motivated studies on seg
ment based, articulatory, and context dependent (CD) rivaplel
techniques. Even in carefully articulated speech, the uirod
tion of a particular phoneme results from a continuous gestu
of the articulators, coming from the configuration of the-pre

vious phonemes, and going to the configuration of the fol
ing phonemes (coarticulation effects may indeed streteh
more than one phoneme). In different and more relaxed s
ing styles, stronger pronunciation effects may appearpéted
lead to reduced articulation. Some of these being parti¢a
a language (and mostly unconscious). Other are related
gional origin, and are referred to as accents (or dialectthg
linguistic counterpart) or to social groups and are refitoeas
sociolects. Although some of these phenomena may be
eled appropriately by CD modeling techniques, their im
may be more simply characterized at the pronunciation n
level. At this stage, phonological knowledge may be he|
especially in the case of strong effects like foreign acceally
data-driven techniques have also been proposed.

Following coarticulation and pronunciation effects, de
related spectral characteristics (and gender) have besri-
fied as another major dimension of speech variability.
cific models of frequency warping (based on vocal tract I
differences) have been proposed, as well as more gener
ture compensation and model adaptation techniques, gedy
Maximum Likelihood or Maximum a Posteriori criteria. Th
model adaptation techniques provide a general formalis
re-estimation based on moderate amounts of speech dats

Besides these speaker specific properties outlined &
other extra-linguistic variabilities are admittedly affieg the
signal and ASR systems. A person can change his voice
louder, quieter, more tense or softer, or even a whispem,
some reflex effects exist, such as speaking louder when t
vironment is noisy, as reported in [176].

Speaking faster or slower, also has influence on the s
signal. This impacts both temporal and spectral charae
tics of the signal, both affecting the acoustic models. €
ously, faster speaking rates may also result in more fre
and stronger pronunciation changes.

Speech also varies with age, due to both generation:
physiological reasons. The two “extremes” of the range are
erally put at a disadvantage due to the fact that researgloi
as well as corpora used for model estimation, are typicait
designed to be representative of children and elderly $x
Some general adaptation techniques can however be apg
counteract this problem.

Emotions are also becoming a hot topic, as they can ir
have a negative effect on ASR; and also because added
can emerge from applications that are able to identify thes
emotional state (frustration due to poor usability for amste).

Finally, research on recognition of spontaneous conv
tions has allowed to highlight the strong detrimental intpt
this speaking style; and current studies are trying to bettar-
acterize pronunciation variation phenomena inherent amtsg
neous speech.

This paper reviews current advances related to thes:
ics. It focuses on variations within the speech signal thaite



the ASR task difficult. These variations are intrinsic to the
speech signal and affect the different levels of the ASRgssc
ing chain. For different causes of speech variation, theepap
summarizes the current literature and highlights speafiture
extraction or modeling weaknesses.

The paper is organized as follows. In a first section, vari-
ability factors are reviewed individually according to timajor
trends identified in the literature. The section gathersrinf-
tion on the effect of variations on the structure of speechelb
as the ASR performance.

Methodologies that can help analyzing and diagnose the
weaknesses of ASR technology can also be useful. These di-
agnosis methodologies are the object of section 3. A specific
methodology consists in performing comparisons betweam ma
and machine recognition. This provides an absolute referen
point and a methodology that can help pinpointing the leYel o
interest. Man-machine comparison also strengthens istérd
plinary insights from fields such as audiology and speedh-tec
nology.

In general, this review further motivates research on the
acoustic, phonetic and pronunciation limitations of speec
recognition by machines. It is for instance acknowledged th
pronunciation variation is a major factor of reduced perfor

ations that are produced are however dependent on the source
of variability, and on the different factors that charaizeit.

Although this is outside the scope of this paper, we should
add a fourth class of effects that concerns the grammatizhl a
semantic structure of the language. Sociological factoas;
tial knowledge of the language (non-nativeness, childhadg
may lead to important deviations from the canonical languag
structure.

2.1. Foreign and regional accents

While investigating the variability between speakers tigto
statistical analysis methods, [125] found that the first two
principal components of variation correspond to the gender
(and related to physiological properties) and accent espe
tively. Indeed, compared to native speech recognitionfoper
mance degrades when recognizing accented speech and non-
native speech [148, 158]. In fact accented speech is associ-
ated to a shift within the feature space [295]. Good classific
tion results between regional accents are reported in [@8] f
human listeners on German SpeechDat data, and in [165] for
automatic classification between American and British atsce
which demonstrates that regional variants correspondytufsi

mance (in the case of accented and spontaneous speech). Secdicantly different data. For native accents, the shift isliaglby

tion 4 reviews ongoing trends and possible breakthroughs in
general feature extraction and modeling techniques that pr
vides more resistance to speech production variabilitye iEh
sues that are being addressed include the fact that tenrppral
resentations/models may not match the structure of spesch,
well as the fact that some analysis and modeling assumptions
can be detrimental. General techniques such as compeansatio
adaptation, multiple models, additional acoustic cuesraare
accurate models are surveyed.

2. Speech Variability Sources

Prior to reviewing the most important causes of intrinsid-va
ation of speech, it is interesting to briefly look into theeeffs.
Indeed, improving ASR systems regarding sources of variabi
ity will mostly be a matter of counteracting the effects. €on
sequently, it is likely that most of theariability-proof ASR
techniques actually address several causes that produiarsi
modifications of the speech.

We can roughly consider three main classes of effects; first,
the fine structure of the voice signal is affected, the cotat a
the quality of the voice are modified by physiological or beha
ioral factors. The individual physical characteristi¢g smok-
ing habit, a disease, the environmental context that make yo
soften your voice or, on the contrary, tense it, ... are sach f
tors. Second, the long-term modulation of the voice may be
modified, intentionally - to transmit high level informatisuch
as emphasizing or questioning - or not - to convey emotions.
This effect is an integral part of the human communicatioth an
is therefore very important. Third, the word pronunciatisn
altered. The acoustic realization in terms of the core spoke
language components, the phonemes, may be deeply affected,
going from variations due to coarticulation, to substiduos (ac-
cents) or suppressions (spontaneous speech).

As we will further observe in the following sections, some
variability sources can hence have multiple effects, andrag¢
variability sources obviously produce effects that belamthe
same category. For instance, foreign accents, speakitg sty
rate of speech, or children speech all cause pronunciation a
terations with respect to the "standard form”. The actugdral

large groups of speakers, is more or less important, moeser |
global, but overall acoustic confusability is not changiephigi-
cantly. In contrast, for foreign accents, the shift is veajiable,

is influenced by the native language, and depends also on the
level of proficiency of the speaker.

Non-native speech recognition is not properly handled by
speech models estimated using native speech data. Thés issu
remains no matter how much dialect data is included in the
training [18]. This is due to the fact that non-native speak-
ers can replace an unfamiliar phoneme in the target language
which is absent in their native language phoneme inventory,
with the sound considered as the closest in their native lan-
guage phoneme inventory [77]. This behavior makes the non-
native alterations dependent on both the native languadjthan
speaker. Some sounds may be replaced by other sounds, or in-
serted or omitted, and such insertion/omission behavionat
be handled by the usual triphone-based modeling [136].

Accent classification is also studied since many years [9],
based either on phone models [152, 274] or specific acoustic
features [83].

Speech recognition technology is also used in foreign lan-
guage learning for rating the quality of the pronunciatiég,[
80, 207, 281]. Experiments showed that the provided rating i
correlated with human expert ratings [46, 206, 309] whefi-suf
cient amount of speech is available.

Proper and foreign name processing is another topic
strongly related with foreign accent. Indeed, even if speak
ers are not experts in all foreign languages, neither arg the
linguistically naive, hence they may use different systems
sub-systems of rules to pronounce unknown names which they
perceive to be non-native [75]. Foreign names are hard to
pronounce for speakers who are not familiar with the names
and there are no standardized methods for pronouncing prope
names [89]. Native phoneme inventories are enlarged with
some phonemes of foreign languages in usual pronunciations
foreigh names, especially in some languages [66]. Determin
ing the ethnic origin of a word improves pronunciation mod-
els [175] and is useful in predicting additional pronuniciat
variants [15, 179].



2.2. Speaker physiology

Beside the regional origin, another speaker-dependepepo
that is conveyed through the speech signal results from the
shape of the vocal apparatus which determines the rangawith
which the parameters of a particular speaker’s voice may. var
From this point of view, a very detailed study of the speech-
speaker dichotomy can be found in [196].

