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Abstract
Major progress is being recorded regularly on both the

technology and exploitation of Automatic Speech Recognition
(ASR) and spoken language systems. However, there are still
technological barriers to flexible solutions and user satisfaction
under some circumstances. This is related to several factors,
such as the sensitivity to the environment (background noise),
or the weak representation of grammatical and semantic knowl-
edge.

Current research is also emphasizing deficiencies in dealing
with variation naturally present in speech. For instance, the lack
of robustness to foreign accents precludes the use by specific
populations. Also, some applications, like directory assistance,
particularly stress the core recognition technology due tothe
very high active vocabulary (application perplexity). There are
actually many factors affecting the speech realization: regional,
sociolinguistic, or related to the environment or the speaker her-
self. These create a wide range of variations that may not be
modeled correctly (speaker, gender, speaking rate, vocal effort,
regional accent, speaking style, non stationarity...), especially
when resources for system training are scarce. This papers out-
lines current advances related to these topics.

1. Introduction

It is well known that the speech signal not only conveys the
linguistic information (the message) but also a lot of informa-
tion about the speaker himself: gender, age, social and regional
origin, health and emotional state and, with a rather strongre-
liability, his identity. Beside intra- speaker variability (emo-
tion, health, age), it is also commonly admitted that the speaker
uniqueness results from a complex combination of physiologi-
cal and cultural aspects [91, 210].

Characterization of the effect of some of these specific vari-
ations, together with related techniques to improve ASR ro-
bustness is a major research topic. As a first obvious theme,
the speech signal is non-stationary. The power spectral den-
sity of speech varies over time according to the source signal,
which is the glottal signal for voiced sounds, in which case it af-
fects the pitch, and the configuration of the speech articulators
(tongue, jaw, lips...). This signal is modeled, through Hidden
Markov Models (HMMs), as a sequence of stationary random
regimes. At a first stage of processing, most ASR front-ends an-
alyze short signal frames (typically covering 30 ms of speech)
on which stationarity is assumed. Also, more subtle signal anal-
ysis techniques are being studied in the framework of ASR.

The effects of coarticulation have motivated studies on seg-
ment based, articulatory, and context dependent (CD) modeling
techniques. Even in carefully articulated speech, the produc-
tion of a particular phoneme results from a continuous gesture
of the articulators, coming from the configuration of the pre-

vious phonemes, and going to the configuration of the follow-
ing phonemes (coarticulation effects may indeed stretch over
more than one phoneme). In different and more relaxed speak-
ing styles, stronger pronunciation effects may appear, andoften
lead to reduced articulation. Some of these being particular to
a language (and mostly unconscious). Other are related to re-
gional origin, and are referred to as accents (or dialects for the
linguistic counterpart) or to social groups and are referred to as
sociolects. Although some of these phenomena may be mod-
eled appropriately by CD modeling techniques, their impact
may be more simply characterized at the pronunciation model
level. At this stage, phonological knowledge may be helpful,
especially in the case of strong effects like foreign accent. Fully
data-driven techniques have also been proposed.

Following coarticulation and pronunciation effects, speaker
related spectral characteristics (and gender) have been identi-
fied as another major dimension of speech variability. Spe-
cific models of frequency warping (based on vocal tract length
differences) have been proposed, as well as more general fea-
ture compensation and model adaptation techniques, relying on
Maximum Likelihood or Maximum a Posteriori criteria. These
model adaptation techniques provide a general formalism for
re-estimation based on moderate amounts of speech data.

Besides these speaker specific properties outlined above,
other extra-linguistic variabilities are admittedly affecting the
signal and ASR systems. A person can change his voice to be
louder, quieter, more tense or softer, or even a whisper; Also,
some reflex effects exist, such as speaking louder when the en-
vironment is noisy, as reported in [176].

Speaking faster or slower, also has influence on the speech
signal. This impacts both temporal and spectral characteris-
tics of the signal, both affecting the acoustic models. Obvi-
ously, faster speaking rates may also result in more frequent
and stronger pronunciation changes.

Speech also varies with age, due to both generational and
physiological reasons. The two “extremes” of the range are gen-
erally put at a disadvantage due to the fact that research corpora,
as well as corpora used for model estimation, are typically not
designed to be representative of children and elderly speech.
Some general adaptation techniques can however be applied to
counteract this problem.

Emotions are also becoming a hot topic, as they can indeed
have a negative effect on ASR; and also because added-value
can emerge from applications that are able to identify the user
emotional state (frustration due to poor usability for instance).

Finally, research on recognition of spontaneous conversa-
tions has allowed to highlight the strong detrimental impact of
this speaking style; and current studies are trying to better char-
acterize pronunciation variation phenomena inherent in sponta-
neous speech.

This paper reviews current advances related to these top-
ics. It focuses on variations within the speech signal that make
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the ASR task difficult. These variations are intrinsic to the
speech signal and affect the different levels of the ASR process-
ing chain. For different causes of speech variation, the paper
summarizes the current literature and highlights specific feature
extraction or modeling weaknesses.

The paper is organized as follows. In a first section, vari-
ability factors are reviewed individually according to themajor
trends identified in the literature. The section gathers informa-
tion on the effect of variations on the structure of speech aswell
as the ASR performance.

Methodologies that can help analyzing and diagnose the
weaknesses of ASR technology can also be useful. These di-
agnosis methodologies are the object of section 3. A specific
methodology consists in performing comparisons between man
and machine recognition. This provides an absolute reference
point and a methodology that can help pinpointing the level of
interest. Man-machine comparison also strengthens interdisci-
plinary insights from fields such as audiology and speech tech-
nology.

In general, this review further motivates research on the
acoustic, phonetic and pronunciation limitations of speech
recognition by machines. It is for instance acknowledged that
pronunciation variation is a major factor of reduced perfor-
mance (in the case of accented and spontaneous speech). Sec-
tion 4 reviews ongoing trends and possible breakthroughs in
general feature extraction and modeling techniques that pro-
vides more resistance to speech production variability. The is-
sues that are being addressed include the fact that temporalrep-
resentations/models may not match the structure of speech,as
well as the fact that some analysis and modeling assumptions
can be detrimental. General techniques such as compensation,
adaptation, multiple models, additional acoustic cues andmore
accurate models are surveyed.

2. Speech Variability Sources
Prior to reviewing the most important causes of intrinsic vari-
ation of speech, it is interesting to briefly look into the effects.
Indeed, improving ASR systems regarding sources of variabil-
ity will mostly be a matter of counteracting the effects. Con-
sequently, it is likely that most of thevariability-proof ASR
techniques actually address several causes that produce similar
modifications of the speech.

We can roughly consider three main classes of effects; first,
the fine structure of the voice signal is affected, the color and
the quality of the voice are modified by physiological or behav-
ioral factors. The individual physical characteristics, the smok-
ing habit, a disease, the environmental context that make you
soften your voice or, on the contrary, tense it, ... are such fac-
tors. Second, the long-term modulation of the voice may be
modified, intentionally - to transmit high level information such
as emphasizing or questioning - or not - to convey emotions.
This effect is an integral part of the human communication and
is therefore very important. Third, the word pronunciationis
altered. The acoustic realization in terms of the core spoken
language components, the phonemes, may be deeply affected,
going from variations due to coarticulation, to substitutions (ac-
cents) or suppressions (spontaneous speech).

As we will further observe in the following sections, some
variability sources can hence have multiple effects, and several
variability sources obviously produce effects that belongto the
same category. For instance, foreign accents, speaking style,
rate of speech, or children speech all cause pronunciation al-
terations with respect to the ”standard form”. The actual alter-

ations that are produced are however dependent on the source
of variability, and on the different factors that characterize it.

Although this is outside the scope of this paper, we should
add a fourth class of effects that concerns the grammatical and
semantic structure of the language. Sociological factors,par-
tial knowledge of the language (non-nativeness, childhood, ...),
may lead to important deviations from the canonical language
structure.

2.1. Foreign and regional accents

While investigating the variability between speakers through
statistical analysis methods, [125] found that the first two
principal components of variation correspond to the gender
(and related to physiological properties) and accent respec-
tively. Indeed, compared to native speech recognition, perfor-
mance degrades when recognizing accented speech and non-
native speech [148, 158]. In fact accented speech is associ-
ated to a shift within the feature space [295]. Good classifica-
tion results between regional accents are reported in [58] for
human listeners on German SpeechDat data, and in [165] for
automatic classification between American and British accents
which demonstrates that regional variants correspond to signif-
icantly different data. For native accents, the shift is applied by
large groups of speakers, is more or less important, more or less
global, but overall acoustic confusability is not changed signifi-
cantly. In contrast, for foreign accents, the shift is very variable,
is influenced by the native language, and depends also on the
level of proficiency of the speaker.

Non-native speech recognition is not properly handled by
speech models estimated using native speech data. This issue
remains no matter how much dialect data is included in the
training [18]. This is due to the fact that non-native speak-
ers can replace an unfamiliar phoneme in the target language,
which is absent in their native language phoneme inventory,
with the sound considered as the closest in their native lan-
guage phoneme inventory [77]. This behavior makes the non-
native alterations dependent on both the native language and the
speaker. Some sounds may be replaced by other sounds, or in-
serted or omitted, and such insertion/omission behavior cannot
be handled by the usual triphone-based modeling [136].

