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1. Introduction 
 
The fundamental problem of automatic speech recognition (ASR) is the variability of speech signals. 
Each written word has several possible spoken variants. In addition, the speech signal is often distorted 
which results in a reduced success rate of speech recognition systems (SRS). Undesired influence of 
distortions is addressed in different ways. The common procedure is inclusion of expected conditions 
in a training phase. In practice this is difficult to do because of the diversity of audio devices, channels 
and acoustical environments present in real spoken communications. It is therefore inevitable for SRS 
to meet unforeseen conditions. In such situations it is very important that they maintain their success 
rate as much as possible.  
 
Symmetric windows are widely used in the field of digital signal processing due to their ease of design 
and linear phase property. But the latter also implies potential drawbacks like longer time delay and 
frequency response limitations. Removal of the symmetry constraint can therefore give asymmetric 
windows having some better properties. In speech recognition this can lead to a more robust signal 
representation and hence better recognition performance. A shorter time delay on signal processing can 
also be achieved. This property is gaining importance in contemporary spoken communications – 
particularly in Voice Over Internet Protocol (VOIP) related applications. 
 
Human listeners perform substantially better than SRS in the presence of distortions. This suggests that 
properties of human hearing should be taken into consideration when SRS are designed. Although it 
can be argued that a "blind" replication of human properties cannot consistently enhance automatic 
recognition performance (Hermansky, 1997), some of them may be worth trying. For example, human 
speech perception is quite insensitive to short-time phase distortions of the speech signal. This may be 
attributed to the fact that the ear hair cells have an asymmetric impulse response and this fact is 
disregarded when symmetric windows are used. The same conclusion can also be reached from the 
purely signal processing point of view. We believe that the use of asymmetric windows could help in 
bridging the gap between human and ASR performance. Since the window function can be easily 
substituted in a SRS without any additional space or time complexity, the positive influence of such an 
act on recognition performance is of great interest. 
 
It is perhaps surprising that so little attention has been given in the literature to the problem of 
asymmetric window design. Even more, little is known about the influence of window properties on the 
performance of SRS in general. However, the popularity of asymmetric windows in speech coding 
(ITU, 1996) suggests that their advantages could be applied to practical systems. Our initial research on 
the application of non-standard windows to speech recognition (Rozman and Kodek, 2003) confirmed a 
noticeable increase in overall recognition robustness. These facts contributed to motivation for further 
research with purpose of enhancing the knowledge about window influence on the performance of 
SRS. 
 
The paper is organized as follows. Section 2 gives an overview of important human audio perception 
aspects in relation to windowing in a typical frequency analysis procedure used in SRS. Potential 
advantages of asymmetric windows for speech recognition are stressed. Also, different criteria and 
desired properties that could enhance SRS robustness are discussed. Several methods with practical 
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 design examples are presented. In Section 3, practical evaluations are described. A reference testing 
environment with two real speech recognition systems, two speech databases, and a variety of 
simulated distortions is introduced. Results of practical recognition tasks are shown in several tables, 
focusing on speech recognition's performance in adverse conditions not present in the training phase; 
we denote this property as "inherent robustness". In Section 4 important conclusions are drawn and 
directions for further research are given. 
 
2. Windows in speech recognition 
 
The short time Fourier Transform (STFT) is a common frequency analysis method in speech 
recognition. The signal is divided into short frames of N samples as shown in Fig. 1. Final windowed 
values x(n) in each frame are obtained by multiplying signal s(n) with a nonzero window sequence w(n) 
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The frame length N must be short because of the rapidly changing spectrum of s(n). A longer N gives 
better spectral resolution but worse temporal resolution and vice versa. The windowed spectrum X(e jω) 
is calculated as the frequency response of x(n). X(e jω) is also equal to the convolution integral of the 
Fourier Transform (FT) of the window sequence W(e jω) and the FT of the original signal S(e jω) 
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The frequency response X(e jω) is obviously influenced by W(e jω). In addition, it is typical for speech 
recognition that only the magnitude frequency response of signal samples in the frame is kept for 
further processing. We therefore wish to select a window function w(n) in such a way that the 
computed magnitude response |X(e jω)| is as "near as possible" to the real magnitude response |S(e jω)|. 
For a given N the asymmetric window idea arises naturally here: removing the symmetry constraint can 
increase the spectral resolution giving a better |X(e jω)|. This, however, does not necessarily translate 
into better speech recognition performance.  
 
