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Applying Data Mining Techniques to Corpus

Based Prosodic Modeling

David Escudero-Mancebo∗, Valentín Cardeñoso-Payo

Departamento de Informática. Universidad de Valladolid.

Campus Miguel Delibes s/n. 47011 Valladolid. Spain.

Abstract

This article presents MEMOInt, a methodology to automatically extract the intona-

tion patterns which characterize a given corpus, with applications in text-to-speech

systems. Easy to understand information about the form of the characteristic pat-

terns found in the corpus can be obtained from MEMOint in a way which allows

easy comparison with other proposals. A visual representation of the relationship be-

tween the set of prosodic features which could have been selected to label the corpus

and the intonation contour patterns is also easy to obtain. The particular function-

form correspondence associated to the given corpus is represented by means of a

list of dictionaries of classes of parameterized F0 patterns, where the access key is

given by a sequence of prosodic features. MEMOInt can also be used to obtain valu-

able information about the relative impact of the use of di�erent parameterization

techniques of F0 contours or of di�erent types of intonation units and information

about the relevance of di�erent prosodic features. The methodology has been specif-

ically designed to provide a successful strategy to solve the data sparseness problem

which usually a�ects corpora as a consequence of the inherent high variability of the

intonation phenomenon.
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1 Introduction

In the present generation of text-to-speech applications (TTS), there are sys-

tems which provide high-quality reproduction of human intonation exploiting

their capabilities to adequately extract intonation information from labelled

speech corpora (see Aaron et al. (2005) for an excellent review of the current

state of the art in TTS technology and products). The availability of huge

speech corpora and the use of automatic information analysis techniques is the

main reason for this success. Rule-based systems (as the pioneering MITalk

(Allen et al., 1987)) have been signi�cantly improved upon, and corpus-based

systems are, from an engineering point of view, the best option in terms of

quality and adaptability to new speakers and contexts. Nevertheless, corpus-

based systems still have the limitation of their vulnerability to the sparse-data

problem: huge amounts of data are required to obtain an acceptable quality

and additional data are needed to adapt the system to new situations. The

root of this problem is that corpora analysis focuses on locating samples to

be adapted to the prediction needs and not on obtaining knowledge about the

phenomena to be reproduced. The lack of knowledge retrieval makes the solu-

tions acceptable from the engineering point of view, but not solid enough from

the scienti�c point of view and the consequence is the lack of robustness when

∗ Corresponding author: David Escudero-Mancebo
Email address: descuder@infor.uva.es (David Escudero-Mancebo).
URL: http://www.infor.uva.es/�descuder (David Escudero-Mancebo).
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corpus data get scarce. In this article we present MEMOInt, a methodology

for intonation modeling that aims to obtain information from the corpus to be

analyzed, permitting synthetic intonation to be reproduced in a robust way

to cope with data scarcity.

The major challenge of MEMOInt is how to obtain the information needed for

corpus-based TTS or, in other words, how to extract prosodic information from

a given corpus in order to characterize it. This is not an easy task since there

are still many open questions in the state of the art on which many method-

ologies do not shed any light (see Botinis et al. (2001)). The key aspects which

have been considered when designing MEMOInt are related to the selection

of the basic linguistic unit on which intonation is modeled (intonation unit)

and the set of prosodic features, the way to lay out a practical function-form

correspondence, and the selection of the F0 contour representation technique

to be used.

The selection of the type of intonation unit and the set of associated prosodic

features used to characterize the corpus are critical to model intonation prop-

erly. The type of intonation units generally considered in studies of intonation

include: sentences, intonation groups, stress groups or syllables. Di�erent pro-

posals can be found in the literature when one or several of these units are to

be selected as the basic reference unit on which the matching between the text

of the message and the F0 contours should be laid: accentual phrase (Sakurai

et al., 2003), accent groups (Santen and Möebius, 2000), words (Veronis et al.,

1998), syllables (Taylor, 2000; Lee and Oh, 2001; d'Alessandro and Mertens,

1995) and Interperceptual Centre Group (GIPC) (Holm, 2003). Moreover, in

superposition models the use of more than one unit is proposed (Fujisaki and

Hirose, 1984; Sakai, 2005). With respect to the prosodic features characteriz-
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ing these units, the number and type of them also depend on the approach.

Some of them are position, number of syllables, number of words, conjuga-

tion (Sakurai et al., 2003), part of speech (Sakurai et al., 2003; Veronis et al.,

1998; Holm, 2003), number of syllables from previous stress or accented syl-

lable (Taylor, 2000)and structure of the sentence (Lee and Oh, 2001; Holm,

2003). Furthermore, each of these prosodic features can have a di�erent car-

dinality depending on the proposal. This lack of consensus in the state of the

art seems to indicate that the di�erent methodologies are strongly dependent

on the selected intonation unit, making it di�cult to compare their results.

That is the reason why MEMOInt has been designed assuming an abstraction

of the kind of intonation unit, which allows easily carrying out comparisons

and quality tests both of the impact of the selection of the intonation unit and

the associated set of prosodic features just by using several alternatives and

comparing the objective quality results brought by MEMOint.

As for the function-form correspondence, several proposals can be found in

the state of the art on how to obtain the right relation between the acoustic

parameters (representing the F0 contours) and the prosodic features: stochas-

tic models (Veronis et al., 1998), neural networks (Holm, 2003; Sakurai et al.,

2003), linear regression (Sproat and Olive, 1995) and decision and regres-

sion trees (Lee and Oh, 2001; Taylor, 2000; Eide et al., 2003). In all these

methodologies, two main limitations arise: lack of robustness to cope with

data scarcity training conditions and limited capabilities to provide experi-

mentally contrastable prosodic information. MEMOInt introduces the concept

of dictionary of classes to represent the particular correspondence between the

prosodic factors and the classes in a given corpus. In a similar way to pioneer

approaches such as (Emerard et al., 1992; Traber, 1992), the dictionary (or
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the data base) is a representation of the intonation in the corpus which allows

the prediction of an F0 contour from the prosodic features. The main di�er-

ence with those approaches is that we consider that a class represents not

only a prototypical pattern of intonation but also its experimental variability

for the given set of prosodic features determining the pattern, as found in

the reference corpus we are working with. The use of lists of dictionaries will

also provide a graphical way to illustrate the correspondence between a set of

prosodic features and its associated class.

The discussion mainstream on the representation technique ofF0 contours has

been usually focused on whether phonetic representations are more appropri-

ate than phonological ones or not (see Botinis-2001 for a review). Classes of

intonation patterns are the building blocks of MEMOInt and the set of classes

represent both the variety of prototypical intonation movements and the vari-

ability of the F0 contour shapes associated to every prototype, within the

limited domain of the given corpus. The classes of intonation patterns group

metrical representations of the F0 contours (phonetic aspect) and statistically

represent the best prototypical patterns (phonological aspect) for a given con-

tour metric. This allows di�erent parameterization techniques to be contrasted

and also provides useful information about the characteristicF0 movements

found in the corpus and its variability, in an easy readable format.

Concerning the capabilities of MEMOInt to generate accurate syntheticF0

contours in sparse-data conditions, let us recall that data scarcity problems

have their origin in the high variability of the intonation phenomena. The

�nal shape of pitch contours is in�uenced by a high number of factors and it

is almost impossible to have a corpus with enough coverage of data associated

to the huge combinatorial potential of these factors. As an example, in (Sakurai
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et al., 2003) a corpus intonation modeling technique is presented in which the

possible combinations of the prosody factors were more than 27 million, but

the available samples in the corpus where about 3000. The situation gets even

worse when paralinguistic features are considered (see Campbell and Erickson

(2004)). Under this condition, it could be possible to record a bigger corpus

but when this is not the case, it is necessary to devise a strategy to generate

plausible synthetic intonation patterns assuming the corpus has limitations.

