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Multisyn: open-domain unit selection for the

Festival speech synthesis system

Robert A.J. Clark ∗, Korin Richmond, Simon King

CSTR, The University of Edinburgh, 2 Buccleuch Place,

Edinburgh, EH8 9LW, UK

Abstract

We present the implementation and evaluation of an open-domain unit selection
speech synthesis engine designed to be flexible enough to encourage further unit
selection research and allow rapid voice development by users with minimal speech
synthesis knowledge and experience. We address the issues of automatically process-
ing speech data into a usable voice using automatic segmentation techniques and
how the knowledge obtained at labelling time can be exploited at synthesis time.
We describe target cost and join cost implementation for such a system and de-
scribe the outcome of building voices with a number of different sized datasets. We
show that, in a competitive evaluation, voices built using this technology compare
favourably to other systems.

Key words: speech synthesis, unit selection,

1 Introduction

Over the last decade, the Festival speech synthesis system (Taylor, Black,
and Caley, 1998) has become the de facto standard free toolkit for speech
synthesis research. It has also formed the starting point for at least three
leading commercial systems 1 .

Until recently, Festival offered two distinct methods for concatenative syn-
thesis: a conventional single-instance diphone-based method using an inven-
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 tory containing one recording of each diphone type, and the “clunits” method
(Black and Taylor, 1997) which uses an inventory of units recorded in natural
sentences and performs a restricted form of unit selection.

In this paper, we introduce a third method: a general-purpose unit selection
algorithm, along with the tools for building voices. The method is general-
purpose because it is capable of realising open-domain voices (“clunits” per-
forms best in limited domains, where the recordings in the inventory are from
the same domain – e.g. use the same limited vocabulary and constrained syn-
tax – as the utterances to be synthesised). We call this method “Multisyn”
and it can be downloaded as part of Festival 1.95 and above from
https://www.cstr.ed.ac.uk.

Unit selection speech synthesis (Black and Campbell, 1995; Hunt and Black,
1996) was proposed as a way to solve some of the problems of unnaturalness
introduced by the signal processing techniques needed to produce convinc-
ing synthetic speech from a database consisting of a single example of each
diphones that occurs in a language. Instead of having one example of each
diphone, a number of examples in different contexts are included, and the
synthesis process is formulated as a search problem. A search is performed to
find the best sequence of diphones (or potentially other sized units). The goal
of unit selection speech synthesis is to select a sequence of diphones which re-
quires much less signal processing than standard diphone synthesis, or ideally
no signal processing at all.

There are a number of important issues to be addressed in a robust and
efficient implementation of unit selection, and recent advances have lead to an
improved understanding of the process. The first of these involves designing
the recording script. Much of this work discusses the use of greedy algorithms
to optimally select a script from a very large text corpus, examples include the
work by van Santen and Buchsbaum (1997); Bozkurt et al. (2003); Kominek
and Black (2004), whilst other work discusses the theoretical and practical
problems of recording the ideal dataset (Möbius, 2001).

Once a dataset has been recorded, it needs to be searched efficiently. The
general search method (Hunt and Black, 1996) has been refined (e.g. Conkie,
1999; Taylor, 2000; Bulyko and Ostendorf, 2001) and complemented by other
procedures for specific tasks such as limited domain speech synthesis (Black
and Lenzo, 2000).

The primary goal of our Multisyn engine is to provide state-of-the-art unit
selection speech synthesis within a framework that makes it easy to (semi-
automatically) develop new voices, with only limited speech synthesis knowl-
edge.
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1.1 Unit selection speech synthesis

A full tutorial on unit selection speech synthesis is beyond the scope of this
paper; we refer the reader to Hunt and Black (1996). However, we will define
the terminology to be used in the rest of this paper.

Unit selection speech synthesis uses a recorded database (sometimes called the
inventory) of speech. This usually consists of recordings of isolated, naturally-
occurring sentences (e.g. from newspaper text). The inventory along with its
associated linguistic annotation is called the voice. Units are extracted from
this database and concatenated to synthesise novel utterances. The unit type
may be the same throughout the database (e.g. diphones), or variable (e.g.
a mixture of phones, diphones, syllables, etc.). The database should contain
multiple examples of each unit type.

To synthesise a novel utterance, a target utterance is constructed, which con-
sists of the desired linguistic specification of the utterance: the words, the
phone sequence, the syllable boundaries, placement of accents, optionally a
pitch contour and segment durations, and so on. The target is constructed
from the input text by the language processing front end, which is usually
using some combination of rules and statistical models.

A sequence of units taken from different places in the database is then found
which best matches this target. This task is performed by the unit selection
engine. “Best matching” is measured by two costs, summed over the unit se-
quence. The chosen unit for a given position in the target utterance is selected
from a set of available candidate units which may be all matching diphones
(regardless of context) in the inventory, or may be a subset of those (after
some pre-selection has been applied – Section 3.6).

The join cost estimates how well two consecutive units will join together in
the large number of cases where they were not contiguous in the database and
is commonly computed using only acoustic features. The target cost measures
how well a unit matches part of the target specification, for example in terms
of the constituent phones, within-syllable or within-phrase position, and is
commonly computed using linguistic features. Since the join and target costs
are locally computed, a Viterbi search can be used to efficiently search for the
unit sequence that minimises the total cost. The details of how the join and
target costs are computed vary from system to system.
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1.2 Structure of this paper

Since Festival is primarily a research toolkit, this paper concentrates on ex-
plaining how Multisyn satisfies two design goals. The first goal is to provide
a stable general purpose unit selection implementation that is suitable for
carrying out further research into unit selection and related techniques. The
second goal is to provide the end user with a simple, mostly automatic mech-
anism to build their own voice for the system, requiring only limited specialist
knowledge. As we shall see, this second goal means that there are times when
we have employed a simple but robust technique instead of a potentially bet-
ter, but more complex, technique. Particular attention is given to the design
decisions and procedures required to build new voices.

In Section 2 we describe the design and implementation of the Multisyn unit-
selection engine. The front end processes used with this engine are simply a
subset of those used in the standard diphone system so are not described in
this paper. We also compare and contrast the Multisyn approach to other
approaches. Sections 3 and 4 discuss the requirements for the database and
the process of building a voice from it respectively. In Section 5, we address
the issue of automatic segmentation to phonetically label recorded speech
databases. In Section 6 we discuss speech synthesis evaluation techniques and
recent evaluation in which the Multisyn engine has been involved.