Window functions that satisfy some signal processing optimality criteria are well known in the 
literature. But when we design the window sequences for speech recognition other aspects are also 
important. There is no theoretical reason to believe that the best window sequences, which satisfy the 
signal processing optimality criteria, will also perform optimally in speech recognition. What is needed 
here is a careful study of the properties of human auditory perception and, based on this study, 
incorporation of selected window properties into SRS. We tried this approach in our implementations 
of SRS and several interesting ideas appeared.  
 
One of them is the idea of windows with wider main-lobes in magnitude response. Wideband time-
frequency signal representation is usually used in speech recognition as a basis for further computation 
of FBANK1 and cepstral (MFCC2) feature vectors as shown in Fig.1. In this typical case it is obvious 
that accurate frequency analysis or use of windows with narrow main-lobes is not needed, at least not 
for higher frequencies. A similar conclusion can be drawn from knowledge of human speech 
perception (Fletcher, 1953). The main advantage of a wider main-lobe is that it can lead to lower side-
lobes.  
 
2.1 Finding optimal window for speech recognition 
 
As mentioned above, it is not clear what window properties and design criteria are optimal for use in 
speech recognition. It is nevertheless possible to make the following fundamental assumptions about 
the window magnitude response for use in speech recognition: 
 

- Human speech perception is almost insensitive to short-time phase distortions in the speech 
signal. The ear performs frequency analysis with lower frequency resolution and heavily 
overlapped filters with rapidly decaying side-lobes.  

                                                
1 FBANK features represent logarithm of energy in each frequency band. 
2 Stands for Mel Frequency Cepstral Coefficients. Computed as DCT transform of FBANK features. 

(2) 

(1) 
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 - Speech recognition systems usually discard the phase information and perform wideband 
frequency analysis in the parameterization process. This means that the linearity of phase 
constraint can be removed without any adverse effects. 

 
Basically there are two major signal representation distortions introduced by the inevitable windowing 
process: spectral smearing and leakage. Both can be seen in Fig. 2 where a signal consisting of two 
unequal pure tones is shown. Spectral smearing is important for the discrimination of closely spaced 
spectral components, while spectral leakage influences the detection of the distant components. It is 
clearly shown in Fig. 2a that in the case of a window with high side-lobes (Hamming) the first tone will 
not be sufficiently suppressed and will add to the much smaller second tone. This gives an incorrect 
spectral estimate of the second tone. Things are different if a window with lower side-lobes1 (Fig. 2b) 
is used. The first tone will be suppressed almost completely and will not influence the estimate of the 
second tone. Since both smearing and leakage cannot be minimized at the same time their importance 
should be established. Based on our experiments it seems that the distant spectral leakage, or more 
general side-lobe height, is important for speech robustness; hence it will be given more attention.  
 
From the speech recognition point of view the distant spectral leakage is important because of another 
practical reason. Most real SRSs that are based on Hidden Markov Models (HMM) approach use 
diagonal covariance matrices as a computational simplification of the time consuming processing of 
full covariance matrices. The error introduced with this simplification is smaller if components of 
feature vectors are uncorrelated. In this context it is interesting to observe that the lowering the spectral 
leakage helps decorrelate FBANK features. As shown in Fig. 3 on the example of 50 randomly selected 
speakers from the SLO-DIGITS database (Sec. 3.1.2), asymmetric window with low side-lobes1 
decreases the average correlation in feature vectors2. Therefore HMM SRSs using FBANK features and 
diagonal covariance matrices are expected to perform better with asymmetric windows.  
 