MEMOInt is speci�cally designed to cope with this problem and we propose

using the corpus to adjust models at di�erent levels of detail, so that it is

always possible to select the class of an adequate level of detail, depending on

the amount of information provided by the prosodic features labelling, which

better predicts the observation of the corpus in terms of the contour metric

we are using.

As a result, we �nd MEMOInt useful not only as an e�cient way to predict

realistic pitch contours using a data mining technique on the data stored in

a corpus, but also as an experimental tool to support corpus-based linguistic

research on intonation modeling.

In section 2 we show the architectural scheme of MEMOint, the way the corpus

has to be processed, how we can obtain intonation patterns and use them to

generate F0 contours and, �nally, how MEMOint manages data scarcity. In

section 3 we will discuss an application of MEMOInt to Spanish language,

to illustrate the possibilities of our methodology. Speci�c experiments on the

selection of the type of intonation unit and the set of prosodic features, and on

di�erent alternatives for the parameterization technique are reported in that

section too. Last section of the paper includes conclusions and some proposals

for future work.
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Fig. 1. Functional scheme of MEMOInt.

2 MEMOInt: MEthodology for MOdeling Intonation

Figure 1 shows the functional scheme of MEMOInt. TheCorpus is processed to

obtain the Tagged Corpus (Processing task) which is the input of theModeling

task producing the List of Dictionaries. The capabilities of the list of dictio-

naries are evaluated and it can also be used by a TTS system (Evaluation and

TTS tasks respectively).

Relevant features related to intonation are extracted from the corpus in the

Processing stage. A representation of the intonation of the corpus is obtained

in the Modeling stage, which outputs a list of dictionaries of models. In

the Evaluation stage, the quality of MEMOInt is measured, both in terms

of the �delity of the generated synthetic intonation and also in terms of its

capabilities to extract and visualize prosodic information from the corpus. The

text-to-speechmodule would make use of the outcomes of the modeling stage

in speech synthesis application scenarios. All these basic building blocks will

be further detailed in the following subsections 2.1 to 2.4.

The Parameters of MEMOInt are: Type of Intonation Unit (TIU), List of

Prosodic Features (LPF), and Parameterization Technique (PT). In the intro-

duction we have discussed about the possible values ofTIU and LPF; we discuss

7



 

 

 

ACCEPTED MANUSCRIPT 

 
PT in section 2.2.

The outcomes of MEMOInt are: (1) a tool to generate syntheticF0 contours,

(2) objective and subjective evaluation of its capabilities to produce synthetic

intonation of quality, (3) descriptive information about the intonation in the

analyzed corpus and (4) information about the suitability of the di�erent

tested values of the parameters. The following sections give details about the

stages and the parameters enumerated above.

2.1 Corpus Processing

Figure 2 represents the processing stage. The Splitting task consists of di-

viding the sentences of the corpus into intonation units. A corpus can be seen

as set of sentences

Corpus = {Sj, j = 1 . . . NS} (1)

where each sentence Sj is a sorted set of intonation units

Sj = {ui, i = 1 . . . NU}. (2)

Each intonation unit ui involves both a part of the analyzed sentence and the

corresponding portion of the F0 contour (see �gure 3). The F0 contour of the

given ui can be referred to as ui.F0 and the corresponding part of the message

as ui.msg.

The Labeling task consists of assigning values to the prosodic features that

are relevant from the point of view of the analysis and synthesis of the F0
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Fig. 2. Processing Task: sentences are �rst segmented into intonation units. In order

to obtain the Tagged Corpus, the intonation units are located while in the (Corpus

Splitting task). Then, the units are labeled (Labeling task) and its F0 contour is

parameterized (Parameterization task).

contours. If we consider a set of prosodic featuresF = {F1 . . . FNF
}, then each

unit has an associated vector of prosodic features

ui.f̄ = (f1 . . . fNF
)i, (f1 . . . fNF

)i ∈ F1 × . . .× FNF
(3)

where fi is a value of the feature Fi in the set F i = {f 1
i . . . f

NFi
i }. The Pa-

rameterization task permits quantitative parameters to be obtained from

F0 contours re�ecting its evolution in the intonation unit. After the set of

parameters to use has been chosen P = {P1 . . . PNP
}, each ui can be associ-

ated to a vector of acoustic parametersui.p̄ = (p1 . . . pNP
)i, where pi represent

the possible values of the selected acoustic parameters considered. Acoustic

parameters can be obtained from F0 contour by means of a function

Par : F0(t)→ P1 × . . .× PNP
. (4)

In which follows, ui.p̄ will be referred as the intonation pattern of ui (see �gure

3). The parameterization technique must be reversible, meaning that it exists

a function

Par−1 : P1 × . . .× PNP
→ F0(t) (5)
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a)

b)
4

Fig. 3. An example of the application of the Processing task. a) The �gure shows

the splitting of an utterance, F0 contour and aligned message divided into the corre-

sponding intonation units (stress groups in this case).b) The �gure shows one of the

possible parameterizations of the last intonation unit: smoothing of theF0 contour

and �tting with 4 parameters (p1, p2, p3, p4).

so that

p̄ = Par(F0) =⇒ Par−1(p̄) ∼ F0. (6)

As a result, we obtain the Tagged Corpus,

TC = {ui = (ui.f̄ , ui.p̄), j = 1 . . . Nu}, (7)

where ui.f̄ represents the function of the intonation unit andui.p̄ its form. TC

is divided into three di�erent parts TC = TCm ∪ TCt ∪ TCe, which will be used

to model (TCm) and train (TCt) the classes of the dictionaries (see section 2.3)

and to test (TCe) the intonation modeling procedure, respectively (see section

2.4.1).

The Splitting task requires that the TIU is set a-priori. In a previous work,

we provided an experimental comparison of some of theseTIU for the Spanish

language (Escudero and Cardeñoso, 2004). MEMOInt is independent of the

chosen TIU so that it can be used as a tool to test di�erentTIU and to contrast

the experimental results.
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With respect to the Labeling task, MEMOInt can operate with di�erent sets

of prosodic featuresF . In previous works (Escudero et al., 2002; Escudero and

Cardeñoso, 2003), we carried out a reviewed comparison of several proposals

of F for Spanish language. Evaluation task provides a quality measure of the

models as a function of the type of feature and its number of elements inF .

Additionally, MEMOInt produces a ranking of these features as will be seen

in sections 3.2 and 3.6.

2.2 Parametric Representation of F0 Contours

Two main approaches have been followed inF0 contour analysis: the phonolog-

ical approach versus the phonetic one. The phonological models make use of a

code to label the characteristic movements in the contours (the most popular

of this type of approaches are the autosegmental-metrical theory of intona-

tion (Pierrehumbert, 1980) and ToBI (Silverman et al., 1992)). On the other

hand, the phonetic models consider the F0 contours as a sequence of (time,

F0(time)) points and the aim is to �nd a suitable quantitative representation

of the contours. One of the most popular phonetic models is the one proposed

by Fujisaki and Hirose (1984), which is based on physiological arguments.

Other phonetic approaches just have the aim to parameterize theF0 contour

by tuning a set of acoustic parameters accurately (Tilt (Taylor, 2000) is the

most popular supported on RFC representations (Taylor and Black, 1995)).

Other phonetic approaches use templates or data bases, where there is a dic-

tionary available containing di�erent prototypicalF0 contours, and the goal is

to choose the most suitable one in the data base (Emerard et al., 1992; Traber,

1992) or to adapt a template to the situation (Sproat and Olive, 1995; Kochan-
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ski and Shih, 2003; Lobanov, 1987). Although some of the models are more

popular than others (e.g. the Fujisaki model has been successfully applied to

more than 10 languages), there is no consensus on the best methodology to be

used and recent approaches do without any parameterization and simply use

the points of the training F0 contours (see Tokuda et al. (2000); Eide et al.