Accent classification is also studied since many years [9],
based either on phone models [152, 274] or specific acoustic
features [83].

Speech recognition technology is also used in foreign lan-
guage learning for rating the quality of the pronunciation [69,
80, 207, 281]. Experiments showed that the provided rating is
correlated with human expert ratings [46, 206, 309] when suffi-
cient amount of speech is available.

Proper and foreign name processing is another topic
strongly related with foreign accent. Indeed, even if speak-
ers are not experts in all foreign languages, neither are they
linguistically naive, hence they may use different systemsor
sub-systems of rules to pronounce unknown names which they
perceive to be non-native [75]. Foreign names are hard to
pronounce for speakers who are not familiar with the names
and there are no standardized methods for pronouncing proper
names [89]. Native phoneme inventories are enlarged with
some phonemes of foreign languages in usual pronunciationsof
foreign names, especially in some languages [66]. Determin-
ing the ethnic origin of a word improves pronunciation mod-
els [175] and is useful in predicting additional pronunciation
variants [15, 179].
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2.2. Speaker physiology

Beside the regional origin, another speaker-dependent property
that is conveyed through the speech signal results from the
shape of the vocal apparatus which determines the range within
which the parameters of a particular speaker’s voice may vary.
From this point of view, a very detailed study of the speech-
speaker dichotomy can be found in [196].

The impact of inter-speaker variability on the automatic
speech recognition performance has been acknowledged for
years. In [126, 159, 250], the authors mention error rates two to
three times higher for speaker-independent ASR systems com-
pared with speaker-dependent systems. Methods that aims at
reducing this gap in performance are now part of state-of- the-
art commercial ASR systems.

Speech production can be modeled by the so-called source-
filter model [73] where the “source” refers to the air stream gen-
erated by the lungs through the larynx and the “filter” refersto
the vocal tract, which is composed of the different cavitiessit-
uated between the glottis and the lips. Both of the components
are inherently time-varying and assumed to be independent of
each other.

The complex shape of the vocal organs determines the
unique ”timbre” of every speaker. The glottis at the larynx is
the source for voiced phonemes and shapes the speech signal
in a speaker characteristic way. Aside from the long-term F0
statistics [33, 132, 184] which are probably the most perceptu-
ally relevant parameters (the pitch), the shape of glottal pulse
will affect the long-term overall shape of the power spectrum
(spectral tilt) [210] and the tension of vocal folds will affect the
voice quality. The vocal tract, can be modeled by a tube res-
onator [73, 157]. The resonant frequencies (the formants) are
structuring the global shape of the instantaneous voice spectrum
and are mostly defining the phonetic content and quality of the
vowels.

Modeling of the glottal flow is a difficult problem and very
few studies attempt to precisely decouple the source-tractcom-
ponents of the speech signal [23, 30, 229]. Standard feature
extraction methods (PLP, MFCC) simply ignore the pitch com-
ponent and roughly compensate for the spectral tilt by applying
a pre-emphasis filter prior to spectral analysis or by applying
band-pass filtering in the cepstral domain (the cepstral liftering)
[135].

On the other hand, the effect of the vocal tract shape on
the intrinsic variability of the speech signal between different
speakers has been widely studied and many solutions to com-
pensate for its impact on ASR performance have been proposed:
”speaker independent” feature extraction, speaker normaliza-
tion, speaker adaptation. The formant structure of vowel spec-
tra has been the subject of early studies [226, 231, 235] that
amongst other have established the standard view that the F1-F2
plane is the most descriptive, two-dimensional representation of
the phonetic quality of spoken vowel sounds. On the other hand,
similar studies underlined the speaker specificity of higher for-
mants and spectral content above 2.5 kHz [231, 242]. Another
important observation [155, 204, 226, 235] suggested that rela-
tive positions of the formant frequencies are rather constant for
a given sound spoken by different speakers and, as a corollary,
that absolute formant positions are speaker-specific. These ob-
servations are corroborated by the acoustic theory appliedto the
tube resonator model of the vocal tract which states that posi-
tions of the resonant frequencies are inversely proportional to
the length of the vocal tract [76, 215]. This observation is at the
root of different techniques that increase the robustness of ASR

systems to inter-speaker variability (cf. 4.1.2 and 4.2.1).

2.3. Speaking style and spontaneous speech

In spontaneous casual speech, or under time pressure, reduc-
tion of pronunciations of certain phonemes, or syllables of-
ten happen. It has been suggested that this ”slurring” affects
more strongly sections that convey less information. In contrast,
speech portions where confusability (given phonetic, syntactic
and semantic cues) is higher tend to be articulated more care-
fully, or even hyperarticulated. Some references to such studies
can be found in [13, 133, 167, 263], and possible implications
to ASR in [20].

This dependency of casual speech slurring on identified fac-
tors holds some promises for improving recognition of sponta-
neous speech, possibly by further extending the context depen-
dency of phonemes to measures of such perplexity, with how-
ever very few research ongoing to our knowledge, except maybe
in the use of phonetic transcription for multi-word compounds
or user formulation [44] (cf. 4.3).

Research on spontaneous speech modeling is nevertheless
very active. Several studies have been carried out on using the
Switchboard spontaneous conversations corpus. An appealing
methodology has been proposed in [301], where a comparison
of ASR accuracy on the original Switchboard test data and on a
reread version of it is proposed. Using modeling methodologies
that had been developed for read speech recognition, the error
rate obtained on the original corpus was twice the error rate
observed on the read data.

Techniques to increase accuracy towards spontaneous
speech have mostly focused on pronunciation studies1. As a
fundamental observation, the strong dependency of pronuncia-
tion phenomena with respect to the syllable structure has been
highlighted in [5, 99]. As a consequence, extensions of acous-
tic modeling dependency to the phoneme position in a syllable
and to the syllable position in word and sentences have been
proposed. This class of approaches is sometimes referred toas
long-units [191].

Variations in spontaneous speech can also extend beyond
the typical phonological alterations outlined previously. Dis-
fluencies, such as false starts, repetitions, hesitations and filled
pauses, need to be considered. The reader will find useful infor-
mation in the following papers: [32, 84].

There are also regular workshops specifically addressing
the research activities related to spontaneous speech modeling
and recognition [56]. Regarding the topic of pronunciationvari-
ation, the reader should also refer to [241].

2.4. Rate of Speech

Rate of Speech (ROS) is considered as an important factor
which makes the mapping process between the acoustic signal
and the phonetic categories more complex.

Timing and acoustic realization of syllables are affected due
in part to the limitations of the articulatory machinery, which
may affect pronunciation through phoneme reductions (typi-
cal to fast spontaneous speech), time compression/expansion,
changes in the temporal patterns, as well as smaller-scale
acoustic-phonetic phenomena.

In [133], production studies on normal and fast-rate speech
are reported. They have roughly quantified the way people com-
press some syllables more than others. Note also that the study

1besides language modeling which is out of the scope of this paper
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reports on a series of experiments investigating how speak-
ers produce and listeners perceive fast speech. The main re-
search question is how the perception of naturally produced
fast speech compares to the perception of artificially time-
compressed speech, in terms of intelligibility.

Several studies also reported that different phonemes are
affected differently by ROS. For example, compared to conso-
nants, the duration of vowels is significantly more reduced from
slow to fast speech [153].

The relationship between speaking rate variation and differ-
ent acoustic correlates are usually not well taken into account
in the modeling of speech rate variation for automatic speech
recognition, where it is typical that the higher the speaking rate
is, the higher the error rate is. Usually, slow speaking ratedoes
not affect performance; however, when people hyperarticulate,
and make pauses among syllables, speech recognition perfor-
mance can also degrade a lot.

In automatic speech recognition, the significant perfor-
mance degradations [188, 193, 259] caused by speaking rate
variations stimulated many studies for modeling the spectral
effects of speaking rate variations. The schemes presentedin
the literature generally make use of ROS (Rate of Speech) es-
timators. Almost all existing ROS measures are based on the
same principle which is how to compute the number of lin-
guistic units (usually phonemes or syllables) in the utterance.
So, usually, a speaking rate measure based on manually seg-
mented phones or syllables is used as a reference to evaluatea
new ROS measure. Current ROS measures can be divided into
(1) lexically-based measuresand (2)acoustically-based mea-
sures. Thelexically-based measuresestimate the ROS by count-
ing the number of linguistic units per second using the inverse
of mean duration [259], ormean ofm [193]. To reduce the
dependency on the phone type, a normalization scheme by the
expected phone duration [188] or the use of phone duration per-
centile [258] are introduced. These kinds of measures are ef-
fective if the segmentation of the speech signal provided bya
speech recognizer is reliable. In practice this is not the case
since the recognizer is usually trained with normal speech.As
an alternative technique, acoustically-based measures are pro-
posed. These measures estimate the ROS directly from the
speech signal without recourse to a preliminary segmentation of
the utterance. In [199], the authors proposed themratemeasure
(short formultiple rate). It combines three independent ROS
measures, i.e., (1) the energy rate orenrate [198], (2) a sim-
ple peak counting algorithm performed on the wideband energy
envelope and (3) a sub-band based module that computes a tra-
jectory that is the average product over all pairs of compressed
sub-band energy trajectories. A modified version of themrateis
also proposed in [19]. In [285], the authors found that succes-
sive feature vectors are more dependent (correlated) for slow
speech than for fast speech. An Euclidean distance is used to
estimate this dependency and to discriminate between slow and
fast speech. In [72], speaking rate dependent GMMs are used to
classify speech spurts into slow, medium and fast speech. The
output likelihoods of these GMMs are used as input to a neural
network whose targets are the actual phonemes. The authors
made the assumption that ROS does not affect the temporal de-
pendencies in speech, which might not be true.