Asymmetric windows also bring shorter time delay, which at first does not seem to be of major 
importance. In general, the speech recognition process is time consuming and the time delay of spectral 
analysis represents only a small fraction. But recently unified distributed platforms for speech 
communication, recognition, and synthesis have appeared (Milner, 2006). They merge speech coding, 
recognition, and synthesis systems and introduce a major novelty – a uniform signal representation. 
Therefore a fast reconstruction of the time-domain signal is required for "live" spoken communication. 
The shorter time delay property alone is already successfully used in speech coding in the form of well 
known asymmetric "ITU Hamming-Cosine window" (ITU, 1996). An example of the time delay effect 
in frequency analysis can be seen in Fig. 4. A sliding STFT was computed to better show the time 
difference in both spectrograms. It is clearly shown that asymmetric windows give shorter time delay in 
spectral analysis and therefore faster signal reconstruction.  
 
These observations lead to a reasonable doubt that linear phase windows are optimal for speech 
recognition. The following properties are expected to be more important for speech recognition 
performance: 
 

- lower side-lobes, 
- monotone, rapidly decaying height of side-lobes, 
- shorter time delay (less important for recognition alone). 

 
For a given window function the lower side-lobes can only be obtained by widening the main-lobe 
which, based on the reasons presented, seems a small price to pay. Lower side-lobes that are also 
rapidly decaying are important because of the spectral leakage distortion. They prevent distant spectral 
components from affecting the output of a given band. The majority of additive noises in practice are 
band limited and hence preventing the spreading of noise energy into other spectral bands is important 
for robustness of recognition. As already stated, shorter time delay is of lesser importance for speech 
recognition alone.  
 

                                                
1 "Solvopt3_10" - introduced in next section. 
2 Main diagonals in the matrix of correlation coefficients were averaged. Row '1' stands for main 

diagonal with elements (i,i), '2' stands for second diagonal with elements (i+1,i), etc… 
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 2.2 Window design methods 
 
Most SRS implementations use one of the standard symmetric windows (Hamming, Hann, Blackman). 
It is a known fact from the field of FIR filter design that symmetry constraint relaxation can lead to 
better magnitude response. For the initial research in this field we have designed and evaluated 
asymmetric windows with lower side-lobes but without the rapidly decaying height of side-lobes 
property. It is important to remember that the inherent robustness of SRS will represent the final 
criterion. Two groups of windows are described in following subsections.  
 
2.2.1 Standard symmetric windows 
 
Using one of the standard windows gives a fixed relationship between different main-lobe widths and 
side-lobes heights. Windows in this group are usually defined with a closed form expression and are 
therefore easily computable. They are also symmetrical (linear phase) and have a particular shape of 
the magnitude response. But their magnitude responses are generally not in a full conformance with 
those of "speech recognition friendly" windows (Sec. 2.1). Also, symmetric windows imply constant, 
but generally longer time delay. In this group the Hamming window is most popular and will be used in 
further comparisons. 
 
2.2.2 Asymmetric windows designed with FIR filter methods 
 
All window functions are of finite length N which makes it possible to treat them as if they are the 
impulse response h(n) of a FIR digital filter. Given the definition of the desired magnitude response a 
window function can be computed using methods similar to those used for the design of optimal linear 
phase FIR digital filters. The difference is that the symmetry constraint is removed which leads to an 
optimization problem that is significantly more difficult. Two types of asymmetric window design 
problems were investigated. The first one is denoted "nearly linear phase" window and is defined as: 
 
Find the optimal impulse response of length N, h*= [h*(0), h*(1) ,..., h*(N-1)], that has the minimal 
error according to the minimax (or Chebyshev) criterion  
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E(e jω) = D(e jω) - H(e jω), 
 

where �(h) is the Chebyshev error of sequence h, D(e jω) is the desired and H(e jω) the real frequency 
response. W(e jω) is a positive weighting function and ΩΩΩΩ is a set of discrete frequencies1, on which the 
error function E(e jω) is evaluated. Its absolute value can be computed as 
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The minimax approximation problem described by Eqs. (3)-(7) is nonlinear and therefore considerably 
more difficult to solve than the one with the linear phase constraints on D(e jω) and H(e jω) (Parks and 
McClellan, 1972). In Eq. (6) the phase and magnitude errors contribute equally to the final error value. 
This leads to a window that is typically not too different from the symmetric linear phase window. 
 