(2003); Rodríguez and Campillo (2006)).

MEMOInt is mainly focused on the possibility of contrasting di�erent pa-

rameterization techniques in terms of predicting results and its capabilities to

provide information about the typical movements of F0 contours. The basic

technique to be used is the �tting of F0 contours with Bézier functions (see

appendix A and (Escudero and Bonafonte, 2002)). Intonation patternsu.p̄ are

the control points (or variations) of the Bézier function �tting theF0 contour

u.F0. MEMOInt permits more sophisticated parameterization techniques to

be used, but the aim here is to show that the methodology permits di�erent

alternatives to be contrasted. To show this, we use di�erent variations of the

basic technique and we contrast results (see section 3.3).

MEMOInt exploits the concept of class of intonation to represent the groupings

of the di�erent patterns of intonation found in the corpus and to characterize

the typical movements of theF0 contours in terms of the sequences of prosodic

features which have been used to label the intonation patterns associated to

every single intonation unit in the corpus. In this way, it brings information

about the correspondence between the two main levels of description of the

intonation information hidden in the corpus data. At the phonetic level, the

di�erent exemplars of intonation patterns in a same class convey information

about the inherent variability of a prototypical pattern, after the low level

variability has been smoothed by means of the F0 contour parameterization
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technique. At an abstract level, it �nds the best correspondence between the

lists of prosodic feature values and the classes of contours, according to the

objective quality measure of intonation similarity which has been incorporated

into MEMOint. Elucidating the universal adequacy of this measure and of the

set of prosodic features used to label the intonation units of the corpus is not

a goal of MEMOint, since they serve just as input information to the method-

ology. Nevertheless, progressive re�nement of these important inputs can also

be obtained easily following an experimental procedure in which MEMOint

is applied for di�erent selections of these parameters to di�erent reference

corpora.

2.3 Intonation Modeling

The Modeling Task is seen as a Data Mining application into the Tagged

Corpus. The aim is to automatically obtain the matching between the prosodic

features f̄ and acoustic parameters p̄. As requirements we have: (1) Automatic

prediction of p̄ from f̄ , (2) robust modeling against data scarcity and (3) the

outcome must provide contrastable information about the prosodic function-

form correspondence in the corpus.

All the tools referred to in the introduction to implement the correspondence

between F and P (neural networks, regression trees, etc.), have shown to be

e�cient to cope with the �rst requirement, but it is not clear that they can

cope with the three requirements altogether. To do so, we have devised the

design of a new approach, which is a multilevel clustering technique driven

by a forward sequential feature selection process. The technique is inspired by

classic knowledge-based agglomerative clustering (Jain et al., 1999) in combi-
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nation with widely accepted feature selection techniques (Webb, 2002). Next,

we describe in detail this technique.

The process starts by building an initial classi�cation of theui from a single

prosodic feature L1 = F̃1 (therefore, L is a list of selected prosodic features

and F̃ ∈ F represents the prosodic feature selected at each step). Each class

corresponds to a given value of this initial prosodic featureF̃1. An agglomera-

tive clustering technique is iteratively applied to this cluster using maximum

similarity as the merging criterion and prediction accuracy of theF0 pro�le

as the stopping condition. The prosodic feature which gives the best overall

prediction accuracy of F0 pro�le over the cluster is selected as F̃1. An addi-

tional prosodic feature is added toL1 to get the next set of prosodic features

L2 = F̃1 × F̃2 and a new cluster is built, repeating the previously described

process. Again, the same criterion applies for the selection of F̃2, resembling

the typical forward sequential feature selection process. The clustering process

stops when all the possible prosodic features have been included into

LNF = F̃1 × . . .× F̃NF
(8)

and this results in a multilevel set of clusters, each one corresponding to an

increasingly more speci�c set of prosodic features. Let us call

Ck = {Ck
i | i = 1 . . . Nk

c } (9)

the set of classes in the cluster performed withLk.

The agglomeration still maintains a correspondence between the features and

the parameters, if we keep track of the di�erent values of thef̄k
s ∈ F̃1×. . .×F̃k

associated to a class after merging. The list of values of prosodic features
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associated to a class Ck

j :

Lk
j = {u.f̄k

s ∈ Lk | u.f̄k
s ∈ Ck

j } (10)

provides an index to it which can be used in TTS to retrieve theu.p̄ which

corresponds to the given sequence of features annotated in the input text. The

retrieved ui.p̄ will be used to generate the F0 contour.

We call dictionary, the set of tuples

Dk = {(Lk
c , C

k
c , wk

c ) ∈ 2L
k × C × R, c = 1 . . . Nk

c }. (11)

A dictionary is the explicit representation of the correspondence between the

function of intonation (f̄k
s ∈ Lk

j ) and its shape (p̄ ∈ Ck
j ) in the class. wk

j is the

average predicting error over the samples of the training corpus belonging to

the class Ck
j .

As the number of prosodic features increases, the sparse-data problem gets

worse. The multilevel clustering technique provides a di�erent dictionaryDk

for every Lk, each of which has been optimally adapted to cover theui set in

the corpus for a given level of detail in the set of prosodic features. Since the

dictionaries Dk are orderly enlarged, adding the next best predicting feature

at each stage, we can use the corresponding prediction results of a training

corpus to guide a search strategy for alternatives to unseen (or infrequent)

f̄s combinations, selecting the best predicting dictionary which subsumes f̄s.

In Cardeñoso and Escudero (2004) we already defended the multi-dictionaries

approach to cope with scarce corpus and in Escudero and Cardeñoso (2005)

we analyzed di�erent strategies to select the class to be used. Givenu.f̄s
k to
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Fig. 4. Creation of the list of dictionaries.
predict u.p̄, we have a set of k classes to use and we select the classC l

c so that

c, l = arg min
c,l

(wl
c); c = 1 . . . N l

c, l = 1 . . . k, u.f̄s
l ∈ Ll

c. (12)

Let us call list of dictionaries to the set of dictionaries obtained with di�erent

numbers of features:

Dk = {Di, i = 1 . . . k}. (13)

Figure 4 schematically shows the process of building this list of dictionaries,

which we describe in which follows. The sequence

(F ,L1,D1) → . . . → (F ,Lk,Dk) → . . . → (F ,LNF ,DNF ) (14)

is the result of the Forward Feature Selection algorithm, where in every step a

new feature F̃ ∈ F is entered to the list Lk. The feature entered at each step

16
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would be

F̃k+1 = selectFeature(F ,Lk,Dk), (15)

so that

F̃k+1 = arg min
F

PredictionError(Dk ∪ CreateDict(Lk, F ))

F ∈ F , F /∈ {F̃1 . . . F̃k}.
(16)

Function PredictionError is de�ned in section 2.4.1. This process is de-

scribed as the iterative composition of the functions chooseFeature and

createDict. Function chooseFeature gets oneF /∈ {F̃1 . . . F̃k} and createDict
adds this feature to Lk to create the dictionary Dk. createDict is the com-

position of initialDict and the iteration of stepClustering.

Do
k = initialDict(Lk) 7→ {(Lk

c , C
k
c , wk

c )}, (17)

so that

∀u.f̄s ∈ TC, ∃Lk
c = {f̄k

s }, (18)

meaning that every f̄k
s observed in the corpus con�gures a class in the ini-

tial con�guration of the dictionary. Do
k is the starting point in the iterative

application of the D′ = stepClustering(D), where

D = {(Lk
c , C

k
c , wk

c ), c = 1 . . . Nk
c },

D′ = {(L′kc , C ′k
c , w

′k
c ), c = 1 . . . Nk

c − 1},

D′ = D − (Li, Ci, wi)− (Lj, Cj, wj) + (L′, C ′, w′),

i, j = arg min
i,j

dist(Ci, Cj), (i, j ∈ 1..Nk
c ),

C ′ = Ci ∪ Cj, L′ = Li ∪ Lj.