2 Multisyn design and implementation

The Multisyn unit selection algorithm implemented in Festival is conventional
and reasonably straightforward, and follows the description in Section 1.1.

2.1 Festival’s architecture

Festival is modular and uses a simple framework, commonly known as a “black-
board architecture”. The system is centred on a common data structure, called
the Utterance, which is passed from module to module within the system.
Modules either modify existing parts – called Relations – of this Utterance
structure, or add new Relations. This architecture allows users to control eas-
ily both the sequence of processes in the pipeline of modules (perhaps adding
new processes) and the processing modules themselves. Multisyn is imple-
mented as a module for Festival, and replaces a number of the modules from
the pipeline for the standard diphone method, as Figure 1 shows.

4



 

 

 

ACCEPTED MANUSCRIPT 

 
text: "Say this!"

utterance obj

Unit Selection
MultiSyn

Wave_Synth

Token

POS
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Intonation

Duration

Int_Targets

Wave_Synth

Fig. 1. The relationship of Multisyn (right hand branch) to standard single-instance
diphone synthesis (left-hand branch) within Festival’s blackboard system architec-
ture. MultiSyn is implemented as a module within the Festival speech synthesis
system pipeline, as an alternative to the standard prosody prediction and diphone
concatenative synthesis modules, while still making use of the other front-end lin-
guistic processing modules. The Text, Token, POS, Phrasify and Word modules
normalise the text and produce a linguistically annotated segment sequence, the
resulting output is then passed to the waveform synthesis modules

2.2 Choice of unit type

The choice of sub-word unit is influenced by a number of factors. First and fore-
most, the unit boundaries must be suitable concatenation points. A secondary
important consideration is that it should be possible to (semi-)automatically
segment the speech using standard automatic speech recognition (ASR) forced
alignment techniques.

Of all the possible unit types, including phones, half phones, diphones, sylla-
bles or larger units (e.g., units matching prosodic structures in Taylor, 2000),
we opted to use diphones. These satisfy both requirements above: diphone
boundaries can be easily derived from phone alignments. Implementation of
the Viterbi search using fixed-size units is also considerably simpler than for
variable-sized units (see Section 3.6). Although using smaller units such as
half phones implicitly helps alleviate some problems of data sparsity, it also
makes the Viterbi search for units far more computationally expensive. We
have opted for the advantage of the more efficient search possible with the
diphone base type, and have instead chosen to implement certain strategies
for dealing with special cases of missing units; for example, backing-off to a
different unit type, or the possibility of extending the margins of the units
either side of the missing unit and making a join at a phone boundary. These
methods are described in more detail in Section 3.7.
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 We decided not to use explicitly variable sized units and believe that the
selection of such units should result from the search (i.e. through selection
of contiguous sequences of diphones from the inventory), rather than be pre-
defined.

Multisyn is implemented in such a way that using units other than diphones
would only require a small amount of programming effort. We are currently
considering implementing other unit types as a partial solution to the problem
of cross-language diphone coverage (Black and Lenzo, 2004).

2.3 Comparison with other methods

A comparison between the Multisyn engine and two of the first unit selection
implementations – CHATR (Hunt and Black, 1996) and Festival’s “clunits”
method (Black and Taylor, 1997)– is useful to clarify how Multisyn differs
from other techniques.

The two major differences between clunits and Multisyn are the unit type that
is used and the nature of the target cost employed to determine how good a
given candidate unit is.

Multisyn by default exclusively uses diphone sized units, whereas clunits ex-
clusively uses phone sized units. There are advantages and disadvantages of
each approach. The major advantage of using phone units is that each unit can
be fully described in terms of the features representing a single phone, whereas
diphones require twice as many features to describe them, and questions like
“is this diphone stressed?” has answers ‘yes’, ‘no’ and ‘partially’ rather than
just ‘yes’ and ‘no’ which answer the same question regarding a phone. Ad-
ditionally, the resulting number of units in the inventory squares. The clear
disadvantage of using phone units is the loss of context and although clunits
employs a number of techniques to take context into consideration, clunits
combines acoustic information from the neighbouring segments in the acous-
tic representation of the unit, and additionally uses optimal coupling to find
the best possible join between any two units (see Black and Taylor (1997)
for more details) bad joins arise, particularly as the size of the unit inventory
increases and the variation in the context of available units increases.

The second major difference between clunits and Multisyn is the target cost
implementation. Multisyn implements a direct feature-based target cost, where
clunits uses feature information to predict acoustic parameters which are used
as the basis for the target cost. The Multisyn approach scores units based
upon matches in their linguistic context, whereas the clunits approach uses
the linguistic features to predict a unit’s gross acoustic properties and then
performs the scoring in acoustic space. This is the main problem of the clunits
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 approach: it uses just a single vector of values to describe the complex acoustic
properties of a unit.

CHATR (Hunt and Black, 1996) differs from Multisyn in two quite specific
ways which we believe make Multisyn both more powerful and more efficient.
Firstly, again, CHATR’s default unit type is the phone which brings with it
some of same problems that clunits suffers. The second difference is that the
Multisyn specification of a target unit does not attempt to include information
about the predicted acoustic properties of the target. Instead, the prediction
of acoustic properties from linguistic features is implicit in the unit selection
procedure itself.

3 Database

3.1 Coverage

Obtaining the necessary coverage for a diphone inventory is hard because
context must be taken into account (van Santen, 1997; van Santen and Buchs-
baum, 1997; Beutnagel and Conkie, 1999; Black and Lenzo, 2001; Möbius,
2001). Coverage of as many diphone-in-context types as possible is desirable
but very difficult to achieve.

The number of possible contexts will be very large, because the context is
usually specified in terms of several linguistic features, such as position-in-
syllable, -word and -phrase, stress, part-of-speech, and left and right phonetic
context. Each of these can take multiple values (e.g. lexical stress can take the
values unstressed, primary, secondary and perhaps even tertiary stress), which
means the number of context dependent unit types rapidly becomes very large
when even just a few features are used to define unit context.

It is impossible, in practice, to include examples of all desired diphones-in-
context in the inventory and a compromise must be made. In Section 4.1
we discuss how the sentences to be recorded for the inventory are selected
in order to make a reasonable compromise. In Section 3.7, we describe two
techniques to address the problem of missing units (which occurs in even the
most carefully designed inventory).