The second type of asymmetric window is denoted "arbitrary phase" window. The complex error 
function Eq. (6) is replaced by the magnitude-only error function 
 

E(e jω ) =  |D(e jω )| - |H(e jω )|  
 

                                                
1 ΩΩΩΩ is a union of compact, non overlapping subintervals of [0 .. π]. 

(8) 

(3) 

(4) 

(5) 

(7) 

(6) 
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 in which the phase error is completely ignored. Examples of the corresponding solutions for linear 
phase, nearly linear phase, and arbitrary phase windows are given in Figs. 5, 6, and 7. These windows 
were designed using D(e jω) = 1, W(e jω) = 1 for ω  ∈  [0, 0.012π] and D (e jω) = 0, W(e jω) = 1000 for ω  
∈  [0.0425π, π]. The examples show how the relaxation of phase linearity constraints leads to a better 
magnitude response – in the form of lower side-lobes in this case. Note that these windows are 
equiripple and do not have the rapidly decaying height of side-lobes property. 
 
The modified linear programming method based on the work of Burnside and Parks (1995) was used to 
solve the nearly linear phase problem given by Eqs. (3)-(7). This type of window was not used in 
speech recognition experiments described in this paper. The arbitrary phase problem (Eq. (8) replacing 
Eq. (6)) was solved using the general-purpose optimization procedure "SOLVOPT"1. Due to the 
diversity of possible design cases the use of general optimization methods was most appropriate. It 
provided a framework for efficient manipulation of different criteria and desired properties.  
 
A drawback of the asymmetric window design is the complexity of the design process that requires a 
solution of a significantly more difficult minimax approximation problem. This, however, does not 
increase the complexity of an SRS because the window can be precomputed. It is also difficult to find 
the optimal design specifications (desired passband and stopband for instance). Since the difference in 
the side-lobe heights of symmetric and asymmetric windows increases with the main-lobe width, we 
used the above described D(e jω) that gives a main-lobe that is approximately 3 times wider than the one 
of the corresponding Hamming window. Certainly, some additional research in this field is needed, 
particularly in finding more efficient design methods and optimal design specifications. 
 
 
3. Practical evaluation 
 
The main motivation for the work presented in this paper is to evaluate the contribution of windows 
with certain time-frequency properties to speech recognition performance and to its inherent 
robustness. In this section the windows are analyzed by a practical evaluation in a reference testing 
environment. This will give empirical evidence of window influence on the performance and on the 
inherent robustness of SRS, but should be treated with caution. Enhancing the speech signal 
representation by itself does not help much if further stages in the recognition process (classification 
stage in this case) are not able to utilize the advantage. This means that the practical evaluations can 
provide only partial answers. Also, the generality of conclusions is arguable because they depend on 
specific parameters used in a practical evaluation. However, it seems that this is currently the only 
possibility and that more definite answers are a matter of further research and evolution in this field.  
 
Two groups of equiripple windows were used in our experiments. The symmetric linear phase Remez3 
windows were designed using the Parks-McClellan method. The asymmetric arbitrary phase Solvopt3 
windows were designed as described above. The stopband weighting function W(ejω) was set to 10, 
100, and 1000 giving the six windows Remez3_10, Remez3_100, Remez3_1000, Solvopt3_10, 
Solvopt3_100, and Solvopt3_1000. Note that Figs. 5, 6, and 7 show as examples Remez3_1000 (linear 
phase) and Solvopt3_1000 (arbitrary phase) windows. The reason for including the symmetric Remez3 
windows is to demonstrate that lower side-lobes can improve robustness also for symmetric windows 
when compared to the standard Hamming window. 
 
3.1 Reference testing environment 
 
The reference testing environment consists of two speech recognition systems, based on different 
approaches, and of two bilingual speech databases. Both isolated and connected digit recognition were 
used and a variety of common additive and convolutional distortions were simulated to evaluate the 
inherent robustness of SRS.  
  
 
 
 

                                                
1 URL: http://www.kfunigraz.ac.at/imawww/kuntsevich/solvopt/. 
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 3.1.1 Speech Recognition Systems 
 
The practical evaluations were performed on two real SRS based on different approaches and 
recognition task complexities: 
 

- isolated word recognizer based on Hidden Markov Models – "HTK", 
- connected digit recognizer based on Neural Networks (NN) – "CSLU".  