The impact of inter-speaker variability on the automatic
speech recognition performance has been acknowledged for
years. In[126, 159, 250], the authors mention error ratestow
three times higher for speaker-independent ASR systems com

systems to inter-speaker variability (cf. 4.1.2 and 4.2.1)

2.3. Speaking style and spontaneous speech

In spontaneous casual speech, or under time pressure; reduc
tion of pronunciations of certain phonemes, or syllables of
ten happen. It has been suggested that this "slurring” &ffec
more strongly sections that convey less information. Irtiemt,
speech portions where confusability (given phonetic, agytict
and semantic cues) is higher tend to be articulated more care
fully, or even hyperarticulated. Some references to suatiies
can be found in [13, 133, 167, 263], and possible implication

pared with speaker-dependent systems. Methods that aims at to ASR in [20].

reducing this gap in performance are now part of state-&- th
art commercial ASR systems.

Speech production can be modeled by the so-called source-
filter model [73] where the “source” refers to the air strean-g
erated by the lungs through the larynx and the “filter” reters
the vocal tract, which is composed of the different cavisiiss
uated between the glottis and the lips. Both of the companent
are inherently time-varying and assumed to be independent o
each other.

The complex shape of the vocal organs determines the
unique "timbre” of every speaker. The glottis at the laryax i

This dependency of casual speech slurring on identified fac-
tors holds some promises for improving recognition of spent
neous speech, possibly by further extending the contexdrdep
dency of phonemes to measures of such perplexity, with how-
ever very few research ongoing to our knowledge, except mayb
in the use of phonetic transcription for multi-word compdsn
or user formulation [44] (cf. 4.3).

Research on spontaneous speech modeling is nevertheless
very active. Several studies have been carried out on useng t
Switchboard spontaneous conversations corpus. An appgeali
methodology has been proposed in [301], where a comparison

the source for voiced phonemes and shapes the speech signalof ASR accuracy on the original Switchboard test data and on a

in a speaker characteristic way. Aside from the long-term FO
statistics [33, 132, 184] which are probably the most petecep
ally relevant parameters (the pitch), the shape of glottitde
will affect the long-term overall shape of the power spetiru
(spectral tilt) [210] and the tension of vocal folds will aft the
voice quality. The vocal tract, can be modeled by a tube res-
onator [73, 157]. The resonant frequencies (the formames) a
structuring the global shape of the instantaneous voicetispe

and are mostly defining the phonetic content and quality ®f th
vowels.

Modeling of the glottal flow is a difficult problem and very
few studies attempt to precisely decouple the source-txot
ponents of the speech signal [23, 30, 229]. Standard feature
extraction methods (PLP, MFCC) simply ignore the pitch com-
ponent and roughly compensate for the spectral tilt by apgly
a pre-emphasis filter prior to spectral analysis or by applyi
band-pass filtering in the cepstral domain (the cepsttatiifg)
[135].

On the other hand, the effect of the vocal tract shape on
the intrinsic variability of the speech signal between atiént
speakers has been widely studied and many solutions to com-
pensate for its impact on ASR performance have been proposed
"speaker independent” feature extraction, speaker nazezal
tion, speaker adaptation. The formant structure of vowetsp
tra has been the subject of early studies [226, 231, 235] that
amongst other have established the standard view that tR2 F1
plane is the most descriptive, two-dimensional represientaf
the phonetic quality of spoken vowel sounds. On the othedhan
similar studies underlined the speaker specificity of hidhe
mants and spectral content above 2.5 kHz [231, 242]. Another
important observation [155, 204, 226, 235] suggested #iat r
tive positions of the formant frequencies are rather candta
a given sound spoken by different speakers and, as a cgrollar
that absolute formant positions are speaker-specific. eTbes
servations are corroborated by the acoustic theory apmitite
tube resonator model of the vocal tract which states that pos
tions of the resonant frequencies are inversely propaatitm
the length of the vocal tract [76, 215]. This observatiorntiha
root of different techniques that increase the robustnEASR

reread version of itis proposed. Using modeling methodekg
that had been developed for read speech recognition, the err
rate obtained on the original corpus was twice the error rate
observed on the read data.

Techniques to increase accuracy towards spontaneous
speech have mostly focused on pronunciation stidids a
fundamental observation, the strong dependency of praaunc
tion phenomena with respect to the syllable structure haa be
highlighted in [5, 99]. As a consequence, extensions of &cou
tic modeling dependency to the phoneme position in a s@labl
and to the syllable position in word and sentences have been
proposed. This class of approaches is sometimes referial to
long-units [191].

Variations in spontaneous speech can also extend beyond
the typical phonological alterations outlined previousis-
fluencies, such as false starts, repetitions, hesitatioddikked
pauses, need to be considered. The reader will find usetrtinf
mation in the following papers: [32, 84].

There are also regular workshops specifically addressing
the research activities related to spontaneous speechlinpde
and recognition [56]. Regarding the topic of pronunciatiari-
ation, the reader should also refer to [241].

2.4. Rate of Speech

Rate of Speech (ROS) is considered as an important factor
which makes the mapping process between the acoustic signal
and the phonetic categories more complex.

Timing and acoustic realization of syllables are affectee d
in part to the limitations of the articulatory machinery, iath
may affect pronunciation through phoneme reductions {typi
cal to fast spontaneous speech), time compression/expansi
changes in the temporal patterns, as well as smaller-scale
acoustic-phonetic phenomena.

In [133], production studies on normal and fast-rate speech
are reported. They have roughly quantified the way people com
press some syllables more than others. Note also that the stu

Ipesides language modeling which is out of the scope of thispa



reports on a series of experiments investigating how speak- cussed. They basically all rely on a good estimation of the
ers produce and listeners perceive fast speech. The main re- ROS. Practically, since fast speech and slow speech hdee dif
search question is how the perception of naturally produced ent effects (for example fast speech increases deletiorelis w
fast speech compares to the perception of artificially time- as substitution errors and slow speech increases insegtion
compressed speech, in terms of intelligibility. rors [188, 203]), several ROS estimation measures are com-
Several studies also reported that different phonemes are bined in order to use appropriate compensation techniques.
affected differently by ROS. For example, compared to censo
nants, the duration of vowels is significantly more reducechf 2.5. Children Speech
slow to fast speech [153]. ] ) S -
The relationship between speaking rate variation andrdiffe ~ Children automatic speech recognition is still a difficulolp-

ent acoustic correlates are usually not well taken intoamecco  |em for conventional Automatic Speech Recognition systems
in the modeling of speech rate variation for automatic speec ~ Children speech represents an important and still poortiern
recognition, where it is typical that the higher the spegkiate stood area in the field of computer speech recognition. The im
is, the higher the error rate is. Usually, slow speaking dates pact of children voices on the performance of standard ASR
not affect performance; however, when people hyperaeteul systems is iIIusFrateq in [67,. 103, 282]. The first one is myost
and make pauses among syllables, speech recognition perfor related to physical size. Children have shorter vocal teact
mance can also degrade a lot. vocal folds compared to adults. This results in higher pmsst

In automatic speech recognition, the significant perfor- ©Of formants and fundamental frequency. The high fundamen-

mance degradations [188, 193, 259] caused by speaking rate tal fr_equency i_s rgflected in a large dista_nce betvyeen the har
variations stimulated many studies for modeling the spéctr ~ Monics, resulting in poor spectral resolution of voicedrats
effects of speaking rate variations. The schemes presémted The difference in vocal tract size results in a non-linear in
the literature generally make use of ROS (Rate of Speech) es- crease of the formant frequencies. In order to reduce these
timators. Almost all existing ROS measures are based on the effects, previous studies have focused on the acoustiy-anal
same principle which is how to compute the number of lin- ~ Sis of children speech [162, 233]. This work demonstrates
guistic units (usually phonemes or syllables) in the utteea the challenges faced by Speech Recognition systems devel-
So, usually, a speaking rate measure based on manually seg- OP€d to automatically recognize children speech. For exam-
mented phones or syllables is used as a reference to evaluate P'€, it has been shown that children below the age of 10 ex-
new ROS measure. Current ROS measures can be divided into hibit a wider range of vowel durations relative to older €hil

(1) lexically-based measureand (2)acoustically-based mea- ~ dren and adults, larger spectral and suprasegmentalivagat
sures Thelexically-based measurestimate the ROS by count- and wider variability in formant locations and fundamerite}
ing the number of linguistic units per second using the isger ~ quencies in the speech signal. Several studies have aé@upt
of mean duration [259], omean ofm [193]. To reduce the address this problem by adapting the acoustic featuresilef ch

dependency on the phone type, a normalization scheme by the dren speech to match that of acoustic models trained frorh adu
expected phone duration [188] or the use of phone duratipn pe ~ SPeech [50, 94, 232, 234]. Such Approaches included vocal
centile [258] are introduced. These kinds of measures are ef tractlength normalization (VTLN) [50] as well as spectraf-n

fective if the segmentation of the speech signal provideciby =~ malization [161].