It has been shown that speaking rate can also have a dra-
matic impact on the degree of variation in pronunciation [79,
100], for the presence of deletions, insertions, and coarticula-
tion effects.

In section 4, different technical approaches to reduce the
impact of the speaking rate on the ASR performance are dis-

cussed. They basically all rely on a good estimation of the
ROS. Practically, since fast speech and slow speech have differ-
ent effects (for example fast speech increases deletion as well
as substitution errors and slow speech increases insertioner-
rors [188, 203]), several ROS estimation measures are com-
bined in order to use appropriate compensation techniques.

2.5. Children Speech

Children automatic speech recognition is still a difficult prob-
lem for conventional Automatic Speech Recognition systems.
Children speech represents an important and still poorly under-
stood area in the field of computer speech recognition. The im-
pact of children voices on the performance of standard ASR
systems is illustrated in [67, 103, 282]. The first one is mostly
related to physical size. Children have shorter vocal tractand
vocal folds compared to adults. This results in higher positions
of formants and fundamental frequency. The high fundamen-
tal frequency is reflected in a large distance between the har-
monics, resulting in poor spectral resolution of voiced sounds.
The difference in vocal tract size results in a non-linear in-
crease of the formant frequencies. In order to reduce these
effects, previous studies have focused on the acoustic analy-
sis of children speech [162, 233]. This work demonstrates
the challenges faced by Speech Recognition systems devel-
oped to automatically recognize children speech. For exam-
ple, it has been shown that children below the age of 10 ex-
hibit a wider range of vowel durations relative to older chil-
dren and adults, larger spectral and suprasegmental variations,
and wider variability in formant locations and fundamentalfre-
quencies in the speech signal. Several studies have attempted to
address this problem by adapting the acoustic features of chil-
dren speech to match that of acoustic models trained from adult
speech [50, 94, 232, 234]. Such Approaches included vocal
tract length normalization (VTLN) [50] as well as spectral nor-
malization [161].

A second problem is that younger children may not have
a correct pronunciation. Sometimes they have not yet learned
how to articulate specific phonemes [251]. Finally, a third
source of difficulty is linked to the way children are using lan-
guage. The vocabulary is smaller but may also contain words
that don’t appear in grown-up speech. The correct inflectional
forms of certain words may not have been acquired fully, es-
pecially for those words that are exceptions to common rules.
Spontaneous speech is also believed to be less grammatical than
for adults. A number of different solutions to the second and
third source of difficulty have been proposed, modification of
the pronunciation dictionary, and the use of language models
which are customized for children speech have all been tried.
In [71], the number of tied-states of a speech recognizer was
reduced to compensate for data sparsity. Recognition exper-
iments using acoustic models trained from adult speech and
tested against speech from children of various ages clearlyshow
performance degradation with decreasing age. On average, the
word error rates are two to five times worse for children speech
than for adult speech. Various techniques for improving ASR
performance on children speech are reported.

Although several techniques have been proposed to im-
prove the accuracy of ASR systems on children voices, a large
shortfall in performance for children relative to adults remains.
[70, 307] report ASR performance to be around 100% higher,
in average, for children speech than for adults. The difference
increases with decreasing age. Many papers report a larger vari-
ation in recognition accuracy among children, possibly dueto
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their larger variability in pronunciation. Most of these studies
point to lack of children acoustic data and resources to estimate
speech recognition parameters relative to the abundance ofex-
isting resources for adult speech recognition.

2.6. Emotional state

Similarly to the previously discussed speech intrinsic variations,
emotional state is found to significantly influence the speech
spectrum. It is recognized that a speaker mood change has a
considerable impact on the features extracted from his speech,
hence directly affecting the basis of all speech recognition sys-
tems [45, 246].

Studies on speaker emotions is a fairly recent, emerging
field and most of today’s literature that remotely deals with
emotions in speech recognition is concentrated on attempting
to classify a ”stressed” or ”frustrated” speech signal intoits cor-
rect emotion category [8]. The purpose of these efforts is tofur-
ther improve man-machine communication. Being interested
in speech intrinsic variabilities, we will rather focus ouratten-
tion on the recognition of speech produced in different emo-
tional states. The stressed speech categories studied generally
are a collection of all the previously described intrinsic variabil-
ities: loud, soft, Lombard, fast, angry, scared, and noise.Nev-
ertheless, note that emotion recognition might play a role,for
instance in a framework where the system could select during
operation the most appropriate model in an ensemble of more
specific acoustic models (cfr Section 4.2.2).

As Hansen formulates in [109], approaches for robust
recognition can be summarized under three areas: (i) better
training methods, (ii) improved front-end processing, and(iii)
improved back-end processing or robust recognition measures.
A majority of work undertaken up to now revolves around in-
specting the specific differences in the speech signal underthe
different stress conditions. As an example, the phonetic fea-
tures have been examined in the case of task stress or emo-
tion [27, 106, 107, 108, 200]. The robust ASR approaches are
covered by chapter 4.

2.7. And more ...

Many more sources of variability affect the speech signal and
this paper can probably not cover all of them. Let’s cite patholo-
gies affecting the larynx or the lungs, or even the discourse
(dysphasia, stuttering, cerebral vascular accident, ...), long-term
habits as smoking, singing, ..., speaking styles like whispering,
shouting, ... physical activity causing breathlessness, fatigue, ...

The impact of those factors on the ASR performance has
been little studied and very few papers have been published that
specifically address them.

3. ASR Diagnosis

3.1. ASR Performance Analysis and Diagnosis

When devising a novel technique for automatic speech recogni-
tion, the goal is to obtain a system whose ASR performance on
a specific task will be superior to that of existing methods.

The mainstream aim is to formulate an objective measure
for the comparison of a novel system to either similar ASR sys-
tems, or humans (cfr. Section 3.2). For this purpose, the general
evaluation is the word error rate, measuring the global incorrect
word recognition in the total recognition task. As an alternative,

the error rate is also measured in smaller units such as phonemes
or syllables. Further assessments put forward more detailed er-
rors: insertion, deletion and substitution rates.

Besides, detailed studies are found to identify recognition
results considering different linguistic or phonetic properties
of the test cases. In such papers, the authors report their sys-
tems outcome in the various categories in which they divide the
speech samples. The general categories found in the literature
are acoustic-phonetic classes, for example: vocal/non-vocal,
voiced/unvoiced, nasal/non-nasal [41] [130]. Further group-
ings separate the test cases according to the physical differences
of the speakers, such as male/female, children/adult, or accent
[125]. Others, finally, study the linguistic variations in detail
and devise more complex categories such as ’VCV’ (Vowel-
Consonant-Vowel) and ’CVC’ (Consonant-Vowel-Consonant)
and all such different variations [99]. Alternatively, other pa-
pers report confidence scores to measure the performance of
their recognizers [306, 323].

It is however more challenging to find reports on the ac-
tual diagnosis of the individual recognizers rather than onthe
abstract semantics of the recognition sets. In [99], the au-
thors perform a diagnostic evaluation of several ASR systems
on a common database. They provide error patterns for both
phoneme- and word-recognition and then present a decision-
tree analysis of the errors providing further insight of thefac-
tors that cause the systematic recognition errors. Steeneken et
al present their diagnosis method in [265] where they estab-
lish recognition assessment by manipulating speech, examin-
ing the effect of speech input level, noise and frequency shift,
on the output of the recognizers. In another approach, Eide
et al display recognition errors as a function of word type and
length [65]. They also provide a method of diagnostic trees to
scrutinize the contributions and interactions of error factors in
recognition tasks. Alongside, the ANOVA (Analysis of Vari-
ance) method [137, 138, 270] allows a quantification of the
multiple sources of error acting in the overall variabilityof the
speech signals. It offers the possibility to calculate the rela-
tive significance of each source of variability as they affect the
recognition. On the other hand, Doddington [57] introduces
time alignment statistics to reveal systematic ASR scoringer-
rors.

The second, subsequent, difficulty is in discovering re-
search that attempts to actually predict the recognition errors
rather than simply giving a detailed analysis of the flaws in
the ASR systems. This aspect would give us useful insight by
providing generalization to unseen test data. Finally, [78] pro-
vides a framework for predicting recognition errors in unseen
situations through a collection of lexically confusable words es-
tablished during training. This work follows former studies on
error prediction [55, 122, 236] and assignment of error liabil-
ity [35] and is adjacent to the research on confusion networks
[95, 121, 182, 211, 245].