 
The first one is based on the statistical approach (Rabiner, 1989). It recognizes one word at a time. 
Whole-word continuous models are used with 8 internal states, mixtures of 8 Gaussian densities and 
diagonal covariance matrices. It is implemented using the HTK software package1. This approach is 
currently the most frequently used type of speech recognizer. 
 
The second system uses a neural network in the form of a multi-layer perceptron with 200 internal 
neurons. It is capable of recognizing whole utterances of concatenated words. Context dependent 
speech units are used. A simplified form of Viterbi search procedure is used on the results from the 
perceptron classification stage. The advantage of this approach is lower time and space complexity. It 
is implemented in the CSLU Speech Toolkit2.  
 
The architectures for both systems were left unchanged (as much as reasonably possible). Utterances 
were converted into sequences of feature vectors consisting of the "standard" set of normalized3 MFCC 
and corresponding delta features. In the HTK recognizer, 12 MFCC features together with the 
logarithm of the frame energy and the corresponding 13 delta features were used giving a total of 26 
features. The CSLU recognizer uses only MFCC features without delta features, although the vector at 
time t is actually a concatenation of 5 vectors at t-60ms, t-30ms, t, t+30ms, t+60ms. This sums up to a 
final 13*5=65 features.  
 
A sampling frequency of 8000Hz was used in both systems. The window of length 32ms was shifted in 
steps of 10ms across the speech signal. In all cases Word Error Rate (WER) was measured.  
 
3.1.2 Speech databases 
 
All experiments were carried out on two different speech databases: one in English and one in 
Slovenian.  
 
SLO-DIGITS4 database (Rozman and Kodek, 2000) was used in both SRS. It consists of 780 Slovenian 
adult speaker utterances recorded over public telephone lines with their inherent noise. Simple 13-word 
vocabulary (digits from "0" to "9" and words "yes", "no" and "stop") was used. Each utterance 
consisted of all 13 words in random order. Speakers were selected on the basis of parameters like age, 
gender, and location. In practical evaluations 234 speakers were used for training the recognizers. The 
test and validation sets consist of 156 speakers each. The same sets were used in both SRS. Main 
characteristics of this database are lower quality of recordings and a variety of different dialects. An 
isolated digit version and a connected digit version of SLO-DIGITS were created and used in the 
experiments.  
 
To enhance the variability of evaluation conditions the English "Numbers 95" database5 was also used 
with the CSLU recognizer. It consists of connected numbers utterances recorded over telephone lines. 
For our task only utterances with digit strings were used (having an average of 5 to 6 digits per 
utterance). There were 1368 speakers in the training set, 555 speakers in the validation set and 1168 
speakers in the test set.  
 

                                                
1 URL: http://htk.eng.cam.ac.uk/. 
2 URL: http://cslu.cse.ogi.edu/toolkit/. 
3 Cepstral mean subtraction was performed. 
4 In Slovenian this database is named "ŠTEVKE". 
5 URL: http://cslu.cse.ogi.edu/corpora/numbers/index.html. 
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3.1.3 Inherent robustness evaluation 
 
It should be stressed that both recognizers were trained on the "clean" training set that did not contain 
any added noise. The different window functions were tried and the inherent robustness was evaluated 
in terms of a system's performance on noisier, simulated conditions that were not present in the training 
phase. No additional adaptation was performed prior to testing.  
 
The following seven additive noise recordings derived from the NOISEX database (Varga et al, 1992) 
were used: 
 

- speech in background ("Babble"), 
- noise in pilot cockpit of F-16 ("F-16"), 
- factory noise ("Factory1"), 
- car noise ("Volvo"), 
- pink noise ("Pink"), 
- white noise ("White"), 
- filtered white noise centered around 900 Hz ("Pass 900"). 

 
Additive noises were also combined with a convolutional distortion. Lowpass filtering that simulates an 
acoustic obstacle1 between speaker and microphone that is common in hands free speech was used.  
 
Testing was performed on the following three major test groups: 
 

- "Clean" test group is the original test set. 
- "Additive" test group consists of 7 test sets that were obtained by adding the 7 noise recordings 

to "Clean" test set for a specific signal to noise ratio (SNR). Three different SNR values were 
used giving a total of 21 test sets.  