3.2 Automatic segmentation

The context-sensitive nature of diphones, and the consequentially large num-
ber of unit types requiring coverage, mean that a large inventory of speech
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is required. However, this is outweighed by the possibility of completely au-
tomatic segmentation using standard Hidden Markov Models-of-phones ASR
techniques. It is easier to collect a large data set than it is to hand-label a
small dataset; indeed, automatic labelling accuracy should improve as more
data is available to train the HMMs. The automatic segmentation process is
discussed in detail in Section 5.

3.3 Target utterance specification

A target utterance structure is constructed from text (or marked-up text)
input. In single-instance diphone-based systems, extensive use is made of rules
and models such as CARTs to predict information about segment duration,
f0 and so on. Substantial linguistic resources (e.g. hand-labelled speech data)
are required to train these models.

One of the advantages of unit selection synthesis is that much of this informa-
tion is not necessarily required. If available, it can certainly be incorporated
into the unit selection procedure, but if it is not available then unit selection
can proceed without it. This is because unit selection is guided by the target
cost and the join cost, and these costs can be formulated in any way one de-
sires, using whatever information is available in the input or is marked up in
the voice (the annotated inventory).

In Multisyn, the default join cost uses solely acoustic properties of the can-
didate units (e.g. spectral information at concatenation points). Meanwhile,
the default target cost, discussed in more detail in Section 3.8, combines the
scores of a number of comparisons of predominantly linguistic features (e.g.
the labels on the annotated inventory and the features derived from the in-
put text). The cost components based on linguistic features are comparator
functions which compare linguistic attributes of the target unit with each can-
didate. There are however additional non-comparator target cost components
which make use of information derived from the acoustic signal: duration and
f0. These additional components are special cases which complement the way
in which the other target cost components are used. They are designed to
lessen the impact of faulty automatic labelling in the voice inventory. The du-
ration component penalises candidate units on the basis of comparison with
the distribution of durations for a given unit type at voice building time. The
f0 component heuristically penalises candidate units which appear to be either
wrongly voiced or unvoiced based on their identity and phonetic context.

Note that this use of f0 and duration in the default Multisyn target cost differs
significantly from their more usual use in unit selection target costs generally.
In many systems, a prosody module in the speech synthesiser will estimate
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duration and f0 values on the basis of the linguistic front-end processing,
and these are then used as explicit target values in the unit selection process.
However, in the default Multisyn implementation, we have taken the approach
that many properties of the target speech, including segment durations and
prosody, do not need to be explicitly predicted; instead, the natural proper-
ties of the units in the database are used. In effect, the target cost (Section
3.8), by requiring that certain contextual features of the selected units match,
has replaced the explicit predictive models of duration and intonation with
an implicit model based on the natural characteristics of the context features
used. Given a good target cost and a large inventory, this method has the
potential to outperform explicit models, and has the added advantages that
the selected units will have appropriate values for other acoustic properties
(e.g. amplitude and spectral quality) and will require little or no modification
by signal processing. This is the strategy used in Multisyn; duration and in-
tonation models are not currently used because none of our available models
perform as well as using the natural prosody of the selected units.

To ensure that the prosody of selected units is appropriate, the contextual
factors used in the target cost must include those that influence duration and
intonation. In English at least, lexical stress is probably the most important
factor, although other prosodic distinctions like phrase position are important
too.

3.4 Expressive speech

There are situations where a default, neutral intonation is not appropriate: for
example, in dialogue contexts where a contrastive tune is needed with specific
words accented or de-accented to convey a particular meaning. Here, prosodic
mark-up present in the input text can be used by the target cost to influence
the choice of units, preferring those which carry appropriate prosody. How-
ever, this requires corresponding information to be present in the database.
Automatic prosodic annotation of the database is difficult and not necessarily
reliable, although it can work reasonably well in limited domains where a por-
tion of the database which is in domain can be hand annotated quite easily.
Alternatively, it may be possible to automatically generate annotation if the
text is the output of a natural language generation system.

3.5 Modest requirements for linguistic resources

The only models that are needed are a simple phrasing model (e.g. trivial rules
which use the punctuation in the input text) and a pronunciation lexicon or
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other grapheme-to-phoneme conversion method. Neither of these necessarily
require large amounts of hand-labelled data during development.

This is particularly advantageous when developing voices in a new language,
because the only new components required are a pronunciation lexicon and/or
letter to sound rules. A simple part of speech tagger that can make a con-
tent/function word distinction is also useful as this can help contribute to
selecting units with the correct stress, but this is not essential as part of the
first attempt at a new language. This is not to say that developing a voice in
a new language is necessarily easy: creating the pronunciation lexicon for a
language with few existing resources is not trivial.

In order to construct the voice, a large set of sentences is required, from which a
subset is selected that provides the best possible diphone-in-context coverage.
We discuss this in Section 4.1.

3.6 Candidate pre-selection and beam pruning during search

The output of the front end is a target phone sequence with an appropriate
linguistic structure attached. In Festival, this structure is stored as a number
of parallel streams, represented as heterogeneous relation graphs (Taylor et al.,
1998). The structure includes annotation of syllabic structure, phrasing and
part of speech tagging.

The target phone sequence is first converted to a sequence of diphone units; a
list of candidates for each target unit is retrieved from the inventory and the
unit selection engine then proceeds to search for the candidate unit sequence
with the lowest cost.

An optional pre-selection step can be used immediately after retrieving the
candidates from the inventory, to restrict the number of candidates per target
diphone. Methods of pre-selection vary from the complex, such as phonological
structure matching (Taylor, 2000), to the simple, such as only including units
which are appropriately stressed/unstressed. Pre-selection can speed up the
search substantially by restricting the search space and by reducing the num-
ber of join cost calculations that need to be performed (which can otherwise
be very large).

However, for a research system such as Festival, the use of pre-selection is
less attractive than for a commercial system. Pre-selection is an attempt to
simulate (in a computationally cheap way) the complex interaction between
target and join costs during the search procedure. Using pre-selection further
complicates these interactions. In the same way that debugging the implemen-
tation of an ASR system is made much harder when there are pruning errors,
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candidate pre-selection can make analysis of target or join cost behaviour very
difficult.

If speed of synthesis is important, this can be achieved using beam pruning
during the search. For example, if stress is deemed to be sufficiently important
that units carrying the wrong level of stress should not be used, then a suitably
large weight on the stress component of the target cost in conjunction with
beam pruning can ensure that if one suitably stressed candidate is available
then all unsuitably stressed candidates are not considered. The advantage of
this is clearly that if there are no stressed candidates available then unstressed
ones will automatically be considered.