speech recognizer is reliable. In practice this is not theeca A second problem is that younger children may not have
since the recognizer is usually trained with normal speéch. a correct pronunciation. Sometimes they have not yet lelarne
an alternative technique, acoustically-based measuesprar how to articulate specific phonemes [251]. Finally, a third
posed. These measures estimate the ROS directly from the source of difficulty is linked to the way children are using-la
speech signal without recourse to a preliminary segmemtafi guage. The vocabulary is smaller but may also contain words
the utterance. In [199], the authors proposedninatemeasure that don’t appear in grown-up speech. The correct infleation
(short formultiple raté. It combines three independent ROS  forms of certain words may not have been acquired fully, es-
measures, i.e., (1) the energy rateemrate[198], (2) a sim- pecially for those words that are exceptions to common rules

ple peak counting algorithm performed on the wideband gnerg ~ Spontaneous speech is also believed to be less grammhbtioal t
envelope and (3) a sub-band based module that computes a tra- for adults. A number of different solutions to the second and

jectory that is the average product over all pairs of congaes third source of difficulty have been proposed, modificatién o
sub-band energy trajectories. A modified version oftiiateis the pronunciation dictionary, and the use of language nsodel
also proposed in [19]. In [285], the authors found that ssece ~ Which are customized for children speech have all been.tried
sive feature vectors are more dependent (correlated) dor sl In [71], the number of tied-states of a speech recognizer was

speech than for fast speech. An Euclidean distance is used to reduced to compensate for data sparsity. Recognition exper
estimate this dependency and to discriminate between sidwa  iments using acoustic models trained from adult speech and
fast speech. In [72], speaking rate dependent GMMs are nsed t  tested against speech from children of various ages clgaoly
classify speech spurts into slow, medium and fast speech. Th performance degradation with decreasing age. On avetage, t
output likelihoods of these GMMs are used as input to a neural word error rates are two to five times worse for children speec
network whose targets are the actual phonemes. The authors than for adult speech. Various techniques for improving ASR
made the assumption that ROS does not affect the temporal de- performance on children speech are reported.
pendencies in speech, which might not be true. Although several techniques have been proposed to im-

It has been shown that speaking rate can also have a dra- prove the accuracy of ASR systems on children voices, a large
matic impact on the degree of variation in pronunciation, [79  shortfall in performance for children relative to adultenans.
100], for the presence of deletions, insertions, and codati [70, 307] report ASR performance to be around 100% higher,
tion effects. in average, for children speech than for adults. The diffeee

In section 4, different technical approaches to reduce the increases with decreasing age. Many papers report a laager v
impact of the speaking rate on the ASR performance are dis- ation in recognition accuracy among children, possibly tiue



their larger variability in pronunciation. Most of theseidies
point to lack of children acoustic data and resources tonesé
speech recognition parameters relative to the abundanee- of
isting resources for adult speech recognition.

2.6. Emotional state

Similarly to the previously discussed speech intrinsitatans,
emotional state is found to significantly influence the sheec
spectrum. It is recognized that a speaker mood change has a
considerable impact on the features extracted from hiscépee
hence directly affecting the basis of all speech recogmisigs-
tems [45, 246].

Studies on speaker emotions is a fairly recent, emerging
field and most of today’s literature that remotely deals with
emotions in speech recognition is concentrated on attagpti
to classify a "stressed” or "frustrated” speech signal itga@or-
rect emotion category [8]. The purpose of these efforts farto
ther improve man-machine communication. Being interested
in speech intrinsic variabilities, we will rather focus aatten-
tion on the recognition of speech produced in different emo-
tional states. The stressed speech categories studietatigne
are a collection of all the previously described intrinsaciabil-
ities: loud, soft, Lombard, fast, angry, scared, and ndiev-
ertheless, note that emotion recognition might play a rale,
instance in a framework where the system could select during
operation the most appropriate model in an ensemble of more
specific acoustic models (cfr Section 4.2.2).

As Hansen formulates in [109], approaches for robust
recognition can be summarized under three areas: (i) better
training methods, (ii) improved front-end processing, &injl
improved back-end processing or robust recognition measur
A majority of work undertaken up to now revolves around in-
specting the specific differences in the speech signal uheer
different stress conditions. As an example, the phonete fe
tures have been examined in the case of task stress or emo-
tion [27, 106, 107, 108, 200]. The robust ASR approaches are
covered by chapter 4.

2.7. And more...

Many more sources of variability affect the speech signal an
this paper can probably not cover all of them. Let's cite phth
gies affecting the larynx or the lungs, or even the discourse
(dysphasia, stuttering, cerebral vascular accidentlang-term
habits as smoking, singing, ..., speaking styles like wdtisg,
shouting, ... physical activity causing breathlessneggde, ...

The impact of those factors on the ASR performance has
been little studied and very few papers have been publigtad t
specifically address them.

3. ASR Diagnosis

3.1. ASR Performance Analysisand Diagnosis

When devising a novel technique for automatic speech récogn
tion, the goal is to obtain a system whose ASR performance on
a specific task will be superior to that of existing methods.

The mainstream aim is to formulate an objective measure
for the comparison of a novel system to either similar ASR sys
tems, or humans (cfr. Section 3.2). For this purpose, thergén
evaluation is the word error rate, measuring the globalrirecd
word recognition in the total recognition task. As an alégive,

the error rate is also measured in smaller units such as pieme
or syllables. Further assessments put forward more détaile
rors: insertion, deletion and substitution rates.

Besides, detailed studies are found to identify recogmitio
results considering different linguistic or phonetic pedies
of the test cases. In such papers, the authors report their sy
tems outcome in the various categories in which they divide t
speech samples. The general categories found in the literat
are acoustic-phonetic classes, for example: vocal/naaiyo
voiced/unvoiced, nasal/non-nasal [41] [130]. Furtherugro
ings separate the test cases according to the physicakditfes
of the speakers, such as male/female, children/adult, caraic
[125]. Others, finally, study the linguistic variations ietéil
and devise more complex categories such as 'VCV' (Vowel-
Consonant-Vowel) and 'CVC’ (Consonant-Vowel-Consonant)
and all such different variations [99]. Alternatively, ethpa-
pers report confidence scores to measure the performance of
their recognizers [306, 323].

It is however more challenging to find reports on the ac-
tual diagnosis of the individual recognizers rather thartten
abstract semantics of the recognition sets. In [99], the au-
thors perform a diagnostic evaluation of several ASR system
on a common database. They provide error patterns for both
phoneme- and word-recognition and then present a decision-
tree analysis of the errors providing further insight of tae-
tors that cause the systematic recognition errors. Steenek
al present their diagnosis method in [265] where they estab-
lish recognition assessment by manipulating speech, exami
ing the effect of speech input level, noise and frequencit,shi
on the output of the recognizers. In another approach, Eide
et al display recognition errors as a function of word typd an
length [65]. They also provide a method of diagnostic trees t
scrutinize the contributions and interactions of errotdeg in
recognition tasks. Alongside, the ANOVA (Analysis of Vari-
ance) method [137, 138, 270] allows a quantification of the
multiple sources of error acting in the overall variabilitf/the
speech signals. It offers the possibility to calculate thia-r
tive significance of each source of variability as they dffee
recognition. On the other hand, Doddington [57] introduces
time alignment statistics to reveal systematic ASR scoenrg
rors.

The second, subsequent, difficulty is in discovering re-
search that attempts to actually predict the recognitioorer
rather than simply giving a detailed analysis of the flaws in
the ASR systems. This aspect would give us useful insight by
providing generalization to unseen test data. Finally] pf8-
vides a framework for predicting recognition errors in werse
situations through a collection of lexically confusablerd®es-
tablished during training. This work follows former stuslien
error prediction [55, 122, 236] and assignment of erroriliab
ity [35] and is adjacent to the research on confusion netsvork
[95, 121, 182, 211, 245].

3.2. Man-machine comparison

A few years ago, a publication [168] gathered results froth bo
human and machine speech recognition, with the goal of stimu
lating the discussion on research directions and coninigub

the understanding of what has still to be done to reach close-
human performance. In the reported results, and althoum pr
lems related to noise can be highlighted, one of the moktrsgri
observation concerns the fact that the human listener taeou
forms (in relative terms) the machine in tasks charactdrine

a quiet environment and where no long term grammatical con-



straints can be used to help disambiguate the speech. Thesis  from being constituted of steady-state segments. In [1th@],
case for instance in digits, letters and nonsense senteitneze authors clearly demonstrate the importance of the phase- inf
human listeners can in some cases outperform the machine by mation for correctly classifying stop consonants, esplgaia-
more than an order of magnitude. We can thus interpret that garding their voicing property. Moreover, in [248], it isrden-
the gap between machine performance and human performance strated that vowel-like sounds can be artificially createanf

(10% vs. 1% word error rate on the WSJ large vocabulary con-
tinuous speech task in a variety of acoustic conditions)yis b
a large amount related to acoustico-phonetic aspects. &he d
ficiencies probably come from a combination of factors. tFirs
the feature representations used for ASR may not contatineall
useful information for recognition. Then, the modelinglasg-
tions may not be appropriate. Third, the applied featur&sex
tion and the modeling approaches may be too sensitive fo-intr
sic speech variabilities, amongst which are: speaker, ayend
age, dialect, accent, health condition, speaking ratesqoy
emotional state, spontaneity, speaking effort, articome¢ffort.