- "Additive+LP" convolutional test group was formed by additional lowpass filtering of all 
"Additive" test sets. 

 
Tables 1 and 2 give the recognition rates for the CSLU recognizer. A slight degradation in "Clean" 
conditions is quite usual for robustness enhancement techniques. On the other hand, performance 
increases can be observed in the additive noise groups for asymmetric windows and an even greater 
improvement in the case of additional lowpass distortion. Similar conclusions can be drawn from the 
results with the HTK recognizer in Table 3. The only difference is a slight degradation in additive noise 
test groups. To see if this was caused by the HTK recognizer in combination with the SLO-DIGITS 
database an additional set of tests using RASTA filtered MFCC + delta features (Hermansky and 
Morgan, 1994) was done. Performance is consistently better (Table 4) which means that the observed 
degradation is not related to HTK or SLO-DIGITS. It can also be concluded that some feature sets (in 
our case RASTA features) better utilize different signal representations than others. 
 
If we take a closer look at the performance on individual additive noise distortions in Table 5, we can 
see that a significant degradation occurs in the case of "artificial" additive band limited white noise 
("Pass 900"). It seems that in this case the main-lobe width plays a more important role than initially 
expected. Since the noise is limited around 900 Hz, a wider main lobe causes its spectral smearing into 
near spectral bands that are important for recognition. This is further confirmed by the fact that the 
same effect does not happen in two similar wideband distortions: White and Pink noise.  
 
Generally speaking, the robustness improvements on additive and lowpass distortions are well beyond 
our initial expectations. They confirm our initial assumption that the leakage reduction reduces the 
effect of noise without adversely affecting the clean recognition. 
 
Another conclusion follows from the results. For both Remez3 and Solvopt3 windows the lower side-
lobes almost consistently result in better robustness. This confirms that the height of side-lobes is 
indeed a very important property.  
 

                                                
1 4th order lowpass digital Butterworth filter was used with fc= 800Hz.  
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 It is also interesting to point out that the Hamming window has a narrower main-lobe in comparison to 
other windows. There are conditions where this seems to be important (Tables 3 and 5) despite the 
great difference in side-lobes height.  
 
4. Conclusion 
 
Our results show that a considerable increase of the inherent robustness can be obtained with the non-
standard window functions. It should be stressed that replacing a window function is a simple 
procedure that does not increase the time or space complexity of a recognizer. We are currently 
performing tests in which the window is changed after the learning process. Results (as yet 
unpublished) show improvements that are comparable to those described above. This fact is in our 
opinion very important because it shows that an improved robustness can be obtained by simply 
applying a different window to an existing working SRS without any additional training. Not a small 
achievement for such a simple modification.  
 
It is also reasonable to believe that in the future the speech recognizers will use better signal 
representation even more efficiently. Since VOIP systems are emerging fast the shorter time delay 
advantage will also gain in importance. 
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 Figure Legends 
 
Fig. 1. Typical parameterization process in a speech recognition system. 
 
Fig. 2. Comparison of window influence on the computed magnitude response of a simple two tone 
signal using: (a) Hamming window, (b) Solvopt3_10 - asymmetric window with lower side-lobes.  
 
Fig. 3. Window influence on the average correlation of FBANK features in: (a) clean conditions, (b) 
added white noise at 6 dB. 
 
Fig. 4. Time delay effect in the spectrogram of the 3 tone sound using: (a) Hamming window, (b) ITU 
Hamming-Cosine window. 
 
Fig. 5. Windows designed with FIR methods (N=256). 
 
Fig. 6. Magnitude responses of windows designed with FIR methods (Fs=8000Hz, N=256). 
 