3.2. Man-machine comparison

A few years ago, a publication [168] gathered results from both
human and machine speech recognition, with the goal of stimu-
lating the discussion on research directions and contributing to
the understanding of what has still to be done to reach close-to-
human performance. In the reported results, and although prob-
lems related to noise can be highlighted, one of the most striking
observation concerns the fact that the human listener far outper-
forms (in relative terms) the machine in tasks characterized by
a quiet environment and where no long term grammatical con-
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straints can be used to help disambiguate the speech. This isthe
case for instance in digits, letters and nonsense sentenceswhere
human listeners can in some cases outperform the machine by
more than an order of magnitude. We can thus interpret that
the gap between machine performance and human performance
(10% vs. 1% word error rate on the WSJ large vocabulary con-
tinuous speech task in a variety of acoustic conditions) is by
a large amount related to acoustico-phonetic aspects. The de-
ficiencies probably come from a combination of factors. First,
the feature representations used for ASR may not contain allthe
useful information for recognition. Then, the modeling assump-
tions may not be appropriate. Third, the applied features extrac-
tion and the modeling approaches may be too sensitive to intrin-
sic speech variabilities, amongst which are: speaker, gender,
age, dialect, accent, health condition, speaking rate, prosody,
emotional state, spontaneity, speaking effort, articulation effort.

In [264], consonant recognition within different degrada-
tion conditions (high-pass and low-pass filtering, as well as
background noise) is compared between human and automatic
systems. Results are presented globally in terms of recognition
accuracy, and also in more details in terms of confusion matri-
ces as well as information transfer of different phonetic features
(voicing, place, frication, sibilance). Although the testmate-
rial is not degraded in the exact same fashion for the compari-
son tests, results clearly indicate different patterns of accuracy
for human and machines, with weaker machine performance on
recognizing some phonological features, such as voicing, espe-
cially under noise conditions. This happens despite the fact that
the ASR system training provides acoustic models that are al-
most perfectly matched to the test conditions, using the same
speakers, same material (CVCs) and same conditions (noise
added to the training set to match the test condition).

In [304] (experiments under way), this line of research is
extended with the first controlled comparison of human and ma-
chine on speech after removing high-level knowledge (lexical,
syntactic..) sources, complementing the analysis of phoneme
identification scores with the impact of intrinsic variabilities
(rather than high-pass/low-pass filters and noise in the previous
literature..) Another goal of the research is to extend the scope
of previous research (which was for instance mostly relatedto
English) and address some procedures that can sometimes be
questioned in previous research (for instance the difference of
protocols used for human and machine tests).

Besides simple comparisons in the form of human intelligi-
bility versus ASR accuracy, specific experimental designs can
also provide some relevant insights in order to pinpoint possi-
ble weaknesses (with respect to humans) at different stagesof
processing of the current ASR recognition chain. This is sum-
marized in the next subsection.

3.2.1. Specific methodologies

Some references are given here, revolving around the issue of
feature extraction limitations (in this case the presence or ab-
sence of phase information) vs. modeling limitations.

It has been suggested [54, 164, 225] that conventional cep-
stral representation of speech may destroy important informa-
tion by ignoring the phase (power spectrum estimation) and re-
ducing the spectral resolution (Mel filter bank, LPC, cepstral
liftering, ...).

Phase elimination is justified by some evidence that hu-
mans are relatively insensitive to the phase, at least in steady-
state contexts, while resolution reduction is mostly motivated by
practical modeling limitations. However, natural speech is far

from being constituted of steady-state segments. In [170],the
authors clearly demonstrate the importance of the phase infor-
mation for correctly classifying stop consonants, especially re-
garding their voicing property. Moreover, in [248], it is demon-
strated that vowel-like sounds can be artificially created from
flat spectrum signal by adequately tuning the phase angles of
the waveform.

In order to investigate a possible loss of crucial informa-
tion, reports of different experiments have been surveyed in the
literature. In these experiments, humans were asked to recog-
nize speech reconstructed from the conventional ASR acoustic
features, hence with no phase information and no fine spectral
representation.

Experiments conducted by Leonard and reported by [168],
seems to show that ASR acoustic analysis (LPC in that case)
has little effect on human recognition, suggesting that most of
the ASR weaknesses may come from the acoustic modeling
limitations and little from the acoustic analysis (i.e. front-end
or feature extraction portion of the ASR system) weaknesses.
Those experiments have been carried out on sequences of digits
recorded in a quiet environment.

In their study, Demuynck et al. re-synthesized speech from
different steps of the MFCC analysis, i.e. power spectrum, Mel
spectrum and Mel cepstrum [54]. They come to the conclusion
that re-synthesized speech is perfectly intelligible given that an
excitation signal based on pitch analysis is used, and that the
phase information is not required. They emphasize that their
experiments are done on clean speech only.

Experiments conducted by Peters et al [225] demonstrate
that these conclusions are not correct in case of noisy speech
recordings. He suggests that information lost by the conven-
tional acoustic analysis (phase and fine spectral resolution) may
become crucial for intelligibility in case of speech distortions
(reverberation, environment noise, ...). These results show that,
in noisy environment, the degradation of the speech represen-
tation affects the performance of the human recognition almost
in the same order as the machine. More particularly, ignoring
the phase leads to a severe drop of human performance (from
almost perfect recognition to 8.5% sentence error rate) suggest-
ing that the insensitivity of human to the phase is not that true
in adverse conditions.

In [220], the authors perform human perception experi-
ments on speech signals reconstructed either from the magni-
tude spectrum or from the phase spectrum and conclude that
phase spectrum contribute as much as amplitude to speech in-
telligibility if the shape of the analysis window is properly se-
lected.

Finally, experiments achieved at Oldenburg demonstrated
that the smearing of the temporal resolution of conventional
acoustic features affects human intelligibility for modulation
cut-off frequencies lower than 32 Hz on a phoneme recogni-
tion task. Also, they conclude that neglecting the phase causes
approximately 5% error rate in phoneme recognition of human
listeners.

4. ASR techniques

In this section, we review methodologies towards improved
ASR analysis/modeling accuracy and robustness against thein-
trinsic variability of speech. Similar techniques have been pro-
posed to address different sources of speech variation. This sec-
tion will introduce both the general ideas of these approaches
and the specific usage regarding variability sources.
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4.1. Front-end techniques

An update on feature extraction front-ends is proposed, particu-
larly showing how to take advantage of techniques targetingthe
non-stationarity assumption. Also, the feature extraction stage
can be the appropriate level to target the effects of some other
variations, like the speaker physiology (through feature com-
pensation [302] or else improved invariance [190]) and other
dimensions of speech variability. Finally, techniques forcom-
bining estimation based on different features sets are reviewed.
This also involves dimensionality reduction approaches.

4.1.1. Overcoming assumptions

Most of the Automatic Speech Recognition (ASR) acous-
tic features, such as Mel-Frequency Cepstral Coeffi-
cients (MFCC)[51] or Perceptual Linear Prediction (PLP)
coefficients[118], are based on some sort of representationof
the smoothed spectral envelope, usually estimated over fixed
analysis windows of typically 20 ms to 30 ms [51, 238]2. Such
analysis is based on the assumption that the speech signal is
quasi-stationary over these segment durations. However, it is
well known that the voiced speech sounds such as vowels are
quasi-stationary for 40 ms-80 ms, while stops and plosive are
time-limited by less than 20 ms [238]. Therefore, it implies
that the spectral analysis based on a fixed size window of
20 ms-30 ms has some limitations, including:

• The frequency resolution obtained for quasi-stationary
segments (QSS) longer than 20 ms is quite low compared
to what could be obtained using larger analysis windows.

• In certain cases, the analysis window can span the transi-
tion between two QSSs, thus blurring the spectral prop-
erties of the QSSs, as well as of the transitions. Indeed,
in theory, Power Spectral Density (PSD) cannot even be
defined for such non stationary segments [112]. Further-
more, on a more practical note, the feature vectors ex-
tracted from such transition segments do not belong to
a single unique (stationary) class and may lead to poor
discrimination in a pattern recognition problem.

In [290], the usual assumption is made that the piecewise
quasi-stationary segments (QSS) of the speech signal can be
modeled by a Gaussian autoregressive (AR) process of a fixed
orderp as in [7, 272, 273]. The problem of detecting QSSs is
then formulated using a Maximum Likelihood (ML) criterion,
defining a QSS as the longest segment that has most probably
been generated by the same AR process.3

Another approach is proposed in [10], which describes a
temporal decomposition technique to represent the continuous
variation of the LPC parameters as a linearly weighted sum of
a number of discrete elementary components. These elemen-
tary components are designed such that they have the minimum
temporal spread (highly localized in time) resulting in superior
coding efficiency. However, the relationship between the opti-
mization criterion of “the minimum temporal spread” and the
quasi-stationarity is not obvious. Therefore, the discrete ele-

2Note that these widely used ASR front-end techniques make use
of frequency scales that are inspired by models of the human auditory
system. An interesting critical contribution to this has however been
provided in [129], where it is concluded that so far, there islittle evi-
dence that the study of the human auditory system has contributed to
advances in automatic speech recognition.