In [264], consonant recognition within different degrada-
tion conditions (high-pass and low-pass filtering, as wsll a
background noise) is compared between human and automatic
systems. Results are presented globally in terms of rettogni
accuracy, and also in more details in terms of confusionimatr
ces as well as information transfer of different phonetatdiees
(voicing, place, frication, sibilance). Although the tesate-
rial is not degraded in the exact same fashion for the compari
son tests, results clearly indicate different patternscotieacy
for human and machines, with weaker machine performance on
recognizing some phonological features, such as voicsyug-e
cially under noise conditions. This happens despite thelfiat
the ASR system training provides acoustic models that are al
most perfectly matched to the test conditions, using theesam
speakers, same material (CVCs) and same conditions (noise
added to the training set to match the test condition).

In [304] (experiments under way), this line of research is
extended with the first controlled comparison of human and ma
chine on speech after removing high-level knowledge (kxic
syntactic..) sources, complementing the analysis of piene
identification scores with the impact of intrinsic variatdés
(rather than high-pass/low-pass filters and noise in thequs
literature..) Another goal of the research is to extend tops
of previous research (which was for instance mostly rel&ted

English) and address some procedures that can sometimes be

questioned in previous research (for instance the differeri
protocols used for human and machine tests).

Besides simple comparisons in the form of human intelligi-
bility versus ASR accuracy, specific experimental desigs ¢
also provide some relevant insights in order to pinpointspos
ble weaknesses (with respect to humans) at different stafges
processing of the current ASR recognition chain. This is-ssum
marized in the next subsection.

3.2.1. Specific methodologies

Some references are given here, revolving around the ifsue o
feature extraction limitations (in this case the presencabs
sence of phase information) vs. modeling limitations.

It has been suggested [54, 164, 225] that conventional cep-
stral representation of speech may destroy important rimdier
tion by ignoring the phase (power spectrum estimation) and r
ducing the spectral resolution (Mel filter bank, LPC, cegistr
liftering, ...).

Phase elimination is justified by some evidence that hu-
mans are relatively insensitive to the phase, at least adgte
state contexts, while resolution reduction is mostly naigd by
practical modeling limitations. However, natural speesffiar

flat spectrum signal by adequately tuning the phase angles of
the waveform.

In order to investigate a possible loss of crucial informa-
tion, reports of different experiments have been survegpdde
literature. In these experiments, humans were asked t@+eco
nize speech reconstructed from the conventional ASR aicoust
features, hence with no phase information and no fine spectra
representation.

Experiments conducted by Leonard and reported by [168],
seems to show that ASR acoustic analysis (LPC in that case)
has little effect on human recognition, suggesting thattrbs
the ASR weaknesses may come from the acoustic modeling
limitations and little from the acoustic analysis (i.e. rfteend
or feature extraction portion of the ASR system) weaknesses
Those experiments have been carried out on sequencestsf digi
recorded in a quiet environment.

In their study, Demuynck et al. re-synthesized speech from
different steps of the MFCC analysis, i.e. power spectrural, M
spectrum and Mel cepstrum [54]. They come to the conclusion
that re-synthesized speech is perfectly intelligible gitleat an
excitation signal based on pitch analysis is used, and tgat t
phase information is not required. They emphasize that thei
experiments are done on clean speech only.

Experiments conducted by Peters et al [225] demonstrate
that these conclusions are not correct in case of noisy Bpeec
recordings. He suggests that information lost by the conven
tional acoustic analysis (phase and fine spectral resajutiay
become crucial for intelligibility in case of speech distons
(reverberation, environment noise, ...). These resutiz/ghat,
in noisy environment, the degradation of the speech represe
tation affects the performance of the human recognitioroatm
in the same order as the machine. More particularly, igigorin
the phase leads to a severe drop of human performance (from
almost perfect recognition to 8.5% sentence error ratejeste
ing that the insensitivity of human to the phase is not thae tr
in adverse conditions.

In [220], the authors perform human perception experi-
ments on speech signals reconstructed either from the magni
tude spectrum or from the phase spectrum and conclude that
phase spectrum contribute as much as amplitude to speech in-
telligibility if the shape of the analysis window is propede-
lected.

Finally, experiments achieved at Oldenburg demonstrated
that the smearing of the temporal resolution of conventiona
acoustic features affects human intelligibility for moatibn
cut-off frequencies lower than 32 Hz on a phoneme recogni-
tion task. Also, they conclude that neglecting the phassesu
approximately 5% error rate in phoneme recognition of human
listeners.

4. ASR techniques

In this section, we review methodologies towards improved
ASR analysis/modeling accuracy and robustness against-the
trinsic variability of speech. Similar techniques haverbpeo-
posed to address different sources of speech variatios.SElet
tion will introduce both the general ideas of these appreach
and the specific usage regarding variability sources.



4.1. Front-end techniques

An update on feature extraction front-ends is proposedicpar
larly showing how to take advantage of techniques targetiag
non-stationarity assumption. Also, the feature extractitage
can be the appropriate level to target the effects of somer oth
variations, like the speaker physiology (through featwm<
pensation [302] or else improved invariance [190]) and iothe
dimensions of speech variability. Finally, techniquesdom-
bining estimation based on different features sets arewad.
This also involves dimensionality reduction approaches.

4.1.1. Overcoming assumptions

Most of the Automatic Speech Recognition (ASR) acous-
tic features, such as Mel-Frequency Cepstral Coeffi-
cients (MFCC)[51] or Perceptual Linear Prediction (PLP)
coefficients[118], are based on some sort of representafion

the smoothed spectral envelope, usually estimated oved fixe
analysis windows of typically 20 ms to 30 ms [51, 238Buch

mentary components are not necessarily quasi-statiomaty a
vice-versa.

Coifman et al [43] have described a minimum entropy basis
selection algorithm to achieve the minimum informationtads
a signal relative to the designed orthonormal basis. In]j273
Svendsen et al have proposed a ML segmentation algorithm us-
ing a single fixed window size for speech analysis, followed
by a clustering of the frames which were spectrally simitar f
sub-word unit design. More recently, Achan et al [4] have pro
posed a segmental HMM for speech waveforms which identifies
waveform samples at the boundaries between glottal pulse pe
riods with applications in pitch estimation and time-saaled-
ifications.

As a complementary principle to developing features that
“work around” the non-stationarity of speech, significaifois
have also been made to develop new speech signal representa-
tions which can better describe the non-stationarity iehemn
the speech signal. Some representative examples are t@mpor
patterns (TRAPSs) features[120], MLPs and several moduiati

analysis is based on the assumption that the speech signal is SPectrum related techniques[141, 192, 288, 325]. In this ap

quasi-stationary over these segment durations. However, i
well known that the voiced speech sounds such as vowels are
quasi-stationary for 40 ms-80 ms, while stops and plosiee ar
time-limited by less than 20 ms [238]. Therefore, it implies
that the spectral analysis based on a fixed size window of
20 ms-30 ms has some limitations, including:

e The frequency resolution obtained for quasi-stationary
segments (QSS) longer than 20 ms is quite low compared
to what could be obtained using larger analysis windows.

In certain cases, the analysis window can span the transi-
tion between two QSSs, thus blurring the spectral prop-

erties of the QSSs, as well as of the transitions. Indeed,
in theory, Power Spectral Density (PSD) cannot even be
defined for such non stationary segments [112]. Further-
more, on a more practical note, the feature vectors ex-
tracted from such transition segments do not belong to
a single unique (stationary) class and may lead to poor
discrimination in a pattern recognition problem.

In [290], the usual assumption is made that the piecewise

proach temporal trajectories of spectral energies in iddil
critical bands over windows as long as one second are used as
features for pattern classification. Another methodolagyoi
use the notion of the amplitude modulation (AM) and the fre-
quency modulation (FM) [113]. In theory, the AM signal mod-
ulates a narrow-band carrier signal (specifically, a mormch
matic sinusoidal signal). Therefore to be able to extraetXM
signals of a wide-band signal such as speech (typically §KHz
itis necessary to decompose the speech signal into narexw sp
tral bands. In [289], this approach is opposed to the previse

of the speech modulation spectrum [141, 192, 288, 325] which
was derived by decomposing the speech signal into incrglgsin
wider spectral bands (such as critical, Bark or Mel). Simala
guments from the modulation filtering point of view, werepre
sented by Schimmel and Atlas[247]. In their experimenty the
consider a wide-band filtered speech sign@l) = a(t)c(t),
wherea(t) is the AM signal and:(t) is the broad-band car-
rier signal. Then, they perform a low-pass modulation fitigr

of the AM signala(t) to obtainarp(t). The low-pass filtered
AM signal arp(t) is then multiplied with the original carrier
c(t) to obtain a new signat(¢). They show that the acoustic

quasi-stationary segments (QSS) of the speech signal can be pandwidth ofz(t) is not necessarily less than that of the origi-

modeled by a Gaussian autoregressive (AR) process of a fixed
orderp as in [7, 272, 273]. The problem of detecting QSSs is
then formulated using a Maximum Likelihood (ML) criterion,

defining a QSS as the longest segment that has most probably

been generated by the same AR process.