3.7 Missing units

We have so far assumed that the candidate list for each target diphone contains
at least one suitable candidate. For this to be true, at least one token of each
diphone type needs to be present in the inventory. Unfortunately, however,
this may not be the case.

Even though great care may be taken at the stage of designing a voice database,
it is nevertheless rather difficult to ensure that there are absolutely no missing
diphones. Problems arise, for example, when the lexicon used to design the
database (Section 4.2.2) is not precisely the same as the one used within the
synthesiser, or when the lexicon or post-lexical rules have been modified after
the data was recorded, to match idiosyncrasies of the speaker, or when the
speaker has not uttered certain recording script prompts entirely as predicted
during the text selection process. In other cases, the voice builder may have
little or no control over the speech data used to build the voice, for example
where a voice is built from spontaneous speech or data recorded by someone
else.

Therefore, it is important to have a strategy for dealing with the problem
of unit types required at synthesis time which are not present in the voice
database inventory. We have implemented two alternatives for dealing with
this situation: back-off and phone boundary joins.

3.7.1 Backing-off

One way of dealing with cases where an exact match of unit is not found in
the unit inventory is to identify alternative suitable candidates. Multisyn does
this by backing-off the target specification. If a diphone cannot be found, an
ordered list of possible substitution rules is consulted in an attempt to find
an appropriate alternative diphone. This list is generally associated with a
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Fig. 2. An illustration of using phone boundary joins to deal with isolated instances
in the target diphone sequence which are missing in the voice database. In this
example, the [æ℄-[t℄ diphone required to synthesise the word “cats” is missing. In
order to compensate for this, the margins of the directly neighbouring diphone
source units can be extended as shown. This results in the inclusion of whole [æ℄
and [t℄ phones from the voice database, with the join at the phone boundary between
them instead of the usual diphone boundary.

particular lexicon, and so becomes language or dialect specific.

In initial experiments, we used a back-off procedure which altered the target
phone sequence to find not just a replacement for the missing diphone, but
then to substitute adjacent diphones to preserve consistency of the overall
phone sequence. For example, to synthesise part of the word “team” the di-
phone sequence [t℄-[i℄ [i℄-[m℄ is required. If the diphone [t℄-[i℄ is missing and
consequently substituted by the diphone [t℄-[�℄, an attempt would then be
made to substitute the target diphone [i℄-[m℄ with [�℄-[m℄ to keep the phone
sequence consistent.

It quickly became apparent that this was a difficult search problem and that,
unless the substitution rules were written very carefully, it was difficult to ob-
tain a suitable substitute phone sequence. The procedure was therefore sim-
plified and the current back-off procedure does not correct adjoining diphones.
Any substitution that occurs means that there will be an inconsistency in the
diphone sequence. The join cost is then relied upon to find smoothly joining
units.

Obvious substitution rules to use include: use reduced vowels instead of full
vowels (in which case there are probably instances of the full vowels and re-
duced vowels which are spectrally close enough to join reasonably well, since
vowel reduction is a continuum); substitution of [n℄ to replace [�n℄, where there
will be little difference at the join point.
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3.7.2 Phone joins

A second method implemented in Multisyn for dealing with cases of missing
diphones works by extending the margins of the units either side of the missing
unit to make a join at a phone boundary. This method obviously is only
suitable in cases where there are candidates present in the inventory for the
immediate right- and left-neighbouring diphones in the target specification.
Figure 2 illustrates how this method works in the case of a missing [æ℄-[t℄
diphone when synthesising the word “cats”.

An initial check of the target sequence is made for diphone units not available
in the voice database. For isolated missing units, the concatenation point of all
candidate source units is taken to be at the following phone boundary for left
neighbours and at the preceding phone boundary for right neighbours. The
Viterbi search is then run in the usual way, such that join costs are calculated
at all potential concatenation points, including any at phone boundaries. The
target cost is not calculated for the missing target diphone unit. This technique
is only employed for isolated missing diphones.

While phone boundaries do not always have the same attractive properties
in terms of concatenation as the centres of phones used in diphone joins,
this method does have certain advantages. For example, it is suitable for a
voice which can switch between languages mid-sentence. Diphones consisting
of phonemes from different languages will probably not be available in the
database; phone boundary joins are a simple and effective solution (Kurtić,
2004).

3.8 Target cost

To facilitate ongoing research on target costs (e.g. Hofer et al., 2005) and
join costs (e.g. Vepa and King, 2004), the implementation of these costs in
Multisyn is designed to allow flexibility. Hence, new cost functions can easily
be added by the user.

The target cost is configured at the voice level, allowing different voices to
use different target costs. Individual target cost implementations are derived
from a base C++ class which provides an API, a core set of comparator
functions (which compare features of the target to those of a candidate) and
a mechanism for weighting these functions (the target cost is thus a weighted
sum of comparator functions). Additional comparator functions can easily be
added to a target cost derived by the user from the base cost class or the
derived target cost can completely bypass the mechanisms in the base class.
The system provides a number of default target costs which can be used at
runtime by any voice. These also provide reference implementations for users
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wishing to implement their own target cost. A derived class is also supplied
which allows the target cost to be implemented in Scheme rather than C++.
This facilitates rapid prototyping of novel target cost functions, without the
need to recompile.

Designing a target cost involves deciding which characteristics of the target
should be considered (the choice is of course restricted to those characteristics
which are known for both target and candidates), how each characteristic is
to be compared (i.e. how the difference between target and candidate should
be converted into a scalar) and how these costs should be weighted relative to
one another. The default target cost has been constructed by hand, based on
developer intuition. Stress and phrase position are generally regarded as the
most important characteristics; components are also included which penalise
candidates that have been labelled as durational outliers or as badly pitch-
marked.

Other systems (e.g. Hunt and Black, 1996; Syrdal et al., 2000) have described
methods for automatically training the weights on the individual components
of the target cost. These methods are not implemented in Multisyn because
it appears that the gains that can be achieved over heuristic methods are cur-
rently only slight; even with no target cost specified, an intelligible voice can
be produced from a well designed and accurately labelled database. Prelim-
inary results from our continuing research into human perception of speech
synthesis experiments suggest that keeping the number of audible joins to a
minimum and ensuring a low overall target cost is far more important than
having a target cost with carefully weighted sub-components which can subtly
discern between different levels of ‘badness’ between units. The current default
target cost is structured as shown in Table 1. Target cost sub-components are
generally discrete and take values of 0 or 1. In some cases, values of 0, 0.5 or 1
are used: 0.5 is applied for each of the two half phones constituting the target
diphone.