3Equivalent to the detection of the transition point betweenthe two
adjoining QSSs.

mentary components are not necessarily quasi-stationary and
vice-versa.

Coifman et al [43] have described a minimum entropy basis
selection algorithm to achieve the minimum information cost of
a signal relative to the designed orthonormal basis. In [273],
Svendsen et al have proposed a ML segmentation algorithm us-
ing a single fixed window size for speech analysis, followed
by a clustering of the frames which were spectrally similar for
sub-word unit design. More recently, Achan et al [4] have pro-
posed a segmental HMM for speech waveforms which identifies
waveform samples at the boundaries between glottal pulse pe-
riods with applications in pitch estimation and time-scalemod-
ifications.

As a complementary principle to developing features that
“work around” the non-stationarity of speech, significant efforts
have also been made to develop new speech signal representa-
tions which can better describe the non-stationarity inherent in
the speech signal. Some representative examples are temporal
patterns (TRAPs) features[120], MLPs and several modulation
spectrum related techniques[141, 192, 288, 325]. In this ap-
proach temporal trajectories of spectral energies in individual
critical bands over windows as long as one second are used as
features for pattern classification. Another methodology is to
use the notion of the amplitude modulation (AM) and the fre-
quency modulation (FM) [113]. In theory, the AM signal mod-
ulates a narrow-band carrier signal (specifically, a monochro-
matic sinusoidal signal). Therefore to be able to extract the AM
signals of a wide-band signal such as speech (typically 4KHz),
it is necessary to decompose the speech signal into narrow spec-
tral bands. In [289], this approach is opposed to the previous use
of the speech modulation spectrum [141, 192, 288, 325] which
was derived by decomposing the speech signal into increasingly
wider spectral bands (such as critical, Bark or Mel). Similar ar-
guments from the modulation filtering point of view, were pre-
sented by Schimmel and Atlas[247]. In their experiment, they
consider a wide-band filtered speech signalx(t) = a(t)c(t),
wherea(t) is the AM signal andc(t) is the broad-band car-
rier signal. Then, they perform a low-pass modulation filtering
of the AM signala(t) to obtainaLP (t). The low-pass filtered
AM signal aLP (t) is then multiplied with the original carrier
c(t) to obtain a new signal̃x(t). They show that the acoustic
bandwidth ofx̃(t) is not necessarily less than that of the origi-
nal signalx(t). This unexpected result is a consequence of the
signal decomposition into wide spectral bands that resultsin a
broad-band carrier.

Finally, as extension to the “traditional” AR process (all-
pole model) speech modeling, pole-zero transfer functionsthat
are used for modeling the frequency response of a signal, have
been well studied and understood [181]. Lately, Kumaresan
et al.[150, 151] have proposed to model analytic signals using
pole-zero models in the temporal domain. Along similar lines,
Athineos et al.[12] have used the dual of the linear prediction in
the frequency domain to improve upon the TRAP features.

Another strong assumption that has been addressed in re-
cent papers, concern the worthlessness of the phase for speech
intelligibility. We already introduced in section 3.2.1 the con-
clusions of several studies that reject this assumption. A few
papers have tried to reintroduce the phase information intothe
ASR systems. In [221], the authors introduce the instantaneous
frequency which is computed from the phase spectrum. Exper-
iments on vowel classification show that these features contain
meaningful information. Other authors are proposing features
derived from the group delay [29, 116, 324] which presents a
formant-like structure with a much higher resolution than the
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power spectrum. As the group delay in inherently very noisy,
the approaches proposed by the authors mainly aims at smooth-
ing the estimation. ASR experiments show interesting perfor-
mance in noisy conditions.

4.1.2. Compensation and invariance

For other sources of speech variability (besides non-
stationarity), a simple model may exist that appropriatelyre-
flects and compensate its effect on the speech features.

The preponderance of lower frequencies for carrying the
linguistic information has been assessed by both perceptual and
acoustical analysis and justify the success of the non-linear fre-
quency scales such as Mel, Bark, Erb, ... Similarly, in [118], the
PLP parameters present a fair robustness to inter-speaker vari-
ability, thanks to the low order (5th) linear prediction analysis
which only models the two main peaks of the spectral shape,
typically the first two formants. Other approaches aim at build-
ing acoustic features invariant to the frequency warping.

In [293], the authors define the ”scale transform” and the
”scale cepstrum”of a signal spectrum whose magnitude is in-
variant to a scaled version of the original spectrum. In [190],
the continuous wavelet transform has been used as a prepro-
cessing step, in order to obtain a speech representation in which
linear frequency scaling leads to a translation in the time-scale
plane. In a second step, frequency-warping invariant features
were generated. These include the auto- and cross-correlation
of magnitudes of local wavelet spectra as well as linear and non-
linear transforms thereof. It could be shown that these features
not only lead to better recognition scores than standard MFCCs,
but that they are also more robust to mismatches between train-
ing and test conditions, such as training on male and testingon
female data. The best results were obtained when MFCCs and
the vocal tract length invariant features were combined, show-
ing that the sets contain complementary information [190].

A direct application of the tube resonator model of the
vocal tract lead to the different vocal tract length normaliza-
tion (VTLN) techniques: speaker-dependent formant mapping
[21, 299], transformation of the LPC pole modeling [261], fre-
quency warping, either linear [63, 161, 286, 317] or non-linear
[214], all consist of modifying the position of the formantsin
order to get closer to an ”average” canonical speaker. Sim-
ple yet powerful techniques for normalizing (compensating) the
features to the VTL are widely used [302]. Note that VTLN is
often combined with an adaptation of the acoustic model to the
canonical speaker [63, 161] (cf. section 4.2.1). The potential
of using piece-wise linear and phoneme-dependent frequency
warping algorithms for reducing the variability in the acoustic
feature space of children have also been investigated [50].

Channel compensation techniques such as the cepstral
mean subtraction or the RASTA filtering of spectral trajecto-
ries, also compensate for the speaker-dependent componentof
the long-term spectrum [138, 305].

Similarly, some studies attempted to devise feature extrac-
tion methods tailored for the recognition of stressed and non-
stressed speech simultaneously. In his paper [38], Chen pro-
posed a Cepstral Domain Compensation when he showed that
simple transformations (shifts and tilts) of the cepstral coef-
ficients occur between the different types of speech signals
studied. Further processing techniques have been employed
for more robust speech features [109, 119, 131] and some re-
searchers simply assessed the better representations fromthe
existing pool of features [110].

When simple parametric models of the effect of the
variability are not appropriate, feature compensation canbe
performed using more generic non-parametric transformation
schemes, including linear and non-linear transformations. This
becomes a dual approach to model adaptation, which is the topic
of Section 4.2.1.

4.1.3. Additional cues and multiple feature streams

As a complementary perspective to improving or compensating
single feature sets, one can also make use of several “streams”
of features that rely on different underlying assumptions and
exhibit different properties.

Intrinsic feature variability depends on the set of classes
that features have to discriminate. Given a set of acoustic mea-
surements, algorithms have been described to select subsets
of them that improve automatic classification of speech data
into phonemes or phonetic features. Unfortunately, pertinent
algorithms are computationally intractable with these types of
classes as stated in [213], [212], where a sub-optimal solution is
proposed. It consists in selecting a set of acoustic measurement
that guarantees a high value of the mutual information between
acoustic measurements and phonetic distinctive features.

Without attempting to find an optimal set of acoustic mea-
surements, many recent automatic speech recognition systems
combine streams of different acoustic measurements on the as-
sumption that some characteristics that are de-emphasizedby a
particular feature are emphasized by another feature, and there-
fore the combined feature streams capture complementary in-
formation present in individual features.

In order to take into account different temporal behavior in
different bands, it has been proposed ([28, 277, 280]) to con-
sider separate streams of features extracted in separate channels
with different frequency bands. Inspired by the multi-stream
approach, examples of acoustic measurement combination are:

• Multi-resolution spectral/time correlates ([297], [111]),

• segment and frame-based acoustic features ([124]),

• MFCC, PLP and an auditory feature ([134]),

• spectral-based and discriminant features ([22]),

• acoustic and articulatory features ([143, 278]),

• LPC based cepstra, MFCC coefficients, PLP coeffi-
cients, energies and time-averages ([213],[212]), MFCC
and PLP ([328]),

• full band non-compressed root cepstral coefficients
(RCC), Full band PLP 16kHz,Telephone band PLP 8
kHz ([142]),

• PLP, MFCC and wavelet features ([92]),

• joint features derived from the modified group-delay
function ([117]),

• combinations of frequency filtering (FF), MFCC,
RASTA-FF, (J)RASTA-PLP ([237]).

Other approaches integrate some specific parameters into a sin-
gle stream of features. Examples of added parameters are:

• periodicity and jitter ([275]),

• voicing ([327], [98]),

• rate of speech and pitch ([267]).