Another approach is proposed in [10], which describes a
temporal decomposition technique to represent the comtisiu
variation of the LPC parameters as a linearly weighted sum of
a number of discrete elementary components. These elemen-
tary components are designed such that they have the minimum
temporal spread (highly localized in time) resulting in stipr
coding efficiency. However, the relationship between thie op
mization criterion of “the minimum temporal spread” and the
quasi-stationarity is not obvious. Therefore, the discre-

2Note that these widely used ASR front-end techniques make us
of frequency scales that are inspired by models of the huraditoay
system. An interesting critical contribution to this hasvieser been
provided in [129], where it is concluded that so far, therétile evi-
dence that the study of the human auditory system has cotadto
advances in automatic speech recognition.

SEquivalent to the detection of the transition point betw&entwo
adjoining QSSs.

nal signalz(t). This unexpected result is a consequence of the
signal decomposition into wide spectral bands that resulés
broad-band carrier.

Finally, as extension to the “traditional” AR process (all-
pole model) speech modeling, pole-zero transfer functibas
are used for modeling the frequency response of a signad, hav
been well studied and understood [181]. Lately, Kumaresan
et al.[150, 151] have proposed to model analytic signalsgusi
pole-zero models in the temporal domain. Along similardine
Athineos et al.[12] have used the dual of the linear preaficii
the frequency domain to improve upon the TRAP features.

Another strong assumption that has been addressed in re-
cent papers, concern the worthlessness of the phase fahspee
intelligibility. We already introduced in section 3.2.1etlson-
clusions of several studies that reject this assumptionev f
papers have tried to reintroduce the phase informationth&o
ASR systems. In [221], the authors introduce the instamiagie
frequency which is computed from the phase spectrum. Exper-
iments on vowel classification show that these featuresagont
meaningful information. Other authors are proposing fiestu
derived from the group delay [29, 116, 324] which presents a
formant-like structure with a much higher resolution thhe t



power spectrum. As the group delay in inherently very noisy,
the approaches proposed by the authors mainly aims at smooth
ing the estimation. ASR experiments show interesting perfo
mance in noisy conditions.

4.1.2. Compensation and invariance

For other sources of speech variability (besides non-
stationarity), a simple model may exist that appropriately
flects and compensate its effect on the speech features.

The preponderance of lower frequencies for carrying the
linguistic information has been assessed by both perclegda
acoustical analysis and justify the success of the noradifre-
quency scales such as Mel, Bark, Erb, ... Similarly, in [11183
PLP parameters present a fair robustness to inter-speakier v
ability, thanks to the low order (5th) linear prediction bsis
which only models the two main peaks of the spectral shape,
typically the first two formants. Other approaches aim aldbui
ing acoustic features invariant to the frequency warping.

In [293], the authors define the "scale transform” and the
"scale cepstrum”of a signal spectrum whose magnitude is in-
variant to a scaled version of the original spectrum. In 190
the continuous wavelet transform has been used as a prepro-
cessing step, in order to obtain a speech representatiohiainw
linear frequency scaling leads to a translation in the tdoale
plane. In a second step, frequency-warping invariant featu
were generated. These include the auto- and cross-caorelat
of magnitudes of local wavelet spectra as well as linear and n
linear transforms thereof. It could be shown that theseufeat
not only lead to better recognition scores than standard @4;C
but that they are also more robust to mismatches between trai
ing and test conditions, such as training on male and testing
female data. The best results were obtained when MFCCs and
the vocal tract length invariant features were combinedwsh
ing that the sets contain complementary information [190].

A direct application of the tube resonator model of the
vocal tract lead to the different vocal tract length normei
tion (VTLN) techniques: speaker-dependent formant mappin
[21, 299], transformation of the LPC pole modeling [261&-fr
qguency warping, either linear [63, 161, 286, 317] or noedin
[214], all consist of modifying the position of the formarits
order to get closer to an "average” canonical speaker. Sim-
ple yet powerful techniques for normalizing (compensatthg
features to the VTL are widely used [302]. Note that VTLN is
often combined with an adaptation of the acoustic model&o th
canonical speaker [63, 161] (cf. section 4.2.1). The paknt
of using piece-wise linear and phoneme-dependent fregquenc
warping algorithms for reducing the variability in the astia
feature space of children have also been investigated [50].

Channel compensation techniques such as the cepstral
mean subtraction or the RASTA filtering of spectral trajecto
ries, also compensate for the speaker-dependent compaoient
the long-term spectrum [138, 305].

Similarly, some studies attempted to devise feature extrac
tion methods tailored for the recognition of stressed ang- no
stressed speech simultaneously. In his paper [38], Chen pro
posed a Cepstral Domain Compensation when he showed that
simple transformations (shifts and tilts) of the cepstragéfe
ficients occur between the different types of speech signals
studied. Further processing techniques have been employed
for more robust speech features [109, 119, 131] and some re-
searchers simply assessed the better representationsteom
existing pool of features [110].

When simple parametric models of the effect of the
variability are not appropriate, feature compensation loan
performed using more generic non-parametric transfoonati
schemes, including linear and non-linear transformatidiiss
becomes a dual approach to model adaptation, which is tie top
of Section 4.2.1.

4.1.3. Additional cues and multiple feature streams

As a complementary perspective to improving or compengatin
single feature sets, one can also make use of several “stteam
of features that rely on different underlying assumptiond a
exhibit different properties.

Intrinsic feature variability depends on the set of classes
that features have to discriminate. Given a set of acoustiE-m
surements, algorithms have been described to select subset
of them that improve automatic classification of speech data
into phonemes or phonetic features. Unfortunately, pentin
algorithms are computationally intractable with theseetypf
classes as stated in [213], [212], where a sub-optimalisolig
proposed. It consists in selecting a set of acoustic measune
that guarantees a high value of the mutual information betwe
acoustic measurements and phonetic distinctive features.

Without attempting to find an optimal set of acoustic mea-
surements, many recent automatic speech recognitionnsyste
combine streams of different acoustic measurements orsthe a
sumption that some characteristics that are de-emphasyjzad
particular feature are emphasized by another feature remd-t
fore the combined feature streams capture complementary in
formation present in individual features.

In order to take into account different temporal behavior in
different bands, it has been proposed ([28, 277, 280]) te con
sider separate streams of features extracted in sepaeatealh
with different frequency bands. Inspired by the multi-atre
approach, examples of acoustic measurement combinaton ar

e Multi-resolution spectral/time correlates ([297], [1)1,1]
e segment and frame-based acoustic features ([124]),
e MFCC, PLP and an auditory feature ([134]),

e spectral-based and discriminant features ([22]),

e acoustic and articulatory features ([143, 278]),

e LPC based cepstra, MFCC coefficients, PLP coeffi-
cients, energies and time-averages ([213],[212]), MFCC
and PLP ([328)),

e full band non-compressed root cepstral coefficients
(RCC), Full band PLP 16kHz,Telephone band PLP 8
kHz ([142]),

e PLP, MFCC and wavelet features ([92]),

e joint features derived from the modified group-delay
function ([117]),

e combinations of frequency filtering (FF), MFCC,
RASTA-FF, (J)RASTA-PLP ([237)).

Other approaches integrate some specific parameters iiteo a s
gle stream of features. Examples of added parameters are:

e periodicity and jitter ([275]),
e voicing ([327], [98]),
e rate of speech and pitch ([267]).

To benefit from the strengths of both MLP-HMM and Gaussian-
HMM techniques, the Tandem solution was proposed in [68],
using posterior probability estimation obtained at MLPpois



as observations for a Gaussian-HMM. An error analysis of Tan
dem MLP features showed that the errors using MLP features
are different from the errors using cepstral features. oS-
vates the combination of both feature styles. In ([326]jnbo
nation techniques were applied to increasingly more ady@nc
systems showing the benefits of the MLP-based featureseThes
features have been combined with TRAP features ([197]). In
([145]), Gabor filters are proposed, in conjunction with MLP
features, to model the characteristics of neurons in théayd
system as is done for the visual system. There is evidente tha
in primary auditory cortex each individual neuron is tunedt
specific combination of spectral and temporal modulatiea fr
guencies.

In [62], it is proposed to use mixture gaussians to represent
presence and absence of features.

Additional features have also been considered as cues for
speech recognition failures [122].