The use of only linguistic based features taking discreet values in this way
generally works well, although a few problems remain. We have been unable
to develop a sub-component to deal with prosody and accent, that performs
well in situations where prosody other than neutral declarative sentences are
required. This is primarily because of the difficulty of constructing an accurate
accent predictor for the recorded database and for use during unit selection.
Another issue is that it appears to be more important to get certain units
“right” than others. For example, if the last diphone in a phrase is not taken
from phrase-final position, the resulting speech usually sounds very unnatural.
Simply imposing a high penalty cost on such units does not work well: if the
offending unit is at the end of a long contiguous sequence of units selected from
the database, the zero total join cost of this sequence can offset the penalty
cost.
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Feature Weight Description

Phrase 15 Position in phrase is correct (categories: initial medial or
final)

Stress 10 Stress is correct

POS 6 Part of speech is correct (categories: POS uses only 5 tags,
nouns, verbs, modifiers, function words and other)

Syllable 5 Position in syllable is correct (categories: initial, medial, final
and between words)

Word 5 Position in word is correct (categories: intial, medial, final,
between words)

Left 4 Left phonetic context matches

Right 3 Right phonetic context matches

Table 1
Component cost functions for diphones, used in the current default target specifica-
tion. Overall target cost is the weighted sum of the above components normalised
to be in the range [0, 1].

3.9 Join cost

Like the target cost, the join cost is implemented as a C++ class. The default
join cost employs three equally weighted subcomponents for f0, log energy
and spectral mismatches. Spectral discontinuity is estimated by calculating
the Euclidean distance between two vectors of 12 MFCCs from either side of
a potential join point, as the MFCCs are usually mean/variance normalised
first, this is effectively a Mahalanobis distance with diagonal covariance. For
energy, the magnitude of the difference across the join point is used. For f0,
joins between voiced segments use the magnitude of the difference across the
join point; joins between unvoiced segments incur zero cost; joins between
a voiced segment and an unvoiced segment incur a large penalty, equivalent
to a mismatch between voiced segments of four standard deviations of the
speaker’s pitch range. Delta and delta-delta derived features are not currently
used in the default join cost. These three components are normalised (using
means and variances calculated across the entire voice database) to lie within
the range [0:1] during voice building.

The weightings for the current target and join costs have been set heuristically
to provide a baseline acceptable performance, but these can easily be changed
to values based on statistical training or perceptual evaluation, should data
be available.
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4 Voice building

At the core of any good unit selection speech synthesiser is the voice: a
database of speech from a single speaker, annotated with time-aligned pho-
netic labels and additional linguistic information. In designing a voice, there
are two intertwined questions that must be addressed: How big should it be?
What sort of data should it contain? While there are no simple answers to
these questions, there are constraints which, in practice, will guide the design
of a particular dataset. We address this issue here by discussing existing data
sets that we have recorded and comparing them with those recorded by oth-
ers. To provide general guidance for database design, we will cover some of
the criteria that we feel are most important to keep in mind when designing
a new voice.

4.1 Voice database design

There are two conflicting factors which govern voice database design: extensive
diphone coverage demands a large database, yet there are practical difficulties
in obtaining consistent recordings from the speaker over multiple sessions. We
consider the common requirements for the material in the database to include
the following:

(1) wide and well-balanced phonetic coverage of context-dependent diphones;
(2) phrase-final (and other intonational) coverage;
(3) common structures and idioms, such as lists, dates etc;
(4) names and other material common to the target domain.

As noted, the most important issue is general coverage of context-dependent
diphones, where the context is loosely related to the different criteria that
make up the target cost. The ARCTIC (Kominek and Black, 2004) voice size
of around 36 000 phones seems suitable for a basic voice. However we believe
that for a good voice these 36 000 phones should form the base to which
additional material need to be added to fulfil specific requirements.

The second requirement, although part of the context described above, is
sufficiently important that it is mentioned separately. Using non-phrase final
diphones in phrase final position can make an otherwise good utterance sound
completely unnatural. With this in mind it is good practice to ensure that
there is a plentiful supply of individual diphones in phrase final (and probably
also “close to phrase final”) position. For English voices, special attention
should be paid to ensuring there is sufficient coverage of question intonation,
where a pitch rise occurs at the end of the utterance. Other languages may
have other intonation patterns that need to be included.
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List structures, times and dates, Zip/Post codes, telephone numbers etc. all
have special structures and synthesised examples of them tend to sound un-
natural when there are not sufficient examples of these types of structures in
the database from which to select units. It is prudent to incorporate a large
block of such data if the resulting voice is required to synthesise this kind of
material.

Finally, since the construction of the script is a greedy process, the order in
which material is added must be considered. It is wise to address the first
of the issues (phonetic coverage) last. The database design process should
begin with the inclusion of domain-specific material, dates, currencies, names
and so on. Once the phonetic content of this initial, mandatory material is
measured, it can form the starting point of an automatic process for selecting
supplementary material to ensure full phonetic coverage.

4.1.1 Requirements for the database and text selection

Units are required in many different contexts. The distribution of diphone
occurrence with respect to context means that a large number of diphone-in-
context types occur very infrequently, making it difficult to design a compact
inventory, while any given sentence to be synthesised has a reasonably high
probability of containing at least one rare diphone (Möbius, 2001). This high-
lights the need for a mechanism, at synthesis time, to choose a suitable diphone
where the ideal diphone is unavailable. The linguistic features used to repre-
sent context during script design should match those used by the target cost
and those that have high weights in the target cost should be considered more
important by the text selection process.

4.1.2 Post-recording considerations

Diphones supposedly covered by the script can be found to be missing after
the recording has taken place for a number of reasons. The speaker may have
spoken a word with a different pronunciation (assuming the labelling for this
word has been adjusted to match what the speaker actually said), or may have
left a pause between words in an unpredicted place. In situations where an
existing dataset has been used to build a voice, the planned coverage cannot be
controlled at all (examples of using existing data are described in Section 4).

4.2 Analysis of existing voices

Table 2 lists four Multisyn voices built from various data sets. Run times are
relative to the fsew0 voice and indicate the complexity of the search required
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Voice Phones Relative Run time

nina 175 000 9

jon 60 000 3

awb (ARCTIC) 36 000 2

fsew0 (MOCHA) 14 000 1

Table 2
Comparison of voice size and computational load.

for each voice. All of these voices were built using the Multisyn voice building
tools, distributed with Festival 2.