(19)
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Procedure stepClusteringmerge two classes iteratively to �nd the best con-

�guration of the dictionary in terms of prediction results.

The list of dictionaries is to be used also to generate synthetic F0 contours,

both at the �nal stage, when TTS is the application, and at the intermediate

dictionary building steps. The generation process is illustrated in Figure 5.

genF0 is used to compute the w values:

wk
c = computeW(Dk, c)

= 1
Nck

t

∑
u.f̄s

k ∈ Lk
c

u ∈ TCt

dist(u.F0, genF0(u.f̄s
k
, Dk))

N ck
t = |{c ∈ TCt : c ∈ Ck

c }|.

(20)

genF0LD is used to compute synthetic F0 contours in the training and testing

stages and in text-to-speech applications.

Simulation(C) = µ̄({u.p̄, u ∈ C}),

Class(f̄s
k
, Dk) = Ck

c ⇐⇒ f̄s
k ∈ Lk

c ,

(21)

SelectClass(f̄s
k
,Dk) = C l

c by solving equation 12.

2.4 Evaluation

In an ideal scenario, where the contour stylization technique and the contour

similarity measurement could be completely derived from perceptual exper-

iments, the grouping of intonation pro�les into perceptually disjoint classes

would provide a correct and complete model of intonation for the language.

Unfortunately, there is no evidence yet that this can be acomplished and we
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will have to accept that the grouping we are obtaining from a corpus might

be a�ected by the lack of information associated to an imprecise theoretical

model. Nevertheless, we can provide relative indicators of quality of the re-

sults at two di�erent levels: the quality of the generated contours, in terms of

a reasonable similarity metric, and the soundness of the prosodic information

provided by MEMOint on the given corpus, in terms of a comparative refer-

ence with well established linguistic models. These are the two main aspects

of the Evaluation Task in MEMOint, which will be described in the present

section.

2.4.1 Quality of synthetic contours

Although subjective perceptual tests are still the best alternative to measure

the quality of synthesized speech, their high cost discourages their use and

they have to be discarded when the quality assesment has to be integrated

algorithmically, as in MEMOint, where we have to test the quality of the se-

lected parameters (TIU, LPF, PT) at each step of the agglomerative process. For

this reason, we have to rely on objective quality measurements to test the syn-

thetic contours. As we will illustrate in the experiments for Spanish reported

in next section, experiments could be carried out to validate the correspon-

dence between the outputs of perceptual studies and objective measuremts.

In consequence, we will use the typical RMSE prediction error as the kernel of

the evaluation of the quality of synthetic contours. This is a reference metric

well established in the literature and could be, nevertheless, replaced by any

other better metric in future, provided additional evidences in favor of that

replacement would arise.
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(f̄s

k
, Dk)

Class

%%

genF0
// F0C

Ck
c

Simulation 11 p̄

Par
−1

CC

(f̄s

k
,Dk)

SelectClass

%%

genF0LD
// F0C

Ck
c

Simulation 11 p̄

Par
−1

CC

Fig. 5. Generation of synthetic F0 contours.

If u.p̄′ and u.F0′ are the synthetic acoustic parameters andF0 contour respec-

tively, then (see �gure 5):

u.F0′ = genF0LD(u.f̄s
k
,Dk) =

Par−1(u.p̄′) =

Par−1 ◦ Simulation ◦ SelectClass(u.f̄s
k
,Dk).

(22)

The use of statistical simulation can potentially increase the naturalness of the

synthetic speech, because the simulation can reproduce both what is regular

in the classes and its variability. Although this has been reported in previous

works (Escudero (2002)), in this paper we have decided to use just the mean

value because, directly from its de�nition, it would be the best canonical

representative of the class to ensure the minimum RMSE value.

The evaluation consists of computing the distance between the syntheticF0

contours and the real ones in TCe:

PredictionError(D) = dist(
NCe⋃

i=1

F0′i,
NCe⋃

i=1

ui.F0) (23)
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Fig. 6. Use of List of Dictionaries in TTS Systems.

so that

F0′i = genF0LD(ui.f̄s,D), ui i = 1 . . . NCe , NCe = |TCe|. (24)

RMSE and correlation metrics are used to obtain a well known distance, as

justi�ed in Hermes (1994).

The interest of intonation models in TTS has lessened due to the use of syn-

thesis techniques based on the speech-unit selection (Eide et al., 2003) or

HMM synthesis (Tokuda et al., 2000). Nevertheless, the prediction of realistic

target F0 contours is still useful for guiding the search of units in the corpus

(Rodríguez and Campillo, 2006; Eide et al., 2003). A list of dictionariesDNF

can be used on TTS systems following the process shown in Figure 6. The

Text Analysismodule identi�es the intonation units and it assignsu.f̄NF
s . The

prosodic module consults DNF to get a synthetic pattern u.p̄. The Synthe-

sis Module uses u.p̄ and the function genF0LD(p̄) to perform the synthetic F0

contour and uses it to synthesize the voice.

2.4.2 Assesment of prosodic information

MEMOInt provides information concerning both the behavior of the parame-

ters and the visualization of the shape and function of the intonation. As for
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MEMOInt parameters, the quality metrics allow the behavior of the systems

to be evaluated when di�erent values for the type of intonation unit, prosodic

features and parameterization technique are tested. Also,LNF tell us about

the relative importance of each of the features inF in the intonation modeling

process.

As for the visualization of the intonation, we should note that DNF is an

explicit representation of the form of the intonation found in the corpus (the

classes of patterns) and of its function (the L indexing the classes). This

information can be checked in di�erent ways, which can be useful to assess

the typical patterns from the corpus and the relative importance of the features

in F . Every class Ci
j in DNF contains the typical F0 contour movements in the

corpus and also its variability. Both aspects are important to properly describe

the relation function-form. The di�erentLi
j in DNF contain information about

the function of the intonation associated with the corresponding shapeCi
j.

The ordered list of dictionaries provides a way to build a graph of classes which

conveys schematic visual information about the intonation patterns found in

the corpus and their corresponding labels of prosodic features (see Appendix

B for an explanation and section 3.5 for a more detailed discussion of the

use of this graph in the experiments for Spanish language). This representa-

tion tools can be used to validate the correctness of the particular prosodic

information we extracted from the corpus, comparing it with the rules of a

reference theoretical model.

22



 

 

 

ACCEPTED MANUSCRIPT 

 
3 Experimental Results

The framework shown in previous section is now tested with a corpus in Span-

ish. First we describe the corpus to be used, the type of intonation units, the

set of prosodic features and acoustic parameters considered. Then, we show

some peculiarities of the construction of the dictionaries and �nally we make

comments on the information retrieved from the corpus and we report on the

quality tests.

3.1 The Corpus

The corpus used is made up of more than two hours recorded in studio con-

ditions. We select the part of the corpus consisting of the reading of a set of

phonetically balanced sentences. TheF0 contour was captured with a laryngo-

graph device. The corpus was recorded to implement a TTS system (MLTTS)

based on concatenating units by the TALP research group 1 (see Ferrer (2001)

for a more detailed description of MLTTS and the corpus). Although it is not

a speci�c corpus for intonation modeling, its size makes it suitable to be used

in MEMOInt.