Fig. 7. Group delay in main-lobe of windows designed with FIR methods (Fs=8000Hz, N=256). 
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 Fig 6 
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 Fig 7 
 

 



 

 

 

ACCEPTED MANUSCRIPT 

 Tables 
 

Additive [SNR] Additive+LP [SNR] WER[%] Clean 
12 dB 6 dB 0 dB 12 dB 6 dB 0 dB 

Mean 

Hamming 2,6 16,6 31,2 56,6 35,9 52,2 73,0 38,3 
Remez3_10 3,1 16,3 31,4 58,3 26,6 40,9 64,8 34,5 
Solvopt3_10  3,0 14,3 30,2 58,1 26,2 40,6 64,2 33,8 
Solvopt3_100 2,9 13,2 28,9 58,2 25,7 40,0 65,0 33,4 

Solvopt3_1000 2,9 13,3 28,9 55,9 25,5 39,5 62,1 32,6 
 

Table 1. WER on connected digit task. CSLU SRS on Numbers 95 database was used.  
 
 

Additive [SNR] Additive+LP [SNR] WER[%] Clean 
12 dB 6 dB 0 dB 12 dB 6 dB 0 dB 

Mean 

Hamming 5,9 13,7 26,7 46,7 45,7 58,0 69,4 38,0 
Remez3_100 5,7 13,8 26,6 47,7 21,6 32,8 52,2 28,6 
Solvopt3_100 5,0 12,3 24,2 44,6 20,9 31,3 49,8 26,9 

 
Table 2. WER on connected digit task. CSLU SRS on SLO-DIGITS (connected) database was used.  

 
 

Additive [SNR] Additive+LP [SNR] WER[%] Clean 
12 dB 6 dB 0 dB 12 dB 6 dB 0 dB 

Mean 

Hamming 4,5 12,9 22,0 37,3 38,2 48,7 61,5 32,2 
Remez3_100 5,4 15,4 24,8 39,1 22,8 31,4 44,3 26,2 
Solvopt3_100 5,1 14,9 24,2 39,5 23,0 30,8 43,3 25,8 

 
Table 3. WER on isolated digit task. HTK SRS on SLO-DIGITS (isolated) database was used.  

 
 

Additive [SNR] Additive+LP [SNR] WER[%] Clean 
12 dB 6 dB 0 dB 12 dB 6 dB 0 dB 

Mean 

Hamming 4,3 13,8 24,6 44,1 34,3 46,4 64,1 33,1 
Remez3_100 4,6 12,9 23,2 42,3 21,6 30,8 50,3 26,5 
Solvopt3_100 4,2 12,6 22,5 40,6 21,1 29,9 47,6 25,5 

 
Table 4. WER on isolated digit task. HTK SRS with RASTA+delta features on SLO-DIGITS (isolated) 

database was used.  

 
 

WER[%] White Pink Babble Volvo Factory1 F-16 Pass 900 Mean 

Hamming 11,3 12,3 13,6 13,5 14,0 10,3 20,6 13,7 
Remez3_100 10,5 11,1 13,9 13,8 14,1 10,8 22,2 13,8 
Solvopt3_100 9,6 9,5 12,0 12,6 11,6 9,7 21,2 12,3 

 
Table 5. WER on connected digit task and different noise types (SNR=12dB). CSLU SRS on SLO-

DIGITS (connected) database was used.  
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Abstract: 
This paper considers the windowing problem of the short-time frequency analysis that is used in speech 
recognition systems (SRS). Since human hearing is relatively insensitive to short-time phase distortion 
of the speech signal there is no apparent reason for the use of symmetric windows which give a linear 
phase response. Furthermore, phase information is usually completely disregarded in SRS. This should 
be contrasted with the well-known fact that relaxation of the linearity constraint on window phase 
results in a better magnitude response and shorter time delay. These observations form a strong 
argument in favor of the research presented in this paper. First, a general overview of the role that 
windows play in the frequency analysis stage of SRS is presented. Important properties for speech 
recognition are highlighted and potential advantages of asymmetric windows are presented. Among 
them the shorter time delay and the better magnitude response are most important. Two possible design 
methods for asymmetric windows are discussed. Since little is known about window influence on SRS 
performance the design methods are first considered from a frequency analysis point of view. This is 
followed by practical evaluations on real SRS. Expectations were confirmed by the results. The 
proposed asymmetric windows increased the robustness of elementary, isolated and connected speech 
recognition on a variety of adverse test conditions. This is particularly true for the case of a 
combination of additive and low pass convolutional distortions. Further research on asymmetric 
windows and on the parameterization process as a whole is suggested.  
 