To benefit from the strengths of both MLP-HMM and Gaussian-
HMM techniques, the Tandem solution was proposed in [68],
using posterior probability estimation obtained at MLP outputs
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as observations for a Gaussian-HMM. An error analysis of Tan-
dem MLP features showed that the errors using MLP features
are different from the errors using cepstral features. Thismoti-
vates the combination of both feature styles. In ([326]), combi-
nation techniques were applied to increasingly more advanced
systems showing the benefits of the MLP-based features. These
features have been combined with TRAP features ([197]). In
([145]), Gabor filters are proposed, in conjunction with MLP
features, to model the characteristics of neurons in the auditory
system as is done for the visual system. There is evidence that
in primary auditory cortex each individual neuron is tuned to a
specific combination of spectral and temporal modulation fre-
quencies.

In [62], it is proposed to use mixture gaussians to represent
presence and absence of features.

Additional features have also been considered as cues for
speech recognition failures [122].

This section introduced several works where several
streams of acoustic representations of the speech signal were
successfully combined in order to improve the ASR perfor-
mance. Different combination methods have been proposed and
can roughly be classified as:

• direct feature combination/transformation such as PCA,
LDA, HDA, ... or selection of the best features will be
discussed in section 4.1.4

• combination of acoustic models trained on different fea-
ture sets will be discussed in section 4.2.2

• combination of recognition system based on different
acoustic features will be discussed in section??

4.1.4. Dimensionality reduction and feature selection

Using additional features/cues as reviewed in the previoussec-
tion, or simply extending the context by concatenating fea-
ture vectors from adjacent frames may yield very long fea-
ture vectors in which several features contain redundant infor-
mation, thus requiring an additional dimension-reductionstage
[102, 149] and/or improved training procedures.

The most common feature-reduction technique is the use
of a linear transformy = Ax wherex and y are the orig-
inal and the reduced feature vectors, respectively, andA is a
p×n matrix withp < n wheren andp are the original and the
desired number of features, respectively. The principal compo-
nent analysis (PCA) [59, 82] is the most simple way of finding
A. It allows for the best reconstruction ofx from y in the sense
of a minimal average squared Euclidean distance. However, it
does not take the final classification task into account and is
therefore only suboptimal for finding reduced feature sets.A
more classification-related approach is the linear discriminant
analysis (LDA), which is based on Fisher’s ratio (F-ratio) of
between-class and within-class covariances [59, 82]. Herethe
columns of matrixA are the eigenvectors belonging to thep

largest eigenvalues of matrix[S−1

w Sb], whereSw andSb are the
within-class and between-class scatter matrices, respectively.
Good results with LDA have been reported for small vocabu-
lary speech recognition tasks, but for large-vocabulary speech
recognition, results were mixed [102]. In [102] it was found
that the LDA should best be trained on sub-phone units in or-
der to serve as a preprocessor for a continuous mixture density
based recognizer. A limitation of LDA is that it cannot effec-
tively take into account the presence of different within-class
covariance matrices for different classes. Heteroscedastic dis-
criminant analysis (HDA) [149] overcomes this problem, andis

actually a generalization of LDA. The method usually requires
the use of numerical optimization techniques to find the matrix
A. An exception is the method in [177], which uses the Cher-
noff distance to measure between-class distances and leadsto a
straight forward solution forA. Finally, LDA and HDA can be
combined with maximum likelihood linear transform (MLLT)
[96], which is identical to semi-tied covariance matrices (STC)
[86]. Both aim at transforming the reduced features in such a
way that they better fit with the diagonal covariance matrices
that are applied in many HMM recognizers (cfr. [228], sec-
tion 2.1). It has been reported [244] that such a combination
performs better than LDA or HDA alone. Also, HDA has been
combined with minimum phoneme error (MPE) analysis [318].
Recently, the problem of finding optimal dimension-reducing
feature transformations has been studied from the viewpoint of
maximizing the mutual information between the obtained fea-
ture set and the corresponding phonetic class [213, 219].

A problem of the use of linear transforms for feature re-
duction is that the entire feature vectorx needs to be computed
before the reduced vectory can be generated. This may lead to
a large computational cost for feature generation, although the
final number of features may be relatively low. An alternative is
the direct selection of feature subsets, which, expressed by ma-
trix A, means that each row ofA contains a single one while all
other elements are zero. The question is then the one of which
features to include and which to exclude. Because the elements
of A have to be binary, simple algebraic solutions like with PCA
or LDA cannot be found, and iterative strategies have been pro-
posed. For example, in [2], the maximum entropy principle was
used to decide on the best feature space.

4.2. Acoustic modeling techniques

Concerning acoustic modeling, good performance is generally
achieved when the model is matched to the task, which can be
obtained through adequate training data (see also Section 4.4).
Systems with stronger generalization capabilities can then be
built through a so-called multi-style training. Estimating the
parameters of a traditional modeling architecture in this way
however has some limitation due to the inhomogeneity of the
data, which increases the spread of the models, and hence nega-
tively impacts accuracy compared to task-specific models. This
is partly to be related to the inability of the framework to prop-
erly model long-term correlations of the speech signals.

Also, within the acoustic modeling framework, adaptation
techniques provide a general formalism for reestimating opti-
mal model parameters for given circumstances based on mod-
erate amounts of speech data.

Then, the modeling framework can be extended to allow
multiple specific models to cover the space of variation. These
can be obtained through generalizations of the HMM modeling
framework, or through explicit construction of multiple models
built on knowledge-based or data-driven clusters of data.

In the following, extensions for modeling using additional
cues and features is also reviewed.

4.2.1. Adaptation

In Section 4.1.2, we have been reviewing techniques that canbe
used to compensate for speech variation at the feature extraction
level. A dual approach is to adapt the ASR acoustic models.

In some cases, some variations in the speech signal could
be considered as long term given the application. For instance,
a system embedded in a personal device and hence mainly de-
signed to be used by a single person, or a system designed to
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transcribe and index spontaneous speech, or characterizedby
utilization in a particular environment. In these cases, itis of-
ten possible to adapt the models to these particular conditions,
hence partially factoring out the detrimental effect of these. A
popular technique is to estimate a linear transformation ofthe
model parameters using a Maximum Likelihood (ML) crite-
rion [163]. A Maximum a Posteriori (MAP) objective function
may also be used [40, 315].

Being able to perform this adaptation using limited amounts
of condition-specific data would be a very desirable property for
such adaptation methodologies, as this would reduce the cost
and hassle of such adaptation phases. Such ”fast” (sometimes
on-line) adaptation schemes have been proposed a few years
ago, based on the clustering of the speakers into sets of speakers
which have similar voice characteristics. Inferred acoustic mod-
els present a much smaller variance than speaker-independent
systems [201, 217]. The eigenvoice approach [85, 208] takes
from this idea by building a low dimension eigenspace in which
any speaker is located and modeled as a linear combination of
”eigenvoices”.

Intuitively, these techniques rest on the principle of acquir-
ing knowledge from the training corpora that represent the prior
distribution (or clusters) of model parameters given a variability
factor under study. With these adaptation techniques, knowl-
edge about the effect of the inter-speaker variabilities are gath-
ered in the model. In the traditional approach, this knowledge
is simply discarded, and, although all the speakers are usedto
build the model, and pdfs are modeled using mixtures of gaus-
sians, the ties between particular mixture components across the
several CD phonemes are not represented/used.

Recent publications have been extending and refining this
class of techniques. In [140], rapid adaptation is further ex-
tended through a more accurate speaker space model, and an
on-line algorithm is also proposed. In [312], the correlations
between the means of mixture components of the different fea-
tures are modeled using a Markov Random Field, which is then
used to constrain the transformation matrix used for adaptation.
Other publications include [139, 180, 283, 284, 312, 322].

Other forms of transformations for adaptation are also pro-
posed in [218], where the Maximum Likelihood criterion is
used but the transformations are allowed to be nonlinear. Let us
also mention alternate non-linear speaker adaptation paradigms
based on connectionist networks [3, 300].

Speaker normalization algorithms that combine frequency
warping and model transformation have been proposed to re-
duce acoustic variability and significantly improve ASR perfor-
mance for children speakers (by 25-45% under various model
training and testing conditions) [232, 234]. ASR on emotional
speech has also benefited from techniques relying on adapting
the model structure within the recognition system to account
for the variability in the input signal. One practice has been
to bring the training and test conditions closer by space projec-
tion [34, 183]. In [148], it is shown that acoustic model adap-
tation can be used to reduce the degradation due to non-native
dialects. This has been observed on an English read speech
recognition task (Wall Street Journal), and the adaptationwas
applied at the speaker level to obtain speaker dependent mod-
els. For speaker independent systems this may not be feasible
however, as this would require adaptation data with a large cov-
erage of non-native speech.

4.2.2. Multiple modeling

Instead of adapting the models to particular conditions, one
may also train an ensemble of models specialized to specific
conditions or variations. These models may then be used within
a selection, competition or else combination framework. Such
techniques are the object of this section.