4.2.1 “fsew0”: small database, not synthesis-specific, open domain

The “fsew0” voice was built from the MOCHA data set of the same name
(Wrench, 2001). It comprises readings of 450 TIMIT sentences (Garofolo,
1988) plus an additional 10 sentences covering British English phonetic com-
binations and was not designed specifically for speech synthesis (although the
TIMIT sentences were designed for maximum phonetic richness). The data
were recorded in a Carstens AG100 EMA machine.

The voice built from this data contains about 14 000 phones (approximately 30
minutes of speech (including some silence) and was built primarily to evaluate
the usefulness of articulatory information as a contribution to the join cost.
The obstructions of the instrumentation in the mouth make the segmental
quality of the original speech and of speech synthesised with this voice some-
what unnatural. Along with its small size, this contributes to the voice’s low
perceived quality. We consider that the amount of data in this voice is simply
insufficient to achieve an acceptable level of naturalness. The high proportion
of missing diphones drastically lowers the voice’s intelligibility.

4.2.2 “awb”: medium-sized database, synthesis-specific, open domain

The “awb” voice was built from the ARCTIC (Kominek and Black, 2004)
database of the same name, which was specifically designed for speech synthe-
sis using text selected from out-of-copyright books. This voice contains around
36 000 phones (1.4 hours of speech). Its performance is somewhat varied, being
mostly of reasonable quality, but often suffering from intelligibility problems.
Some of these problems may be related to our segmentation of the data (us-
ing the forced alignment procedure of the Multisyn voice building tools) and
others may be due to missing diphones in some contexts. This latter point re-
sults from the fact that the criteria used by the database designers to ensure
diphone coverage may not match the criteria that we assume at synthesis time
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(i.e. those used in our target cost). We believe that the database used in this
voice is of the minimum possible size for reasonable performance.

Using a Scottish pronunciation lexicon (the speaker “awb” is Scottish) rather
than an American one (for which the diphone coverage was designed) yielded
slight improvements, both in automatic segmentation and resulting synthesis,
but the differences are not conclusive due to the coverage issues arising from
the small database size. This text that this database is built from is the same
as used for the Blizzard Challenge (Black and Tokuda, 2005) discussed in
Section 6.1.

4.2.3 “jon”: large database, synthesis-specific, limited domain

The “jon” voice was designed by us as a limited domain voice for the COMIC
project (Foster et al., 2005). The dataset contains two parts: a base set of
around 650 sentences designed to provide a basic level of diphone coverage and
300 domain-specific sentences that deal with the subject of bathroom design.
The base set speech is of a similar size to the awb set and the domain-specific
set is similar in size to the fsew0 set.

The performance of this voice is generally excellent when generating in-domain
sentences, but (as expected) quality is dramatically lower (worse than “awb”)
on out-of-domain sentences. The primary reason for this is thought to be
speech rate problems. The speaker used for the “jon” voice spoke at a faster
rate than the other voices described here. This means that there are many very
short, elided or deleted segments. This caused problems with the automatic la-
belling. A large number of very short segment labels result from a combination
of actual short segments and incorrectly placed labels (e.g. labels for segments
that are actually missing). If two consecutive segments are sufficiently short
then no pitch marks are present in the corresponding diphone. It is then not
possible to use this diphone because the pitch-synchronous waveform resyn-
thesis uses windows centred on pitch marks and extend (asymmetrically) in
time from the preceding pitch mark to the following one (i.e. they have a
duration of 2 pitch periods).

4.2.4 “nina”: large database, synthesis-specific, open domain

The “nina” voice is approximately three times the size of “jon” and five times
the size of “awb”. This results in a quite noticeable improvement in the qual-
ity of the output. This voice is however far from perfect. The text selection
procedure used by us to design the recorded prompts only used sentences from
newspaper texts. While this achieves a good level of general diphone coverage
(and the voice performs well on text that is similar to this domain) the voice
often performs badly when specific grammatical structures, not commonly
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found in newspaper text, are encountered, such as lists, times and dates. In
these cases, even when the segmental quality is good, inappropriate prosody
reduces the perceived overall quality. More importantly, this voice synthesises
question intonation very badly because there were very few questions (with
rising utterance-final pitch) in the recorded speech.

4.3 Analysis of the approach in general

The approach seems ideal for the rapid development of new voices, and also
a useful teaching tool, the system is currently used by one of the authors for
an postgraduate course in speech synthesis where students with little previous
experience record themselves and create their own voice. While the approach in
some circumstances produces results that may not sound as natural as other
more complex systems, the overall simplicity of Multisyn and its minimal
requirements for making a good quality intelligible voice more than make
up for this. Our experience also suggests that the difference between a good
voice and an excellent one is more often than not related to the number of
hours spent manually cleaning up the data where the automatic techniques
(segmentation, pitch marking, etc.) have not produced perfect results.

5 Automatic segmentation techniques

The main issue in obtaining a phonetic labelling for the recorded speech data is
not necessarily pin-point precision of the phone boundary times but a combina-
tion of reasonably accurate boundary times, the correct choice of the segment
labels themselves and a knowledge of where labels that are suspected to be in-
accurate are in the database. Assuming that the synthesis unit is the diphone,
the labels do not need to be placed precisely at phone boundaries, since these
labels are only used to derive the diphone boundaries, which are placed mid-
way between phone boundaries for most segment types (except diphthongs,
whose cut points are at 25%, and stops and affricates, whose cut points are at
the end of the closure portion – see Section 5.6). Joins are made at diphone
boundaries because the spectrum is expected to be locally static compared
with phone boundaries. Small inaccuracies in the phone boundary positions
will still result in diphone boundaries that fall within these static regions most
of the time. With this in mind, it seems that there is little value in develop-
ing methods for high precision placement of phone boundaries. Techniques
such as optimal coupling (Conkie and Isard, 1996) can adjust the actual cut
points at synthesis time (typically by minimising the local join cost, after the
unit sequence has been selected), compensating for some inaccuracy in label
placement.
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Determining an appropriate phonetic label sequence for each utterance in the
database is a major challenge and there are two aspects to this problem. First,
the general problem already faced in text-to-speech synthesis of converting
a word string into a phoneme sequence, accounting for effects of connected
speech, the speaker’s accent and so on. The second problem is that the recorded
speaker may not have produced speech which precisely matches this predicted
phoneme sequence.

5.1 Converting text to phonemes

To address the issue of pronunciation variation arising from a speaker’s specific
accent, we use an accent-independent keyword lexicon (Wells, 1982). From
the underlying Unisyn lexicon (Fitt and Isard, 1999) a surface-form accent-
specific lexicon is generated for a particular speaker. This can be tailored to
the individual speaker (using rules) if necessary.