The corpus contains 1646 declarative intonation groups, 80 interrogative ones

and 19 exclamative (4365, 247, 53 stress groups of each type respectively). We

focus on declarative sentences because the corpus is scarce in interrogative

and exclamative sentences. MEMOInt can also be applied when there are few

samples of any type, but in this case we select declarative because our aim is

1 Research Center for Technologies and Applications in Language and Speech. URL:

http://www.talp.upc.es/talp.
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to show the representativeness of the resulting models.

For experimental purposes, 75% of the sentences belongs to training data and

the other 25% are testing data (TCe). Training data are also splitted into two

sets: 75% for modeling (TCm) and 25% for validation (TCt).

3.2 Intonation Units and Prosodic Features

Three di�erent types of intonation units have been considered and tested in

this work: Intonation Group (IG), Stress Group (SG) and Syllable (Syl).

Intonation Group De�ned as the parts of the sentence separated by a pause

or by a movement in the F0 contour that is more salient than others in the

utterance (Quilis, 1993). This unit has been used to describe Spanish in-

tonation in simplistic approaches like the one in Alarcos (2002) and it has

also been used in combination with other units in superpositional models

as in Gutierrez et al. (2001). The following setF is labeled: linguistic fea-

tures: type of sentence typeSE (1 value), position of the tonic syllable in the

�rst SG posSTiniSG (3 values) and in the last one posSTfinSG (3 values);

features measuring the size: number of IGs nIGSE (5 values), SGs nSGSE

(6 values), syllables nSylSE (6 values) and phonemes PhonSE (6 values) in

the sentence; number of stress groups nSGIG (6 values), syllables nSylIG (6

values), and phonemes nPhonIG (6 values) in the IG; and another feature

related to the position of the IG in the sentence posIGSE (7 values).

Stress Group De�ned as a set of syllables where only one is stressed. The

SG has been used in multiple approaches to describe the Spanish intonation.

The most complete study is Garrido (1996) and it has also been used as the
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basic unit in Sosa (1999) to apply the autosegmental approach to Spanish

intonation.

Three alternative de�nitions of the SG have been tested:

SG1 De�ned as the set of words where only the last one is stressed

(Garrido, 1996).

SG2 De�ned as the set of syllables where only the �rst syllable is stressed

(Sproat and Olive, 1995).

SG3 De�ned as a stressed syllable plus the preceding and/or following

ones provided they are not stressed.

We label the following set F : position of the SG in its IG posSGIG (6

values), number of syllables nSylSG (9 values) and phonemes nPhonSG (6

values) in the SG, position of the stressed syllable posSTSG (3 values).

Furthermore, the SG inherints the F of the IG it belongs to. SG2 and

SG3 versions need to know the position of the SG boundary with respect

to the boundary of the stressed word SGBorder (3 values).

Syllable Using the classical de�nition for Spanish (Alarcos, 2002). The sylla-

ble has been the unit of reference in some engineering approaches to mod-

eling intonation (López and Rodríguez, 1996; Vallejo, 1998). For every Syl-

lable, we label its number of phonemes nPhonSyl (4 values), the position

of the syllable in the SG posSylSG (4 values) and if it is accented or not

accent (1 value). Additionally, the syllable inherits theF of the IG and

the SG it belongs to.
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intBezRMSE(Hz) Number of ParametersType of Intonation Unit 1 2 3 4 5 6 7Intonation Group 24.29 21.5 21.1 20.7 20.68 20.6 20.62Stress Group 1 20.83 18.67 18.47 18.12 18.16 18.13 18.25Stress Group 2 20.83 19 18.5 18.24 18.29 18.42 18.46Stress Group 3 20.56 18.27 17.98 18.02 18.06 18.06 18.21Syllable 19.19 18.6 18.32 18.29 18.54 18.63 18.29
intLinRMSE(Hz) Number of ParametersType of Intonation Unit 1 2 3 4 5 6 7Intonation Group 24.29 21.5 21.18 20.84 20.72 20.58 20.64Stress Group 1 20.83 18.67 18.2 18.15 18.05 18.04 18.1Stress Group 2 20.83 19 18.42 18.29 18.28 18.39 18.24Stress Group 3 20.56 18.27 18.13 18 18 18.08 18.14Syllable 19.19 18.6 18.32 18.57 18.33 18.21 18.32
s-intBezRMSE(Hz) Number of ParametersType of Intonation Unit 1 2 3 4 5 6 7Intonation Group 24.29 21.42 21.11 20.69 20.6 20.54 20.52Stress Group 1 20.79 18.54 18.15 18.04 17.92 17.92 17.99Stress Group 2 20.8 19.06 18.36 18.12 18.12 18.1 18.23Stress Group 3 20.51 18.35 18.1 18.06 18.1 17.92 18.08Syllable 19.18 18.84 18.38 18.38 18.44 18.4 18.53

Table 1

Selection of the acoustic parameters: Mean prediction errors of the F0 contours

of the Training Corpus using di�erent type of intonation units, di�erent types of

parameterization technique and di�erent number of acoustic parameters. Results

have been obtained without applying the agglomerative process in order to avoid

the impact of merging classes, to be evaluated later. Boldface has been used to

highlight minimum values.

3.3 Acoustic Parameters

We test 3 di�erent alternatives that are variations of the same basic technique

based on Bézier function �tting:

intBez where the parameters P are the control points of the �tting Bézier
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function. That is u.p̄ = (Y0 . . . Yn), being n the degree of the curve and P̄j =

(Xj, Yj) j = 0 . . . n the control point j of the Bézier function (more about

Bézier functions in the appendix A). We use a variation where the param-

eters are equispaced points interpolating the �tting Bézier function. That

is: u.p̄ = (y(t0) . . . y(tn)) with, tj = j/n j = 0 . . . n, t ∈ [0, 1]; where x(0)

and x(1) are the initial and �nal time of u respectively, Q(t) = (x(t), y(t))

is the �tting function.

intLin where the parameters are then+1 vertex of the �tting polylinePL =

{Yj, j = 0 . . . n} following the �tting method presented in the appendix

A.2 (straight segments �tting).

s-intBez this method uses intBez but the F0 contour is smooth before pa-

rameterizing.

For each of these alternatives we test a di�erent number of parameters and we

have computed the RMSE prediction errors as displayed in table 1. In all the

cases there are an optimum number of acoustic parameters (e.g. in the case

intBez, SG1 the best result is obtained with 4 parameters (RMSE=18.12Hz)).

The interpretation to this fact is that it is necessary to have a minimum

number of parameters to �t the prototypical movements of F0 (e.g. a stress

group in Spanish can have a maximum and a minimum requiring 4 parameters

(a degree 3 Bézier curve)). When this minimum is exceeded, the parameters

can �t other micro-intonation e�ects that are less interesting in our approach,

causing the quality of the models to decrease. This can be contrasted in table

1 comparing the results of the tables intBez and s-intBez: when the micro-

intonation is reduced by �ltering the F0 contours, more parameters can be

accepted without decreasing the quality.
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With respect to the comparison of the parameterization techniques (intBez

versus intLin), it seems that similar results can be obtained but more pa-

rameters are required when the straight segments techniques are used. The

plasticity of the Bézier curves permits �tting F0 contours using fewer param-

eters.

Concerning to the type of intonation unit to use, it seems thatSG3 has some

advantages with respect to SG1 and SG2. For IU and Syl, note that results

are di�cult to compare because they are highly dependent on the number of

prosodic features to be used (di�erent number of classes in each case). Thus,

it is necessary to apply the agglomerative process for contrasting the e�ect of

the use of the type of intonation unit as will be seen in the following section.

From these conclusions, we decide to use 4 parameters and intBez in the

following experiments. The results obtained after the agglomeration process,

will be useful to decide about TIU.