Acoustic models are estimated from speech corpora, and
they provide their best recognition performances when the op-
erating (or testing) conditions are consistent with the training
conditions. Hence many adaptation procedures were studiedto
adapt generic models to specific tasks and conditions. When
the speech recognition system has to handle various possible
conditions, several speech corpora can be used together fores-
timating the acoustic models, leading to mixed models or hybrid
systems [49, 195], which provide good performances in those
various conditions (for example in both landline and wireless
networks). However, merging too many heterogeneous data in
the training corpus makes acoustic models less discriminant.
Hence the numerous investigations along multiple modeling,
that is the usage of several models for each unit, each model
being trained from a subset of the training data, defined accord-
ing to a priori criteria such as gender, accent, age, rate-of-speech
(ROS) or through automatic clustering procedures. Ideallysub-
sets should contain homogeneous data, and be large enough for
making possible a reliable training of the acoustic models.

Gender information is one of the most often used criteria. It
leads to gender-dependent models that are either directly used in
the recognition process itself [224, 314] or used as a betterseed
for speaker adaptation [160]. Gender dependence is appliedto
whole word units, for example digits [101], or to context de-
pendent phonetic units [224], as a result of an adequate splitting
of the training data.

In many cases, most of the regional variants of a language
are handled in a blind way through a global training of the
speech recognition system using speech data that covers allof
these regional variants, and enriched modeling is generally used
to handle such variants. This can be achieved through the useof
multiple acoustic models associated to large groups of speakers
as in [18, 296]. These papers showed that it was preferable
to have models only for a small number of large speaker pop-
ulations than for many small groups. When a single foreign
accent is handled, some accented data can be used for training
or adapting the acoustic models [1, 115, 172, 292].

Age dependent modeling has been less investigated, may
be due to the lack of large size children speech corpora. The
results presented in [48] fail to demonstrate a significant im-
provement when using age dependent acoustic models, possibly
due to the limited amount of training data for each class of age.
Simply training a conventional speech recognizer on children
speech is not sufficient to yield high accuracies, as demonstrated
by Wilpon and Jacobsen [307]. Recently, corpora for children
speech recognition have begun to emerge. In [70] a small corpus
of children speech was collected for use in interactive reading
tutors and led to a complete children speech recognition system.
In [257], a more extensive corpus consisting of 1100 children,
from kindergarten to grade 10, was collected and used to de-
velop a speech recognition system for isolated word and finite
state grammar vocabularies for U.S. English.

Speaking rate notably affects the recognition performances,
thus ROS dependent models were studied [194]. It was also no-
ticed that ROS dependent models are often getting less speaker-
independent because the range of speaking rate shown by dif-
ferent speakers is not the same [227], and that training pro-
cedures robust to sparse data need to be used. In that sense,
comparative studies have shown that rate-adapted models per-
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formed better than rate-specific models [311]. Speaking rate
can be estimated on line [227], or computed from a decoding
result using a generic set of acoustic models, in which case a
rescoring is applied for fast or slow sentences [202]; or thevar-
ious rate dependent models may be used simultaneously during
decoding [39, 321].

The Signal-to-Noise Ratio (SNR) also impacts recognition
performances, hence, besides or in addition to noise reduction
techniques, SNR-dependent models have been investigated.In
[262] multiple sets of models are trained according to several
noise masking levels and the model set appropriate for the esti-
mated noise level is selected automatically in recognitionphase.
In contrast, in [243] acoustic models composed under various
SNR conditions are run in parallel during decoding.

The same way, speech variations due to stress and emotions
has been addressed by the multi-style training [169, 222], and
simulated stress token generation [26, 27]. As for all the im-
proved training methods, recognition performance is increased
only around the training conditions and degradation in results
is observed as the test conditions drift away from the original
training data.

Automatic clustering techniques have also been used for
elaborating several models per word for connected-digit recog-
nition [239]. Clustering the trajectories (or sequences ofspeech
observations assigned to some particular segment of the speech,
like word or subword units) deliver more accurate modeling for
the different groups of speech samples [146]; and clustering
training data at the utterance level provided the best perfor-
mances in [256].

Multiple modeling of phonetic units may be handled also
through the usual triphone-based modeling approach by incor-
porating questions on some variability sources in the set of
questions used for building the decision trees: gender informa-
tion in [205]; syllable boundary and stress tags in [223]; and
voice characteristics in [271].

When multiple modeling is available, all the available mod-
els may be used simultaneously during decoding, as done in
many approaches, or the most adequate set of acoustic models
may be selected from a priori knowledge (for example network
or gender), or their combination may be handled dynamically
by the decoder. This is the case for parallel Hidden Markov
Models [31] where the acoustic densities are modulated de-
pending on the probability of a master context HMM being in
certain states. In [328], it is shown that log-linear combina-
tion provides good results when used for integrating probabil-
ities provided by acoustic models based on different acoustic
feature sets. More recently Dynamic Bayesian Networks have
been used to handle dependencies of the acoustic models with
respect to auxiliary variables, such as local speaking rate[255],
or hidden factors related to a clustering of the data [147, 189].

Multiple models can also be used in a parallel decoding
framework [319]; then the final answer results from a ”vot-
ing” process [74], or from the application of elaborated deci-
sion rules that take into account the recognized word hypotheses
[14]. Multiple decoding is also useful for estimating reliable
confidence measures [294].

Also, if models of some of the factors affecting speech
variation are known, adaptive training schemes can be devel-
oped, avoiding training data sparsity issues that could result
from cluster-based techniques. This has been used for instance
in the case of VTL normalization, where a specific estimation
of the vocal tract length (VTL) is associated to each speakerof
the training data [302]. This allows to build “canonical” mod-
els based on appropriately normalized data. During recognition,

a VTL is estimated in order to be able to normalize the feature
stream before recognition. The estimation of the VTL factorcan
either be perform by a maximum likelihood approach [161, 316]
or from a direct estimation of the formant positions [64, 166].
More general normalization schemes have also been investi-
gated [88], based on associating transforms (mostly lineartrans-
forms) to each speaker, or more generally, to different clusters
of the training data. These transforms can also be constrained
to reside in an reduced-dimensionality eigenspace [85]. A tech-
nique for “factoring-in” selected transformations back inthe
canonical model is also proposed in [87], providing a flexi-
ble way of building factor-specific models, for instance multi-
speaker models within a particular noise environment, or multi-
environment models for a particular speaker.

4.2.3. Auxiliary acoustic features

Most of speech recognition systems rely on acoustic parame-
ters that represent the speech spectrum, for example cepstral
coefficients. However, these features are sensitive to auxiliary
information inherent in the speech signal such as pitch, energy,
rate-of-speech, etc. Hence attempts have been made in taking
into account this auxiliary information in the modeling andin
the decoding processes.

Pitch, voicing and formant parameters have been used since
a long time, but mainly for endpoint detection purposes [11]
making it much more robust in noisy environments [186].
Many algorithms have been developed and tuned for comput-
ing these parameters, but are out of the scope of this paper.

For what concerns speech recognition itself, the most sim-
ple way of using such parameters (pitch, formants and/or voic-
ing) is their direct introduction in the feature vector, along with
the cepstral coefficients, for example periodicity and jitter are
used in [276] and formant and auditory-based acoustic cues are
used together with MFCC in [123, 252]. Correlation between
pitch and acoustic features is taken into account in [144] and an
LDA is applied on the full set of features (i.e. energy, MFCC,
voicing and pitch) in [174]. In [52], the authors propose a 2-
dimension HMM to extract the formant positions and evaluate
their potential on a vowel classification task. In [90], the authors
integrate the formant estimations into the HMM formalism, in
such a way that multiple formant estimate alternatives weighted
by a confidence measure are handled. In [279], a multi-stream
approach is used to combine MFCC features with formant es-
timates and a selection of acoustic cues such as acute/grave,
open/close, tense/lax, ...

Pitch has to be taken into account for the recognition of
tonal languages. Tone can be modeled separately through spe-
cific HMMs [313] or decision trees [310], or the pitch param-
eter can be included in the feature vector [36], or both informa-
tion streams (acoustic features and tonal features) can be han-
dled directly by the decoder, possibly with different optimized
weights [254]. Various coding and normalization schemes of
the pitch parameter are generally applied to make it less speaker
dependent; the derivative of the pitch is the most useful fea-
ture [171], and pitch tracking and voicing are investigatedin
[127]. A comparison of various modeling approaches is avail-
able in [53]. For tonal languages, pitch modeling usually con-
cerns the whole syllable; however limiting the modeling to the
vowel seems sufficient [37].

Voicing has been used in the decoder to constrain the
Viterbi decoding (when phoneme node characteristics are not
consistent with the voiced/unvoiced nature of the segment,cor-
responding paths are not extended) making the system more ro-
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bust to noise [216].
Pitch, energy and duration have also been used as prosodic

parameters in speech recognition systems, or for reducing am-
biguity in post-processing steps. These aspects are out of scope
of this paper.

Dynamic Bayesian Networks (DBN) offer an integrated
formalism for introducing dependence on auxiliary features.
This approach is used in [267] with pitch and energy as auxil-
iary features. Other information can also be taken into account
such as articulatory information in [266] where the DBN uti-
lizes an additional variable for representing the state of the ar-
ticulators by direct measurement (note that these experiments
require a very special X-ray Microbeam database). As men-
tioned in previous section, speaking rate is another factorthat
can be taken into account in such a framework. Most exper-
iments deal with limited vocabulary sizes; extension to large
vocabulary continuous speech recognition is proposed through
an hybrid HMM/BN acoustic modeling in [185].