The resulting surface-form lexicon will contain multiple pronunciations for
some words, for example stressed and reduced forms of function words. Festival
is currently forced to choose one pronunciation at synthesis time, rather than
deciding which pronunciation to use on the basis of the units available.

Once an accent-specific lexicon is generated for a particular voice, an ini-
tial label sequence for the forced alignment is produced using the linguistic
analysis phase of the text-to-speech synthesis process – i.e. lexical lookup,
letter-to-sound, and post-lexical rules. A few modifications are then made to
this sequence to facilitate more accurate forced alignment. Stop and affricate
labels are split into two parts (closure and release). This will later allow di-
phone cut points to be placed at the end of the closure portion. Sentence-initial
and -final silences and optional short pauses between words are added. Such
optional inter-word short pauses are common practice in ASR and will be
skipped during alignment if no silence is present.

5.2 Pronunciation variation in the recorded speech

Variations in the pronunciation of words in the recorded database fall into
two categories: expected pronunciation variation and unexpected pronuncia-
tion variation. Expected variation is described in the lexicon, such as vowel
reduction or deletion, or alternate pronunciations (e.g. ‘either’ [iD�℄/[aID�℄ and
‘against’ [�gEnst℄/[�geInst℄. Unexpected variation occurs where the speaker
pronounces a word in an unexpected and often unpredictable way. They may
misread the script or they may pronounce an uncommon word incorrectly,
which most often occurs with names. We currently deal with unexpected pro-
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nunciation variation by altering the script (after recording but before phonetic
labelling) to match what the speaker actually said. Where a word has been
misread, we update the script, but where a word is systematically pronounced
in an idiosyncratic way, we alter the lexicon used for phonetic labelling.

5.3 Handling conflict between the predicted labels and what the speaker said

Typically, a synthesiser front end predicts a single phonetic sequence for a
given utterance. If this sequence is used to label a recorded utterance there
is a potential mismatch between the predicted labels and what the speaker
actually said. Even if the synthesiser attempts to predict expected pronuncia-
tion variation (e.g. which vowels will be reduced) it is unlikely to be an exact
match to what the speaker said.

There are two extremes when labelling the database: matching precisely what
the speaker actually said, or matching precisely what the synthesiser predicted.
Neither is entirely satisfactory.

Labelling the database with phonetic sequences that match what the syn-
thesiser would predict at synthesis time is certainly the easiest option and
requires little work. This guarantees that any word sequence present in the
database can be synthesised very well, and it doesn’t matter that the pho-
netic labels on the database do not accurately reflect the actual speech signal.
However, problems arise below the word level, when sub-word units are con-
catenated. Wrongly-labelled units will result in synthetic speech which has
the wrong phonetic content and will probably have more bad joins (because
mismatching diphones are being concatenated).

Labelling the database with a phonetic sequence which matches what the
speaker said, will eliminate that problem, but not only is this a much harder
task, the segment sequence predicted for a word at synthesis time may no
longer match the labelling of tokens of that word in the database. This will
result in it being synthesised from non-sequential units rather than the se-
quential ones, which is likely to sound worse.

The current approach in the Multisyn voice building tools is to find a compro-
mise between these two extremes. We now describe the basic process of forced
alignment, for the case where a single phonetic label sequence – predicted by
the synthesiser without reference to the speech signal – has been determined
for each recorded sentence. We then describe how some decisions on the label
sequence can be deferred until during the alignment procedure: this allows
labels to more closely match what was actually said without drifting too far
from the predicted sequence.
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We are currently still investigating how best to reconcile the differences be-
tween changed database pronunciations and runtime pronunciations. The cur-
rent implementation allow a parameter to be set which decides whether re-
duced vowels or full vowels should be specified, this affects the utterance as a
whole rather than allowing differences within an utterance as the techniques
proposed by Bennett and Black (2005) and Hamza et al. (2004) would.

5.4 Aligning the phonetic labels with the speech

Given a single phonetic label sequence, there are well established methods
to find an alignment with the corresponding speech signal using standard
automatic speech recognition techniques.

Since there are guaranteed, by design, to be many examples of all phones in
the speech data, it is straightforward to train a set of speaker-specific hidden
Markov models (HMMs). The HTK toolkit is used (Young et al., 2002) and we
begin by taking 3-state monophone models with a left-to-right topology, ob-
servations are modelled by mixture-of-Gaussians state output PDFs (trained
initially with only a single component).

The speech is parameterised as 12 Mel-scale cepstral coefficients plus energy,
deltas and delta deltas (a total of 39 features). A relatively short window
size of 10ms is used with a short 2ms shift. Initial results suggested that
this generated more accurate and consistent boundary positions and fewer
gross labelling errors than using standard values of around 25ms and 10ms
respectively.

We do not use triphone models because the performance of monophone models
is deemed good enough not to warrant the significant additional complexity
of building triphone models. The models are only required to produce a con-

sistent alignment (i.e. the positions of the label boundaries are relatively the
same across the database, even if they do not necessarily match what are
traditionally considered phone boundaries) rather than perform speech recog-
nition.

Forced alignment using these models with a single, known label sequence is
trivial and computationally very fast. Note that the training and “testing”
data are one and the same thing: the complete set of voice data.
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5.5 Making label decisions during forced alignment

If one were to attempt a “pure” phonetic labelling of the speech, without
reference to the known word string, this would be achieved using a phone
recogniser constructed from the same HMMs as for the forced alignment along
with a “phone loop” grammar. However, the expected accuracy of such a
procedure is unlikely to be high enough for our purposes. Therefore, a precise
phonetic labelling based only on the speech waveform is not possible.

To achieve the desired compromise between predicted and actual phone labels,
for each sentence in the data a phone lattice is constructed which includes any
plausible pronunciation variation. Currently, the only pronunciation variations
allowed are vowel reductions. This procedure is similar to the procedure de-
scribed by Bennett and Black (2005), although whereas they discuss only
function words, we allow reduction to potentially occur for any phonologically
reducible vowels in both function words or in the unstressed syllables of con-
tend words. The design of the lattice is currently being extended to include
other types of variation. Indeed, if a lexicon listing possible pronunciation vari-
ants for all words was available, these could easily be incorporated. This lattice
is much more constrained than the “phone loop” grammar and therefore we
can expect alignment high accuracy.