This section introduced several works where several
streams of acoustic representations of the speech signal we
successfully combined in order to improve the ASR perfor-
mance. Different combination methods have been proposid an
can roughly be classified as:

e direct feature combination/transformation such as PCA,
LDA, HDA, ... or selection of the best features will be
discussed in section 4.1.4

e combination of acoustic models trained on different fea-
ture sets will be discussed in section 4.2.2

e combination of recognition system based on different
acoustic features will be discussed in sect?@n

4.1.4. Dimensionality reduction and feature selection

Using additional features/cues as reviewed in the pre\seas
tion, or simply extending the context by concatenating fea-
ture vectors from adjacent frames may yield very long fea-
ture vectors in which several features contain redunddat-in
mation, thus requiring an additional dimension-reducstage
[102, 149] and/or improved training procedures.

The most common feature-reduction technique is the use
of a linear transformy = Axz wherex andy are the orig-
inal and the reduced feature vectors, respectively, And a
p X nmatrix withp < n wheren andp are the original and the
desired number of features, respectively. The principaipo
nent analysis (PCA) [59, 82] is the most simple way of finding
A. It allows for the best reconstruction affrom y in the sense
of a minimal average squared Euclidean distance. Howaver, i
does not take the final classification task into account and is
therefore only suboptimal for finding reduced feature séts.
more classification-related approach is the linear disoamt
analysis (LDA), which is based on Fisher’s ratio (F-ratid) o
between-class and within-class covariances [59, 82]. khare
columns of matrixA are the eigenvectors belonging to the
largest eigenvalues of matrjx‘,L;le], whereS,, andS, are the
within-class and between-class scatter matrices, ragphct
Good results with LDA have been reported for small vocabu-
lary speech recognition tasks, but for large-vocabulasesh
recognition, results were mixed [102]. In [102] it was found
that the LDA should best be trained on sub-phone units in or-
der to serve as a preprocessor for a continuous mixturetglensi
based recognizer. A limitation of LDA is that it cannot effec
tively take into account the presence of different withiass
covariance matrices for different classes. Heteroscieddis:
criminant analysis (HDA) [149] overcomes this problem, &d

actually a generalization of LDA. The method usually regsir
the use of numerical optimization techniques to find the ixatr
A. An exception is the method in [177], which uses the Cher-
noff distance to measure between-class distances andtteads
straight forward solution for. Finally, LDA and HDA can be
combined with maximum likelihood linear transform (MLLT)
[96], which is identical to semi-tied covariance matric83 C)
[86]. Both aim at transforming the reduced features in such a
way that they better fit with the diagonal covariance masrice
that are applied in many HMM recognizers (cfr. [228], sec-
tion 2.1). It has been reported [244] that such a combination
performs better than LDA or HDA alone. Also, HDA has been
combined with minimum phoneme error (MPE) analysis [318].
Recently, the problem of finding optimal dimension-redgcin
feature transformations has been studied from the viewpdin
maximizing the mutual information between the obtained fea
ture set and the corresponding phonetic class [213, 219].

A problem of the use of linear transforms for feature re-
duction is that the entire feature vecteneeds to be computed
before the reduced vectgrcan be generated. This may lead to
a large computational cost for feature generation, althabhg
final number of features may be relatively low. An alternaiv
the direct selection of feature subsets, which, expresgedas
trix A, means that each row &f contains a single one while all
other elements are zero. The question is then the one of which
features to include and which to exclude. Because the elismen
of A have to be binary, simple algebraic solutions like with PCA
or LDA cannot be found, and iterative strategies have been pr
posed. For example, in [2], the maximum entropy principls wa
used to decide on the best feature space.

4.2. Acoustic modeling techniques

Concerning acoustic modeling, good performance is gegeral
achieved when the model is matched to the task, which can be
obtained through adequate training data (see also Sectddn 4
Systems with stronger generalization capabilities can the
built through a so-called multi-style training. Estimafithe
parameters of a traditional modeling architecture in thés/w
however has some limitation due to the inhomogeneity of the
data, which increases the spread of the models, and henae neg
tively impacts accuracy compared to task-specific modéiss T

is partly to be related to the inability of the framework top+

erly model long-term correlations of the speech signals.

Also, within the acoustic modeling framework, adaptation
techniques provide a general formalism for reestimatintr op
mal model parameters for given circumstances based on mod-
erate amounts of speech data.

Then, the modeling framework can be extended to allow
multiple specific models to cover the space of variation.sehe
can be obtained through generalizations of the HMM modeling
framework, or through explicit construction of multiple dels
built on knowledge-based or data-driven clusters of data.

In the following, extensions for modeling using additional
cues and features is also reviewed.

4.2.1. Adaptation

In Section 4.1.2, we have been reviewing techniques thabean
used to compensate for speech variation at the featurectgira
level. A dual approach is to adapt the ASR acoustic models.

In some cases, some variations in the speech signal could
be considered as long term given the application. For ikgtan
a system embedded in a personal device and hence mainly de-
signed to be used by a single person, or a system designed to



transcribe and index spontaneous speech, or charactdyzed
utilization in a particular environment. In these casess if-
ten possible to adapt the models to these particular conditi
hence partially factoring out the detrimental effect ofstae A
popular technique is to estimate a linear transformatiothef
model parameters using a Maximum Likelihood (ML) crite-
rion [163]. A Maximum a Posteriori (MAP) objective function
may also be used [40, 315].

Being able to perform this adaptation using limited amounts
of condition-specific data would be a very desirable propfent
such adaptation methodologies, as this would reduce thte cos
and hassle of such adaptation phases. Such "fast” (songetime

Instead of adapting the models to particular conditions, on
may also train an ensemble of models specialized to specific
conditions or variations. These models may then be usedrwith
a selection, competition or else combination frameworkchSu
techniques are the object of this section.

Acoustic models are estimated from speech corpora, and
they provide their best recognition performances when the o
erating (or testing) conditions are consistent with théning
conditions. Hence many adaptation procedures were sttalied
adapt generic models to specific tasks and conditions. When
the speech recognition system has to handle various pessibl
conditions, several speech corpora can be used togethes-for

on-line) adaptation schemes have been proposed a few years timating the acoustic models, leading to mixed models oridyb

ago, based on the clustering of the speakers into sets dfesgea
which have similar voice characteristics. Inferred aciousbd-
els present a much smaller variance than speaker-independe
systems [201, 217]. The eigenvoice approach [85, 208] takes
from this idea by building a low dimension eigenspace in whic
any speaker is located and modeled as a linear combination of
"eigenvoices”.

Intuitively, these techniques rest on the principle of acqu
ing knowledge from the training corpora that represent tia p
distribution (or clusters) of model parameters given aalality
factor under study. With these adaptation techniques, know
edge about the effect of the inter-speaker variabilitiesgath-
ered in the model. In the traditional approach, this knogéed
is simply discarded, and, although all the speakers are tosed
build the model, and pdfs are modeled using mixtures of gaus-
sians, the ties between particular mixture componentsacthe
several CD phonemes are not represented/used.

Recent publications have been extending and refining this
class of techniques. In [140], rapid adaptation is further e

systems [49, 195], which provide good performances in those
various conditions (for example in both landline and wissle
networks). However, merging too many heterogeneous data in
the training corpus makes acoustic models less discrirhinan
Hence the numerous investigations along multiple modeling
that is the usage of several models for each unit, each model
being trained from a subset of the training data, definedrdeco
ing to a priori criteria such as gender, accent, age, ratpeéch
(ROS) or through automatic clustering procedures. |desally
sets should contain homogeneous data, and be large enaugh fo
making possible a reliable training of the acoustic models.
Gender information is one of the most often used criteria. It
leads to gender-dependent models that are either direselyin
the recognition process itself [224, 314] or used as a betiel
for speaker adaptation [160]. Gender dependence is applied
whole word units, for example digits [101], or to context de-
pendent phonetic units [224], as a result of an adequattisgli
of the training data.
In many cases, most of the regional variants of a language

tended through a more accurate speaker space model, and anare handled in a blind way through a global training of the

on-line algorithm is also proposed. In [312], the correla$
between the means of mixture components of the different fea
tures are modeled using a Markov Random Field, which is then
used to constrain the transformation matrix used for adapta
Other publications include [139, 180, 283, 284, 312, 322].

Other forms of transformations for adaptation are also pro-
posed in [218], where the Maximum Likelihood criterion is
used but the transformations are allowed to be nonlineamug.e
also mention alternate non-linear speaker adaptatiornljggns
based on connectionist networks [3, 300].

Speaker normalization algorithms that combine frequency
warping and model transformation have been proposed to re-
duce acoustic variability and significantly improve ASRfper
mance for children speakers (by 25-45% under various model
training and testing conditions) [232, 234]. ASR on emation
speech has also benefited from techniques relying on adaptin
the model structure within the recognition system to actoun
for the variability in the input signal. One practice has rbee
to bring the training and test conditions closer by spacgpro
tion [34, 183]. In [148], it is shown that acoustic model adap
tation can be used to reduce the degradation due to norenativ
dialects. This has been observed on an English read speech
recognition task (Wall Street Journal), and the adaptatiaa
applied at the speaker level to obtain speaker dependent mod
els. For speaker independent systems this may not be feasibl
however, as this would require adaptation data with a laoge ¢
erage of non-native speech.