Another approach for handling heterogeneous features is
the TANDEM approach used with pitch, energy or rate of
speech in [178]. The TANDEM approach transforms the in-
put features into posterior probabilities of sub-word units us-
ing artificial neural networks (ANNs), which are then processed
to form input features for conventional speech recognitionsys-
tems.

Finally, auxiliary parameters may be used to normal-
ize spectral parameters, for example based on measured
pitch [260], or used to modify the parameters of the densities
(during decoding) through multiple regressions as with pitch
and speaking rate in [81].

4.3. Pronunciation modeling techniques

As mentioned in the introduction of Section 2, some speech
variations, like foreign accent or spontaneous speech, affect the
acoustic realization to the point that their effect may be better
described by substitutions and deletion of phonemes with re-
spect to canonical (dictionary) transcriptions.

As a complementary principle to multiple acoustic mod-
eling approaches reviewed in Section 4.2.2, multiple pronun-
ciations are generally used for the vocabulary words. Hidden
model sequences offer a possible way of handling multiple re-
alizations of phonemes [105] possibly depending on phone
context. For handling hyper articulated speech where pauses
may be inserted between syllables, ad hoc variants are neces-
sary [189]. And adding more variants is usually required for
handling foreign accents.

Modern approaches attempt to build in rules underlying
pronunciation variation, using representations frameworks such
as FSTs [114, 253], based on phonological knowledge, data and
recent studies on the syllabic structure of speech, for instance in
English [99] or French [5].

In [5], an experimental study of phoneme and syllable
reductions is reported. The study is based on the compari-
son of canonical and pronounced phoneme sequences, where
the latter are obtained through a forced alignment procedure
(whereas [99] was based on fully manual phonetic annotation).
Although results following this methodology are affected by
ASR errors (in addition to “true” pronunciation variants),they
present the advantage of being able to benefit from analysis of
much larger and diverse speech corpora. In the alignment proce-
dure, the word representations are defined to allow the dropping
of any phoneme and/or syllable, in order to avoid limiting the
study to pre-defined/already know phenomena. The results are

presented and discussed so as to study the correlation of reduc-
tion phenomena with respect to the position of the phoneme in
the syllable, the syllable structure and the position of thesylla-
ble within the word. Within-word and cross-word resylabifica-
tion (frequent in French but not in English) is also addressed.
The results reinforce previous studies [99] and suggest further
research in the use of more elaborate contexts in the definition
of ASR acoustic models. Context-dependent phonemes could
be conditioned not only on neighboring phones but also on the
contextual factors described in this study. Such approaches are
currently being investigated [156, 191]. These rely on the mod-
eling capabilities of acoustic models that can implicitly model
some pronunciation effect [60, 104, 136], provided that they are
represented in the training data. In [104], several phone sets are
defined within the framework of triphone models, in the hope of
improving the modeling of pronunciation variants affectedby
the syllable structure. For instance, an extended phone setthat
incorporates syllable position is proposed. Experimentalresults
with these novel phone sets are not conclusive however. The
good performance of the baseline system could (at least partly)
be attributed to implicit modeling, especially when using large
amounts of training data resulting in increased generalization
capabilities of the used models. Also it should be considered
that ”continuous” (or ”subtle”) pronunciation effects arepossi-
ble (e.g. in spontaneous speech), where pronunciations cannot
be attributed to a specific phone from the phone set anymore,
but might cover ”mixtures” or transitional realizations between
different phones. In this case, approaches related to the pronun-
ciation lexicon alone will not be sufficient.

The impact of regional and foreign accents may also be
handled through the introduction of detailed pronunciation vari-
ants at the phonetic level [6, 128]. Introducing multiple pho-
netic transcriptions that handle alterations produced by non-
native speakers is a usual approach, and is generally associ-
ated to a combination of phone models of the native language
with phone models of the target language [16, 24, 308]. How-
ever adding too many systematic pronunciation variants maybe
harmful [269].

Alteration rules can be defined from phonetic knowledge or
estimated from some accented data [173]. Deriving rules using
only native speech of both languages is proposed in [97]. [240]
investigates the adaptation of the lexicon according to preferred
phonetic variants. When dealing with various foreign accents,
phone models of several languages can be used simultaneously
with the phone models of the target language [17], multilin-
gual units can be used [292] or specialized models for differ-
ent speaker groups can be elaborated [42]. Multilingual phone
models have been investigated for many years in the hope of
achieving language independent units [25, 47, 154, 249]. Un-
fortunately language independent phone models do not provide
as good results as language dependent phone models when the
latter are trained on enough speech data, but language inde-
pendent phone models are useful when little or no data exists
in a particular language and their use reduces the size of the
phoneme inventory of multilingual speech recognition systems.
The mapping between phoneme models of different languages
can be derived from data [303] or determined from phonetic
knowledge [291], but this is far from obvious as each language
has his own characteristic set of phonetic units and associated
distinctive features. Moreover, a phonemic distinguishing fea-
ture for a given language may hardly be audible to a native of
another language.

As mentioned in section 2.4, variations of the speaking rate
may deeply affect the pronunciation. Regarding this sourceof
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variability, some approaches relying upon an explicit model-
ing strategy using different variants of pronunciation have been
proposed; a multi-pass decoding enables the use of a dynam-
ically adjusted lexicon employed in a second pass [79]. The
acoustic changes, such as coarticulation, are modeled by di-
rectly adapting the acoustic models (or a subset of their param-
eters, i.e. weights and transition probabilities) to the different
speaking rates [13, 187, 198, 255, 320]. Most of the approaches
are based on a separation of the training material into discrete
speaking rate classes, which are then used for the training of
rate dependent models. During the decoding, the appropriate
set of models is selected according to the measured speaking
rate. Similarly, to deal with changes in phone duration, as it is
the case for instance for variation of the speaking rate, alteration
schemes of the transition probabilities between HMM statesare
proposed [188, 193, 198]. The basic idea is to put high/low tran-
sition probability (exit probability) for fast slow/speech. These
compensation techniques requirea priori ROS estimation us-
ing one of the measures described in section 2.4. In [320], the
authors proposed a compensation technique that does not re-
quire ROS estimation. This technique used a set of parallel
rate-specific acoustic and pronunciation models. Rate switch-
ing is permitted at word boundaries to allow within-sentence
speaking rate variation.

The reader should also explore the publications from [230].

4.4. Larger and diverse training corpora

Driven by the availability of computational resources, there is a
still ongoing trend in trying to build bigger and hopefully better
systems, that attempt to take advantage of increasingly large
amounts of training data.

This trend seems in part to be related to the perception that
overcoming the current limited generalization abilities as well
as modeling assumptions should be beneficial. This however
implies more accurate modeling whose parameters can only be
reliably estimated through larger data sets.

Several studies follow that direction. In [209], 1200 hours
of training data have been used to develop acoustic models for
the English broadcast news recognition task, with significant
improvement over the previous 200 hours training set. It is also
argued that a vast body of speech recognition algorithms and
mathematical machinery is aimed at smoothing estimates to-
ward accurate modeling with scant amounts of data.

More recently, in [156], up to 2300 hours of speech have
been used. This has been done as part of the EARS project,
where training data of the order of 10000 hours has been put
together. It is worth mentioning that the additional very large
amounts of training data are usually either untranscribed or au-
tomatically transcribed. As a consequence, unsupervized or
lightly supervized approaches (e.g. using closed captions) are
essential here.

Research towards making use of larger sets of speech data
are also involving schemes for training data selection, semi-
supervised learning, as well as active learning [298]. These al-
low to minimize the manual intervention required while prepar-
ing a corpus for model training purposes.4

A complementary perspective to making use of more train-
ing data consists in using knowledge gathered on speech vari-
ations in order to synthesize large amounts of acoustic training
data [93].

4 [287] Combining active and semi-supervised learning for spoken
language understanding. Methods of similar inspiration are also used in
the framework of training models for spoken language understanding.

Finally, another approach is proposed in [61], with discrim-
inant non-linear transformations based on MLPs (Multi-Layer
Perceptrons) that present some form of genericity across several
factors. The transformation parameters are estimated based on
a large pooled corpus of several languages, and hence presents
unique generalization capabilities. Language and domain spe-
cific acoustic models are then built using features transformed
accordingly, allowing language and task specificity if required,
while also bringing the benefit of detailed modeling and robust-
ness to any tasks and language. A important study of the ro-
bustness of similarly obtained MLP-based acoustic features to
domains and languages is also reported in [268].

5. Conclusion
This paper gathers important references to literature related to
the endogenous variations of the speech signal and their im-
portance in automatic speech recognition. Important references
addressing specific individual speech variation sources are first
surveyed. This covers accent, speaking style, speaker physi-
ology, age, emotions. General methods for diagnosing weak-
nesses in speech recognition approaches are then highlighted.
Finally, the paper proposed an overview of general and spe-
cific techniques for better handling of variation sources inASR,
mostly tackling the speech analysis and acoustic modeling as-
pects.
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