3.4 Construction of the Dictionary

Figure 7 monitors the building process of the list of dictionaries. The RMSE

values are computed given TCt = {ui, i = 1 . . . NCt} and the list of dictio-

naries D as:

Error(D) = 1
NCt

NCt∑
i=1

dist(F0′i, ui.F0),

F0′i = genF0LD(ui.f̄s,D).

(25)

The minimum values of the lines indicate the optimum number of classes in

the dictionaries. The legend of the lines indicates the relevance ranking of the
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features. From a certain number of features the results hardly improve. This is

due to redundancy in the selections of the features as will be shown in section

3.6.

Table 2 shows that the models in the dictionaries start to be over-trained

from a number of features on. In training, the higher the number of features,

the better the results, but this is not the case when testing. This is because

the agglomeration of classes is guided by the samples in Training Corpus

and Modeling Corpus. This is unacceptable in recognition applications, but in

synthesis we should mimic the intonation of the corpus: worse RMSE values

do not necessarily mean worse intonation but di�erent intonation.

Table 3 illustrates why we need a contour selection strategy based on multiple

levels of dictionaries. Dictionaries Di ∈ DN , N < 7 are selected to predict

more than 50% of the testing and training samples. The di�erence is bigger

when testing, because of the higher likelihood to �nd samples whoseu.f̄s did

not appear in the training stage. Table 4 shows that only 23 out of the 119

available classes inD7 were used, meaning that MEMOInt could �nd out that

for a given N (N = 7 in this case), DN is not the dictionary which gives the

best prediction results for all inputs (as a further di�erence with a typical

tree-based classi�cation procedure).

Table 4 illustrates also the need for the agglomerative process due to the

high number of classes in the initial state: D7 has 2026 classes in the initial

con�guration and 119 after the agglomeration. Furthermore, the 2026 classes

are not all the possible ones: if the corpus had samples to cover all the possible

combinations of features, the number of classes would be 2 (accent)× 6

(posSGIG) × 7 posIGSE × 9 (nSylSG) × 6 (nSGSE) × 6 (nPhonIG) ×
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Table 2

Prediction Errors: RMSE and Corr versus the number of features in the training

and and test stage. We use TIU=SG2, PT=intBez, and NP=4

Use of the Dictionary (%)

LD7 D1 D2 D3 D4 D5 D6 D7

Train 0.0 2.0 8.9 3.8 8.3 27.4 49.7

Test 0.0 5.1 16.4 9.4 14.9 23.5 30.7

Table 3

Use of the dictionaries in D: each cell contains the percentage of samples that are

predicted using each dictionary in the list. We useTIU=SG2, PT=intBez, and NP=4.

6 (nSylSE) = 163296. Although some of the combinations are impossible,

the �gure is illustrative of the magnitude of the corpus required and of the

need for having the list of dictionaries to select alternative dictionaries when

a combination was not seen during the training.

On the other hand, table 4 also shows that the larger the number of fea-

tures, the greater the accuracy of the class (fewer intra-class distance), but

the less representative it will be (smaller number of samples). Indeed some

of the classes have less than 10 samples which can be assumed in synthesis

applications, but its use to contrast information in the corpus is problematic.
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List of Dictionaries LD7 D1 D2 D3 D4 D5 D6 D7

Number of classes with more 10 simples 2 5 24 19 24 21 23

Number of used classes 2 5 25 19 25 21 23

Number of classes in the final configuration 2 5 57 55 95 120 119

Initial number of classes 2 10 68 294 785 1449 2026

Mean number of samples per class 1235 494 84 69 36 35 24

Mean RMSE intra-class 37 32 30 27 20 18 18

Table 4

Description of the dictionaries in terms of number of classes and number of samples

per class. We use TIU=SG2, PT=intBez, and NP=4

3.5 Visualization of Intonation Patterns

The list of dictionaries D can be used to visualize the association between

prototypical patterns in the corpus and the sequences of prosodic features. As

showed in appendix B, an intuitive, appealing and easy-to-understand rep-

resentation of D can be used which resembles the one provided by classical

decision trees. We do this by means of a directed graph in which the classes

of the dictionaries at di�erent levels are connected in terms of the prosodic

features associated with them. Every f̄k
s (l) ∈ Li

j, l = 1 . . . NLi
j
labels a path

from the root node to a node namedni
j(l). The node ni

j(l) is coloured with the

corresponding class Ci
j and its wi

j value. Given any node ni
j(l) determined by

a vector of features f̄k
s = (f1, . . . , fk), the set of nodes {ni+1} linked with it are

the ones determined by the arrays f̄ i+1
s = (f1, . . . , fk, fk+1) with fk+1 ∈ F̃k+1.

Nodes which are never used as a consequence of the selection procedure of

MEMOint (higher wi
j value), can be removed from the graph or represented

as empty nodes.

The meaning of the relation represented in the edges of this graph is di�erent

than the one in a classical decision or regression tree. In decision trees, it

just represents class specialization derived from the inclusion of an additional
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feature. Here, the full path from the root node to any given nodeni

j(l) contains

the set of all classes which could be potentially used to represent the sequence

of prosodic features f̄k
s (l). Each element of the sequence f̄k

s (l) labels links

between related nodes in the graph. For a given graph level k, nodes are

labelled with the names of the classes from the dictionaryDk. All the nodes

nk
j (l), l = 1 . . . NLk

j
are coloured with the same class Ck

j and the fact that a

class could be labelling more than a node at the same level is another relevant

di�erence with the standard interpretation of a decision tree.

The visualization of the information in the graph allows to contrast some of the

assessments found in the bibliography about Spanish Intonation. In Escudero

(2002), an overview of the proposals of several authors can be found. Here

we review the main assessments and we contrast them with plots in Figure

8. This �gure selects from the graph the branches that are relevant to discuss

about the prominence, structure of the stress groups, and junctures observed

in the corpus:

• Prominence (or relative importance of the stress group with respect to

the others) was labeled in the corpus with the prosodic feature accent.

Observations of the intonation of the corpus projected in �gure 8 permits to

assess that this feature is the most relevant one attending to the shape of the

F0 patterns. This is re�ected in the fact that this feature has been selected

the �rst one among all the prosodic features taken into account when the

learning procedure previously detailed has been applied. Furthermore, the

tree shows that the classes in the branches corresponding to the prominent

part (accent value) are characterized by higher F0 values in contrast with

the patterns appearing in the unaccented branch (noAccent value). This

observation is in consonance with the Phonetics theory that gives to theF0
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feature the function of focusing di�erent parts of the sentences.

• Prosodic structure of the stress group: Face (2001) observed that the

prototypical patterns associated to the Spanish stress groups areL ∗ +H

pattern and the less frequent L + H∗ one (using TOBI notation). This

fact can be observed in the tree shown in �gure 8, whereL ∗ +H patterns

appear in C4_104, C4_76, C4_110, C4_144, C4_146. The patternL+H∗
appears in the class C4_111. Apparently C4_111 does not di�er signi�cantly

from the other classes, but it must be taken into account that the duration is

normalized so that the peak of theF0 contour is coincident with the stressed

syllable without any temporal displacement as it occurs in theL∗+H classes

already mentioned (note that nSilGA has 4 possible values: _a_, _a, a_,

a), where _ means un-stressed syllable and a means stressed one).

• Junctures or prosodic boundaries are very important to arrange the

structure of the discourse. The boundaries use to precede or even to sub-

stitute the pauses and here are marked by the features GEFinal and not

GAFinal. They are characterized by an abrupt jump in the tendency of the

F0 contour. The typical pattern is a rising one calledanticadencia that can

be observed in classes C3_25, C4_104. The patterns in C3_2 and C3_33 are

known exceptions called semicadencia in the Spanish Phonetics literature

(see Navarro-Tomás (1944)).