4.2.2. Multiple modeling

speech recognition system using speech data that covest all
these regional variants, and enriched modeling is geyaradid

to handle such variants. This can be achieved through thefuse
multiple acoustic models associated to large groups ofkepea

as in [18, 296]. These papers showed that it was preferable
to have models only for a small number of large speaker pop-
ulations than for many small groups. When a single foreign
accent is handled, some accented data can be used for grainin
or adapting the acoustic models [1, 115, 172, 292].

Age dependent modeling has been less investigated, may
be due to the lack of large size children speech corpora. The
results presented in [48] fail to demonstrate a significamt i
provement when using age dependent acoustic models, ossib
due to the limited amount of training data for each class ef ag
Simply training a conventional speech recognizer on céiidr
speech is not sufficient to yield high accuracies, as derratast
by Wilpon and Jacobsen [307]. Recently, corpora for chiidre
speech recognition have begun to emerge. In[70] a smallsorp
of children speech was collected for use in interactive irepd
tutors and led to a complete children speech recogniticiesys
In [257], a more extensive corpus consisting of 1100 chiidre
from kindergarten to grade 10, was collected and used to de-
velop a speech recognition system for isolated word anckfinit
state grammar vocabularies for U.S. English.

Speaking rate notably affects the recognition performsnce
thus ROS dependent models were studied [194]. It was also no-
ticed that ROS dependent models are often getting lessepeak
independent because the range of speaking rate shown by dif-
ferent speakers is not the same [227], and that training pro-
cedures robust to sparse data need to be used. In that sense,
comparative studies have shown that rate-adapted models pe



formed better than rate-specific models [311]. Speaking rat
can be estimated on line [227], or computed from a decoding
result using a generic set of acoustic models, in which case a
rescoring is applied for fast or slow sentences [202]; ovtre

ious rate dependent models may be used simultaneouslygdurin
decoding [39, 321].

The Signal-to-Noise Ratio (SNR) also impacts recognition
performances, hence, besides or in addition to noise reduct
techniques, SNR-dependent models have been investigated.
[262] multiple sets of models are trained according to ssver
noise masking levels and the model set appropriate for tite es
mated noise level is selected automatically in recognipioase.

In contrast, in [243] acoustic models composed under variou
SNR conditions are run in parallel during decoding.

The same way, speech variations due to stress and emotions

has been addressed by the multi-style training [169, 22%], a
simulated stress token generation [26, 27]. As for all the im
proved training methods, recognition performance is iaseel
only around the training conditions and degradation inltesu
is observed as the test conditions drift away from the oailgin
training data.

Automatic clustering techniques have also been used for
elaborating several models per word for connected-digibge
nition [239]. Clustering the trajectories (or sequencespafech
observations assigned to some particular segment of tleelspe
like word or subword units) deliver more accurate modelimg f
the different groups of speech samples [146]; and clugierin
training data at the utterance level provided the best perfo
mances in [256].

Multiple modeling of phonetic units may be handled also
through the usual triphone-based modeling approach by-inco
porating questions on some variability sources in the set of
questions used for building the decision trees: genderrimde
tion in [205]; syllable boundary and stress tags in [223H an
voice characteristics in [271].

When multiple modeling is available, all the available mod-
els may be used simultaneously during decoding, as done in

a VTL is estimated in order to be able to normalize the feature
stream before recognition. The estimation of the VTL factor
either be perform by a maximum likelihood approach [161]316
or from a direct estimation of the formant positions [64, L66
More general normalization schemes have also been investi-
gated [88], based on associating transforms (mostly limaas-
forms) to each speaker, or more generally, to differenttefss

of the training data. These transforms can also be consttain
to reside in an reduced-dimensionality eigenspace [85¢cA-t
nique for “factoring-in” selected transformations backtime
canonical model is also proposed in [87], providing a flexi-
ble way of building factor-specific models, for instance tiul
speaker models within a particular noise environment, dtimu
environment models for a particular speaker.

4.2.3. Auxiliary acoustic features

Most of speech recognition systems rely on acoustic parame-
ters that represent the speech spectrum, for example akpstr
coefficients. However, these features are sensitive tdianxi
information inherent in the speech signal such as pitchrgsne
rate-of-speech, etc. Hence attempts have been made imgtakin
into account this auxiliary information in the modeling aind
the decoding processes.

Pitch, voicing and formant parameters have been used since
a long time, but mainly for endpoint detection purposes [11]
making it much more robust in noisy environments [186].
Many algorithms have been developed and tuned for comput-
ing these parameters, but are out of the scope of this paper.

For what concerns speech recognition itself, the most sim-
ple way of using such parameters (pitch, formants and/ar-voi
ing) is their direct introduction in the feature vector, radowith
the cepstral coefficients, for example periodicity andejithre
used in [276] and formant and auditory-based acoustic ages a
used together with MFCC in [123, 252]. Correlation between
pitch and acoustic features is taken into account in [14d]Jan
LDA is applied on the full set of features (i.e. energy, MFCC,

many approaches, or the most adequate set of acoustic models voicing and pitch) in [174]. In [52], the authors propose a 2-

may be selected from a priori knowledge (for example network
or gender), or their combination may be handled dynamically
by the decoder. This is the case for parallel Hidden Markov
Models [31] where the acoustic densities are modulated de-
pending on the probability of a master context HMM being in
certain states. In [328], it is shown that log-linear conabin
tion provides good results when used for integrating prihab
ities provided by acoustic models based on different agoust
feature sets. More recently Dynamic Bayesian Networks have

dimension HMM to extract the formant positions and evaluate
their potential on a vowel classification task. In [90], thehers
integrate the formant estimations into the HMM formalism, i
such a way that multiple formant estimate alternatives iteid
by a confidence measure are handled. In [279], a multi-stream
approach is used to combine MFCC features with formant es-
timates and a selection of acoustic cues such as acute/grave
open/close, tense/lax, ...

Pitch has to be taken into account for the recognition of

been used to handle dependencies of the acoustic models with tonal languages. Tone can be modeled separately through spe

respect to auxiliary variables, such as local speaking [268],
or hidden factors related to a clustering of the data [149].18

Multiple models can also be used in a parallel decoding
framework [319]; then the final answer results from a "vot-
ing” process [74], or from the application of elaboratedidec
sion rules that take into account the recognized word hygsath
[14]. Multiple decoding is also useful for estimating rélie
confidence measures [294].

Also, if models of some of the factors affecting speech
variation are known, adaptive training schemes can be devel
oped, avoiding training data sparsity issues that couldltres
from cluster-based techniques. This has been used fongesta
in the case of VTL normalization, where a specific estimation
of the vocal tract length (VTL) is associated to each speaker
the training data [302]. This allows to build “canonical” dio
els based on appropriately normalized data. During retiogni

cific HMMs [313] or decision trees [310], or the pitch param-
eter can be included in the feature vector [36], or both imir
tion streams (acoustic features and tonal features) camibe h
dled directly by the decoder, possibly with different optied
weights [254]. Various coding and normalization schemes of
the pitch parameter are generally applied to make it lesakgpe
dependent; the derivative of the pitch is the most usefu fea
ture [171], and pitch tracking and voicing are investigaited
[127]. A comparison of various modeling approaches is avalil
able in [53]. For tonal languages, pitch modeling usually-co
cerns the whole syllable; however limiting the modelingtte t
vowel seems sufficient [37].

\Voicing has been used in the decoder to constrain the
Viterbi decoding (when phoneme node characteristics are no
consistent with the voiced/unvoiced nature of the segnuenmt,
responding paths are not extended) making the system more ro



bust to noise [216].

presented and discussed so as to study the correlationwd-red

Pitch, energy and duration have also been used as prosodic tion phenomena with respect to the position of the phoneme in

parameters in speech recognition systems, or for reduecmg a
biguity in post-processing steps. These aspects are oabpés
of this paper.

Dynamic Bayesian Networks (DBN) offer an integrated
formalism for introducing dependence on auxiliary feasure
This approach is used in [267] with pitch and energy as auxil-
iary features. Other information can also be taken into aeto
such as articulatory information in [266] where the DBN uti-
lizes an additional variable for representing the statéhefdr-
ticulators by direct measurement (note that these expaténe
require a very special X-ray Microbeam database). As men-
tioned in previous section, speaking rate is another fabiatr
can be taken into account in such a framework. Most exper-
iments deal with limited vocabulary sizes; extension tgdar
vocabulary continuous speech recognition is proposeditfiro
an hybrid HMM/BN acoustic modeling in [185].