The lattice is initially aligned with the speech using a set of HMMs that
have been trained on the single transcriptions. The result is an intermediate
transcription (the most likely path through the lattice). The models are then
retrained using this transcription. During this second phase of training, the
number of components in the state output densities is gradually incremented
up to 8 components (a number determined empirically) using HTK’s standard
“mixing up” procedure (Young et al., 2002). A forced alignment using the final
models then produces the labelling for the voice database.

5.6 Post-alignment processing

Once the alignment is done, the label times are reconciled with the linguistic
structure generated by the synthesiser. This process deals with any inter-
word short pauses detected during the alignment, substitutions (i.e. vowel
reductions), and the merger of the closure and release portions of stops and
affricates back into a single label. Substitutions are marked in the linguistic
structure (for possible later use in unit selection) and the end of the closure
portion of stops and affricates is noted for later use as the diphone join point
for these segments.

Other information is associated with individual phones in the linguistic struc-
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ture to enable the target cost to incorporate a component which deals with
suspected bad labelling. This information includes a normalised version of the
HMM log likelihood score for each segment and a flag which marks segments
which are too short to have meaningful pitch-marking.

The distributions of the duration of each phone type are also analysed and any
outliers are marked as such. This information is made available at synthesis
time to guide the unit selection search.

The result of the alignment procedure is a segmental labelling that is con-
sistent and sufficiently accurate (in time) for deriving diphone cut points. A
formal evaluation of the accuracy of the segmental labelling is costly since
manually-verified reference labels have to be created. It may also be unnec-
essary, because consistency and the ability to know which label times may
be inaccurate are more important than label times accurate to the nearest
millisecond. Makashay et al. (2000) show that automatic segmentation is po-
tentially better than manual segmentation for speech synthesis, which suggests
that the inconsistency in hand-labelled data makes it an inappropriate base-
line.

However, hand correction of the automatically-aligned labels may still be de-
sirable. Our experience is that the alignment is always poor for some fraction
of the sentences. Much of the time this means labels with durations that are
clearly outliers for that segment class; these can be easily spotted and then ei-
ther removed or flagged as bad units. It is an open research question whether
such bad units can still be used for synthesis (provided their left and right
neighbours are also used).

A sizable proportion of gross errors that occur are caused by the speaker
saying a word sequence that does not match that predicted by the synthesiser,
particularly for expansions of acronyms and numerals. Fully normalising the
script, including expanding all abbreviations, dates, etc. into unambiguous
word sequences is the most reliable solution to this problem.

6 Evaluation

Evaluation of a speech synthesis implementation is rather difficult to perform,
especially since the most obvious comparison is with various other speech
synthesiser implementations rather than between other techniques within the
same system. For this reason, we are fortunate to benefit from the recent
inception of the Blizzard Speech Synthesis Challenge, an initiative for the
competitive evaluation of speech synthesis systems.
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6.1 The Blizzard Challenge

The first Blizzard Challenge (Black and Tokuda, 2005) was held in 2005, and
reported in a special session of the Interspeech conference in Lisbon, Portugal.
For this competition, a total of four pre-recorded speech databases were re-
leased. Each entrant was asked to build four voices for their speech synthesis
system. An unseen test set of sentences was then released, and entrants were
required to use the voices they had built to synthesise the test sentences and
send the waveforms to the organisers for perceptual testing. Two of the four
datasets were released at short notice before the release of the test set, thus
minimising the possibility for hand tuning and forcing entrants to rely upon
automated voice building techniques.

Listening tests were carried out with three groups of subjects: web-based lis-
tening tests were undertaken both by 50 researchers in the speech technology
field and by 60 non-speech technology-related people, while a set of 58 un-
dergraduate students were employed in listening tests under more rigorous
laboratory conditions (Bennett, 2005). The listening tests were composed of
two parts. In the first part, subjects were asked to rate how good each stim-
ulus they heard was on a scale from 1 to 5 (worst to best). For the second
part, subjects were required to listen to a set of stimuli and then type-in the
sentence they heard.

Figure 3 summarises the results of the first Blizzard Challenge evaluation.
It was decided that the Blizzard Challenge organisers would not disclose the
identities of the entrants, in order to encourage entries from the commercial
sector, so the competing systems are known only by a letter. The team labelled
“RB” in this figure in fact gives the results for real human speech. Meanwhile,
team “D” has willingly identified itself as the Trajectory HMM entry from the
Nagoya Institute of Technology, Japan. This was the only non-concatenative
system in the competition, and is widely regarded as having benefited from
the rather restricted size of the speech datasets used for this first Blizzard

Challenge.

Out of the five concatenative systems in the challenge, Figure 3 shows that the
Multisyn entry, team B, came first in terms of WER and second in terms of
MOS, as measured by taking the overall averages of these scores and normal-
ising by the number of subjects in each group. This is a satisfactory result,
especially since all four of the voices submitted were the product of purely
automatic processing with no manual intervention or fixing of errors.
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Fig. 3. Team results for the first Blizzard Synthesis Challenge competition. The top
graph shows results for the Mean Opinion Score test, on a scale of 1 to 5, while the
bottom plot shows results in terms of Word Error Rate in the type-in comprehension
test. The Blizzard Challenge was made anonymous to encourage entries from the
commercial sector, hence teams are identified by letter only. The Multisyn entry is
team B. “RB” is real human speech.

7 Summary and conclusions

The Multisyn engine works well and easily achieves its main goal of provid-
ing a good unit selection speech synthesis engine and the necessary tools to
build new voices with limited speech synthesis knowledge and minimal effort.
Experience with the system suggests that a corpus of around 36 000 phones
provides an intelligible voice, but the system performs much better with much
bigger corpora, the quality of the resulting voice being highly dependent on
the quality of the database.
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There is room for improvement in a few areas. The system as described here
contains no real control over prosody, so intonation and duration of segments is
not modelled explicitly; instead the context from which units are selected pro-
vides an implicit model of prosody. This works well most of the time, but there
are occasions where the resulting speech has primary phrasal stress placed in-
appropriately. Ways of modelling prosody in the system are currently under
investigation. One potential solution is to model primary phrasal stress alone
(rather than full prosodic modelling). Along with a suitable accent prediction
utility, this would still to allow the rapid, automatic building of voices.

Pronunciation variation is still a problematic area, and a way of addressing
the issue throughout the system in a consistent manner – both during voice
building and at synthesis time – is needed.

Overall, the simplicity of the Multisyn approach provides a robust and easy to
use unit selection engine which is flexible and configurable, yet requires only
a little expertise from the person building the voice.
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