• Final boundary: a�ecting the last part of the F0 contour. Typical �nal

juncture of declarative sentences is L ∗ L% according to Sosa (1999) or

H +L∗L% according to Beckman et al. (2000). This pattern is clearly seen

in Figure 8 in classes C1_0, C4_73, C4_74, C4_75. This �nal part of the

F0 contours has associated the distinctive function to discriminate the type

of sentence. When the corpus is enriched with interrogative and exclamative

sentences it is expected that the patterns with the prosodic feature values
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GAFinal and GEFinal will be determinant.

Finally, we remark that the visualization of �gure 8 will surely let experts to

get more conclusions about the intonation phenomena, although a thorough

discussion of this is out of the scope of the present paper.

3.6 Ranking of Prosodic Features

The constructive process of the dictionaries o�ers a ranking of the prosodic

features described inLNF . This ranking is an objective indicator of the relative

relevance of the prosodic features with respect to the shape of the patterns

of intonation. This ranking can be validated by measuring the entropy of

the di�erent features to classify tree the classes of patterns obtained using a

kmeans clustering. This process was explained in Escudero and Cardeñoso

(2003) and �gure 9 shows the results.

The feature rankings obtained by this method and the one obtained fromLNF

are similar: the greater the informative capabilities of a prosodic feature, the

sooner it is selected in the building of the list of dictionaries. The exceptions

to this rule arise when there are redundant features: correlated features or

features that can be obtained as a combination of other. As an example of

correlated features in Figure 9, note that the feature NPhonSG in the plot

IU=SG1 has an informative value higher than other features that are better

in the ranking due to the previous selection of the correlated featureNSylSG

(Pearson Correlation ρ > 0.9). As an example of combination of features,

SGBorder has important informative capabilities inIU=SG2 but it is not chosen

rapidly in LNF because it can be deducted from posSTSG and nSylSG by the
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application of a single formula.

With respect to the in�uence of the stress, SG1 and SG2 do not re�ect its

in�uence (posSTSG low value), but this factor is important in SG3 (nSylSG

high value). It seems that the parameterization technique �lters the e�ect

of the stressed syllable position explaining why SG3 o�ers better predicting

results than SG1 and SG2.

Figure 9 shows that less informative prosodic features are inserted later in

the list of dictionaries. Obtaining their informative capabilities can be a good

indicator to select or discard a feature prior to the application of MEMOInt

reducing the time consumed in the creation of the list of dictionaries.

3.7 Perceptual Validation

Table 5 compares the results of the objective test when it is applied to the

di�erent type of intonations units studied. It is important at this point to

apply a subjective test in order to get the opinion of a group of evaluators

about the quality of the synthetic F0 contours generated by MEMOInt, and

also to show that the di�erences in quality observed in the objective test have

a perceptual counterpart.

To do the test, the sentences of the Testing Corpus are re-synthesized us-

ing the generated synthetic pitch contours. To do so, we use the re-synthesis

PSOLA module included in the praat http://www.praat.org software. Be-

fore applying the synthetic pitch contour, it is smoothed to reduceF0 jumps

in between the intonation units. Gaps are linked with straight segments and

the whole contour is �ltered, averaging the samples:F0i =
∑N

j=−M F0i+j with
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TIU IG SG1 SG2 SG3 Syl

RMSE(Hz) 20.89 19.18 18.71 18.49 18.50

Corr 0.58 0.66 0.72 0.72 0.70

Table 5

Objective evaluation in function of the type of intonation unit. We usePT=intBez,

and NP=4 Subje
tive Obje
tiveCorre
tness (0-5) RMSE CorrType N Mean � Mean � Mean �REAL 64 4.64 0.64 0.00 0.00 0.00 0.00SG3,11 57 4.13 0.88 17.32 4.15 0.76 0.12Syl,11 70 4.01 0.92 20.56 4.14 0.66 0.13SG3,2 70 3.81 1.18 20.04 5.56 0.70 0.17Syl,2 69 2.83 1.19 20.68 5.08 0.59 0.13
Table 6

Perceptual test results. N is the number of evaluations received.Correctness is the

mark assigned by the evaluation to the synthetic utterance (5-Perfect 4-Very Good

3-Good 2- Acceptable 1-Bad 0-Very Bad). RMSE and Corr are the distance met-

rics of the real F0-contours of the sentence to test and the synthetic ones. We use

PT=intBez, and NP=4

F0i the point i of the F0 contour and M = N = 5.

Each member of a group of listeners assigns a mark from 0 to 5 to a series of 5

sentences randomly chosen from theTesting Corpus. Each of the sentences is

uttered 3 times using 3 di�erent versions chosen randomly from 5 possible ones.

The 5 possible versions are: (1) REAL, consisting in the PSOLA synthesis of

the sentence using the original F0 contour; (2) The PSOLA synthesis using

the F0-contour generated by using SG3 and 2 features; (3) like (2) but using

11 features; (4) like (2) but using Syl; and (5) that is like (4) but using 11

features. We do not give references to the listeners (neither the real utterance
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nor the worst case with �atF0 contours as, for example, in Bulyko et al. (1999))

but they know a perfect utterance could be shown, so that the quali�cation

of the listener can also be evaluated. We choose SG3 and Syl because they

appear to be the best TIU to be used (see table 5) and 2 and 11 prosodic

features because table 2 shows that the number of prosodic features cause an

important di�erence in the prediction results.

Table 6 shows the results of the test. With respect to the number of parame-

ters, results are better with 11 parameters than with 3 parameters with statis-

tically signi�cant di�erences (H0 : (µSyl,11−µSyl,3) = 0; Ha : (µSyl,11−µSyl,3 >

0); P −value = p < 0.05 and for SG3 p = 0.042 ). The di�erences with respect

to REAL utterances are statistically signi�cant forSyl,11 (p < 0.05) and for

SG3,11 (p =, 001) but the high scores assigned by the listeners (> 4) indicate

a satisfactory degree of acceptance. SG3,11 is the best option, but Syl,11

gives comparable results (no statistically signi�cant di�erence withp = 0, 41).

The use of SG3 instead of Syl has important advantages from the point of

view of the computational cost of the creation of the dictionaries. In view of

this evidence of subjective satisfaction, the most interesting result in table 6 is

the good correspondence between perceptual validation results and objective

RMSE values: the higher the user satisfaction, the smaller the RMSE distance

between F0 contours.

4 Conclusions

This article presents a modeling technique that has shown to be able to gen-

erate synthetic intonation of an acceptable quality evaluated with objective

and subjective tests. The main contribution of this technique is that it o�ers
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a methodological framework that permits the intonation of a given corpus to

be analyzed from di�erent points of view. The modeling technique is based

on a data mining technique which combines Sequential Feature Selection and

Agglomerative Clustering techniques, and it has shown to be e�cient in sparse

data conditions. The robustness is increased due to the possibility of selecting

a dictionary in a list according to their predicting capabilities.

MEMOInt is able to analyze the corpus using di�erent types of intonation

units. This allows the e�ciency of the type of intonation units to be compared

to characterize the corpus. For Spanish, we have seen that the Syllable is the

type of intonation unit which results in the best prediction quality of the

synthetic F0 contours, although Stress Group is a perfect alternative within

similar quality results at coarser levels.

The list of dictionaries have been shown to be a useful tool to match the

characteristic patterns and the prosodic features associated with them. For

Spanish, the visualization of prosodic information derived from the dictio-

naries provides a good correspondence with the properties found in Spanish

phonetics bibliography which reinforces the idea that this visualization feature

of MEMOint could provide a valuable research tool for the community.

MEMOInt provides a ranking of the set of prosodic features in terms of their

relevance to predict intonation contours. These rankings compare correctly

with reference values provided by classical entropy based rankings, both at

the dictionary construction stage and at the generation stage.