Another approach for handling heterogeneous features is
the TANDEM approach used with pitch, energy or rate of
speech in [178]. The TANDEM approach transforms the in-
put features into posterior probabilities of sub-word sinis-
ing artificial neural networks (ANNSs), which are then proszs
to form input features for conventional speech recognitigs:
tems.

Finally, auxiliary parameters may be used to normal-

the syllable, the syllable structure and the position ofsyiéa-

ble within the word. Within-word and cross-word resylatafic
tion (frequent in French but not in English) is also addrdsse
The results reinforce previous studies [99] and suggethédur
research in the use of more elaborate contexts in the definiti
of ASR acoustic models. Context-dependent phonemes could
be conditioned not only on neighboring phones but also on the
contextual factors described in this study. Such appreaahe
currently being investigated [156, 191]. These rely on tloelm
eling capabilities of acoustic models that can implicitlpahel
some pronunciation effect [60, 104, 136], provided thay tre
represented in the training data. In [104], several photease
defined within the framework of triphone models, in the hope o
improving the modeling of pronunciation variants affectad

the syllable structure. For instance, an extended phorghaet
incorporates syllable position is proposed. Experimeamisilts

with these novel phone sets are not conclusive however. The
good performance of the baseline system could (at leadypart
be attributed to implicit modeling, especially when usiagye
amounts of training data resulting in increased genetiiza
capabilities of the used models. Also it should be consitlere
that "continuous” (or "subtle”) pronunciation effects gressi-

ble (e.g. in spontaneous speech), where pronunciatiomsotan
be attributed to a specific phone from the phone set anymore,

pitch [260], or used to modify the parameters of the dersitie
(during decoding) through multiple regressions as witlehpit
and speaking rate in [81].

4.3. Pronunciation modeling techniques

As mentioned in the introduction of Section 2, some speech
variations, like foreign accent or spontaneous speecégtifie
acoustic realization to the point that their effect may btedve
described by substitutions and deletion of phonemes with re
spect to canonical (dictionary) transcriptions.

As a complementary principle to multiple acoustic mod-
eling approaches reviewed in Section 4.2.2, multiple pnenu
ciations are generally used for the vocabulary words. Hidde
model sequences offer a possible way of handling multiple re
alizations of phonemes [105] possibly depending on phone
context. For handling hyper articulated speech where gause
may be inserted between syllables, ad hoc variants are neces
sary [189]. And adding more variants is usually required for
handling foreign accents.

Modern approaches attempt to build in rules underlying
pronunciation variation, using representations framéasuch
as FSTs[114, 253], based on phonological knowledge, dalta an
recent studies on the syllabic structure of speech, foaits in
English [99] or French [5].

In [5], an experimental study of phoneme and syllable
reductions is reported. The study is based on the compari-

different phones. In this case, approaches related to treipr
ciation lexicon alone will not be sufficient.

The impact of regional and foreign accents may also be
handled through the introduction of detailed pronuncratiari-
ants at the phonetic level [6, 128]. Introducing multipleoph
netic transcriptions that handle alterations produced dy- n
native speakers is a usual approach, and is generally associ
ated to a combination of phone models of the native language
with phone models of the target language [16, 24, 308]. How-
ever adding too many systematic pronunciation variantseay
harmful [269].

Alteration rules can be defined from phonetic knowledge or
estimated from some accented data [173]. Deriving rulesgusi
only native speech of both languages is proposed in [97D][24
investigates the adaptation of the lexicon according téepred
phonetic variants. When dealing with various foreign atgen
phone models of several languages can be used simultapeousl
with the phone models of the target language [17], multilin-
gual units can be used [292] or specialized models for differ
ent speaker groups can be elaborated [42]. Multilinguahpho
models have been investigated for many years in the hope of
achieving language independent units [25, 47, 154, 249}. Un
fortunately language independent phone models do notgeovi
as good results as language dependent phone models when the
latter are trained on enough speech data, but language inde-
pendent phone models are useful when little or no data exists
in a particular language and their use reduces the size of the

son of canonical and pronounced phoneme sequences, where phoneme inventory of multilingual speech recognition eyst.

the latter are obtained through a forced alignment proeedur
(whereas [99] was based on fully manual phonetic annotation
Although results following this methodology are affecteg b
ASR errors (in addition to “true” pronunciation variantg)ey
present the advantage of being able to benefit from analysis o
much larger and diverse speech corpora. In the alignmeogépro
dure, the word representations are defined to allow the dhigpp
of any phoneme and/or syllable, in order to avoid limiting th
study to pre-defined/already know phenomena. The resudts ar

The mapping between phoneme models of different languages
can be derived from data [303] or determined from phonetic
knowledge [291], but this is far from obvious as each languag
has his own characteristic set of phonetic units and adsacia
distinctive features. Moreover, a phonemic distinguighiea-
ture for a given language may hardly be audible to a native of
another language.

As mentioned in section 2.4, variations of the speaking rate
may deeply affect the pronunciation. Regarding this soofce



variability, some approaches relying upon an explicit ntode
ing strategy using different variants of pronunciationdaeen
proposed; a multi-pass decoding enables the use of a dynam-
ically adjusted lexicon employed in a second pass [79]. The
acoustic changes, such as coarticulation, are modeled-by di
rectly adapting the acoustic models (or a subset of thearpar
eters, i.e. weights and transition probabilities) to thiéedent
speaking rates [13, 187, 198, 255, 320]. Most of the appemch
are based on a separation of the training material into efiscr
speaking rate classes, which are then used for the trairfing o
rate dependent models. During the decoding, the apprepriat
set of models is selected according to the measured speaking
rate. Similarly, to deal with changes in phone durationtés i
the case for instance for variation of the speaking rateratfon
schemes of the transition probabilities between HMM states
proposed [188, 193, 198]. The basic idea is to put high/law-tr
sition probability (exit probability) for fast slow/speecThese
compensation techniques requaepriori ROS estimation us-
ing one of the measures described in section 2.4. In [326], th
authors proposed a compensation technique that does not re-
quire ROS estimation. This technique used a set of parallel
rate-specific acoustic and pronunciation models. Ratechwit
ing is permitted at word boundaries to allow within-sentenc
speaking rate variation.

The reader should also explore the publications from [230].

4.4. Larger and diversetraining corpora

Driven by the availability of computational resources réhis a
still ongoing trend in trying to build bigger and hopefullgtier
systems, that attempt to take advantage of increasinghye lar
amounts of training data.

This trend seems in part to be related to the perception that
overcoming the current limited generalization abilitiesveell
as modeling assumptions should be beneficial. This however
implies more accurate modeling whose parameters can only be
reliably estimated through larger data sets.

Several studies follow that direction. In [209], 1200 hours
of training data have been used to develop acoustic models fo
the English broadcast news recognition task, with significa
improvement over the previous 200 hours training set. Iisis a
argued that a vast body of speech recognition algorithms and
mathematical machinery is aimed at smoothing estimates to-
ward accurate modeling with scant amounts of data.

More recently, in [156], up to 2300 hours of speech have
been used. This has been done as part of the EARS project,
where training data of the order of 10000 hours has been put
together. It is worth mentioning that the additional verggka
amounts of training data are usually either untranscribrealio
tomatically transcribed. As a consequence, unsupervized o
lightly supervized approaches (e.g. using closed captiares
essential here.

Research towards making use of larger sets of speech data
are also involving schemes for training data selection,isem
supervised learning, as well as active learning [298]. &lads
low to minimize the manual intervention required while pep
ing a corpus for model training purposés.

A complementary perspective to making use of more train-
ing data consists in using knowledge gathered on speech vari
ations in order to synthesize large amounts of acoustigibgi
data [93].

4 [287] Combining active and semi-supervised learning farken
language understanding. Methods of similar inspirati@adso used in
the framework of training models for spoken language urideding.

Finally, another approach is proposed in [61], with diserim
inant non-linear transformations based on MLPs (Multi-ay
Perceptrons) that present some form of genericity acrossale
factors. The transformation parameters are estimated!lzase
a large pooled corpus of several languages, and hence fwesen
unique generalization capabilities. Language and donyzen s
cific acoustic models are then built using features transéor
accordingly, allowing language and task specificity if riegd,
while also bringing the benefit of detailed modeling and stbu
ness to any tasks and language. A important study of the ro-
bustness of similarly obtained MLP-based acoustic feattoe
domains and languages is also reported in [268].

5. Conclusion

This paper gathers important references to literaturaeeo

the endogenous variations of the speech signal and their im-
portance in automatic speech recognition. Important eefegs
addressing specific individual speech variation souroesiat
surveyed. This covers accent, speaking style, speakei-phys
ology, age, emotions. General methods for diagnosing weak-
nesses in speech recognition approaches are then higilight
Finally, the paper proposed an overview of general and spe-
cific techniques for better handling of variation sourceA8R,
mostly tackling the speech analysis and acoustic modebng a
pects.
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