Preliminary perceptual tests of the synthetic utterances re�ect the high quality

of the generated F0 contours. Also, the results of this perceptual test show a

good correlation with the objective RMSE metrics which were applied to drive
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MEMOint evaluation tasks.

With respect to future work, MEMOInt is a software tool to be applied to

di�erent languages and di�erent corpora. MEMOInt is being applied to con-

trasting di�erent Iberian languages to establish the prosodic features and the

patterns that determine the perceptual di�erences between di�erent languages

or dialects. Another aspect to explore in future work is the analysis and syn-

thesis of the intra-class variability. The analysis will permit information to be

obtained about the F0 pattern stability and its relation with the need to in-

clude additional features to specialize the classes. In synthesis, this variability

could be reproduced to generate more natural speech.
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A Parameterization with Bézier Functions

A.1 Bézier Functions

A Bézier function is a parametric curve given by a set of control points approx-

imating and/or interpolating the curve (see Farin (1996)). In two dimensions,

given P̄0, P̄1 . . . P̄n ∈ R2 and t ∈ R, let the Bézier curve Q̄(t) =
∑n

i=0 P̄i ·Bn
i (t)

with t ∈ [0, 1] where P̄i = (Xi, Yi) with i = 0 . . . n are the n + 1 control points
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of the Bézier curve Q̄(t) of degree n. Bn

i , with i = 0 . . . n are the n+1 Bernstein

polynomials of degree n, explicitly de�ned as Bn
i (t) =

(
n
i

)
ti(1− t)n−i.

Bézier curves can be restricted to the case of functional curves calledBézier

functions. A Bézier function has the form y = f(x), where f is a polynomial.

This is written in as a parametric function: Q̄(t) = (x(t), y(t)) = (t, f(t)). In

terms of the Bernstein polynomials: f(t) =
∑n

i=0 Pi · Bn
i (t), t ∈ [0, 1] where

Pi are real numbers. The control points are now (j/n, Pj); with j = 0 . . . n.

Control points are equi-spaced in the axis of abscissas. Considering the interval

[a, b], instead of [0, 1], the values of abscissas arex(t) = a+t(b−a); t ∈ [0, 1].

The �tting problem consists of representing a sequence of points (in our case

F0 contours) with a Bézier function. The goal is to minimize the error of

approximation between the function and the sequence of points to be �tted.

If u.F0 = p̄j j = 1..p are the p points time-frequency pj = (tj, F0j) of the

F0 contour in a intonation unit u, the corresponding acoustic parameters u.p̄

are the control points of the �tting Bézier function obtained by minimizing

R =
∑p

j=0(Q(tj), p̄j)
2 by using the square minimum method. (see Peña (1999)

for minimum squares, and Bartels et al. (1986) Plass and Stone (1983) for

Bézier curves �tting).

A.2 Fitting with polylines

The classical stylization consists of approximating F0 contours with straight

segments. The stylization is based on the idea that the original contour and the

stylized one are perceptually equivalent Hart et al. (1990). Here we propose

a method to stylize F0 contours of the intonation unit by using a set of N
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straight segments de�ned by N + 1 vertex. By analogy with the �tting with

Bézier functions, the vertex must be equi-spaced in the axis of abscissas.

To implement the �tting we use linear regression inN intervals. The goal is to

�nd the polylineL de�ned by the set of vertex P̄i = (Xi, Yi) with i = 0 . . . N so

that R =
∑p

j=0(L(xj)− yj)
2 is to be minimized, (xj, yj) with j = 0 . . . p being

the sequence of points of F0 to be �tted and (xj, L(xj)) the �tting points.

Xi are Xi = X0 + i · (XN −X0)/N . The acoustic parameters will be Yi with

i = 0 . . . N . The equation of the N intervals of the polyline L = (X,Y ) is

de�ned as: X = Xi + t · (Xi+1−Xi) Y = Yi + t · (Yi+1− Yi) i = 0 . . . N − 1

with t ∈ [0, 1]

The F0 contours are divided in N intervals Ii, with i = 0 . . . N , where Ii =

{p̄j = (xj, yj) | Xi ≤ xj ≤ Xi+1, 0 ≤ j ≤ p}. Given a point pj = (xj, yj)

in F0, its corresponding value in the polyline is obtained by makingX = xj

and solving yj = Y . By minimizing R with respect to the parameters Yi we

have:

∂

∂Y0

R = 2 · ∑

pj∈I0

(1− tj) · ((1− tj) · Y0 + tj · Y1 − yj) = 0

∂

∂Yl

R = 2 · ∑

pj∈Il

tj · ((1− tj) · Yl−1 + tj · Yl − yj) +

+ 2 · ∑

pj∈Il+1

(1− tj) · ((1− tj) · Yl + tj · Yl+1 − yj) l ∈ [1, N − 1]

∂

∂YN

R = 2 · ∑

pj∈IN

tj · ((1− tj) · YN−1 + tj · YN − yj) = 0

These are N equations with N unknown factors. If any of the Ii intervals has

no points, the interval is joined with the following or the preceding one.
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B Graph of classes

This appendix illustrates the construction of the visualization graph of classes

with a simpli�ed example. In this example we use three �ctitious prosodic

features (feature 1, feature 2 and feature 3), each of them having two possible

values (A and B). These features are used to characterize a two dimensional

acoustic parameters space. Figure A.1 provides a graphical illustration of the

creation of the list of dictionaries. After the agglomerative process, the three

dictionaries of the list can be described as the set of classesCi
j with i = 1, 2, 3.

In this �gure, C_i_j represents Ci
j, L represents Li

j and w represents wi
j, in

terms of the nomenclature introduced in section 2.3.

Figure A.2 illustrates the step by step process to build the graph of classes

used for visualization of prosodic information in MEMOint. Plot (1) shows a

graph representing the classes in the initial con�guration. Plot (2) shows the

classes which would be grouped and Plot (3) the resulting graph representing

the �nal con�guration. The �nal graph is also represented in Plot (4) but it

has now been reduced to a direct graph where some nodes could be replicated.

Plot (5) is the graph which results after removing the nodes which were never

used because thew values associated with them forced selection of an ancestor.

Although plot (5) is not a decision tree, it can be interpreted the same way

now, although there could be replicated classes.
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Fig. 7. Creation of the list of dictionaries: each line monitors the construction of

the dictionary Di in the list of dictionaries DNF . The legend of the line indicates

the feature entered to build Di. Points on the lines are the training errors obtained

in the agglomeration of classes. The starting point is at the extreme right of the

line, where the number of classes is the maximum. From this initial state, classes are

agglomerated and the rest of the points are obtained. Each point is the measurement

of the predicting error using the new con�guration. The minimum predicting error

implies the maximum quality determining the number of classes.
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Fig. 8. Models of the dictionary represented as a graph of classes. We have selected a

part of the whole tree.X scale is normalized. Y scale is 100-220Hz. We useTIU=SG3,

PT=intBez, and NP=4. The classes represent the F0 pro�le of the centroid and

the standard deviation of each control point. The nodes which have a high average

prediction error w and are never used for generation, are shown as small circles (like

accent->GAFinal).
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Fig. 9. Relative relevance of the prosodic features. Each row refers to a type ofSG

according to section 3.2.Information Gain is obtained measuring the capabilities of

the feature to classify a set of 80 classes obtained applying aKMeans clustering with

80 classes. The right column divides Information Gain by the number of values of

each feature. The features are sorted according to their importance in con�guring

the list of dictionaries. We use PT=intBez, and NP=4
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Fig. A.1. Illustration of the process of creation of the list of dictionaries.
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Fig. A.2. Step by step construction of the graph of classes corresponding to the

dictionaries displayed in Figure A.1.
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