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Abstract 

 

The ultimate goal of our research is to develop a computational model of human speech 

recognition that is able to capture the effects of fine-grained acoustic variation on speech 

recognition behaviour. As part of this work we are investigating automatic feature classifiers 

that are able to create reliable and accurate transcriptions of the articulatory behaviour 

encoded in the acoustic speech signal. In the experiments reported here, we analysed the 

classification results from support vector machines (SVMs) and multilayer perceptrons 

(MLPs). MLPs have been widely and successfully used for the task of multi-value articulatory 

feature classification, while (to the best of our knowledge) SVMs have not. This paper 

compares the performance of the two classifiers and analyses the results in order to better 

understand the articulatory representations. It was found that the SVMs outperformed the 

MLPs for five out of the seven articulatory feature classes we investigated while using only 

8.8% to 44.2% of the training material used for training the MLPs. The structure in the 

misclassifications of the SVMs and MLPs suggested that there might be a mismatch between 

the characteristics of the classification systems and the characteristics of the description of the 

AF values themselves. The analyses showed that some of the misclassified features are 

inherently confusable given the acoustic space. We concluded that in order to come to a 

feature set that can be used for a reliable and accurate automatic description of the speech 

signal; it could be beneficial to move away from quantised representations.  

 

Keywords: human speech recognition; automatic speech recognition; articulatory feature 

classification; fine phonetic variation 
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1. Introduction 

 

In everyday speech it is quite common for there to be no pauses between lexical items; words 

flow smoothly one into another with adjacent sounds coarticulated. This means that, if words 

are assumed to be constructed from a limited set of abstract phonemes, then virtually every 

contiguous phoneme string is compatible with many alternative word sequence 

interpretations. Human listeners, however, appear to be able to recognise intended word 

sequences without much difficulty. Even in the case of fully embedded words such as ham in 

hamster, listeners can make the distinction between the two interpretations even before the 

end of the first syllable “ham”. 

There is now considerable evidence from psycholinguistic and phonetic research that 

sub-segmental (i.e. subtle, fine-grained, acoustic-phonetic) and supra-segmental (i.e. 

prosodic) detail in the speech signal modulates human speech recognition (HSR), and helps 

the listener segment a speech signal into syllables and words (e.g. Davis et al., 2002; Kemps 

et al., 2005; Salverda et al., 2003). It is this kind of information that appears to help the human 

perceptual system distinguish short words (like ham) from the longer words in which they are 

embedded (like hamster). Salverda et al. (2003), for instance, showed that the lexical 

interpretation of an embedded sequence is related to its duration; a longer sequence tends to 

be interpreted as a monosyllabic word more often than a shorter one. Kemps et al. (2005) 

found that, in addition to duration, intonation seems to help the perceptual system in 

distinguishing singular forms from the stems of plural forms. However, currently no 

computational models of HSR exist that are able to model this fine phonetic variation 

(Hawkins, 2003). Our ultimate goal is to refine an existing computational model of HSR 

‘SpeM’ (Scharenborg et al., 2005) such that it is able to capture and use fine-grained acoustic-

phonetic variation during speech recognition. SpeM is a computational model of human word 
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recognition built using techniques from the field of automatic speech recognition (ASR) that 

is able to recognise speech. 

Articulatory features (AFs) describe properties of speech production and can be used 

to represent the acoustic signal in a compact manner. AFs are abstract classes which 

characterise the most essential aspects of articulatory properties of speech sounds (e.g. voice, 

nasality, roundedness, etc.) in a quantised form, leading to an intermediate representation 

between the signal and the lexical units (Kirchhoff, 1999). In this work, we are in search of 

automatic classifiers able to create reliable and accurate transcriptions of the acoustic signal in 

terms of these articulatory features for the development of a computational model of HSR that 

is able to model the effect of fine grained acoustic variation on HSR. 

In the field of ASR, AFs are often put forward as a more flexible and parsimonious 

alternative (Kirchhoff, 1999; Wester, 2003; Wester et al., 2001) to modelling the variation in 

speech using the standard ‘beads-on-a-string’ paradigm (Ostendorf, 1999), in which the 

acoustic signal is described in terms of phones, and words as phone sequences. It is known 

that speech recognition in adverse conditions poses severe problems for current phone-based 

ASR systems. However, Kirchhoff (1999) showed that an ASR system based on AFs 

outperformed HMM-based ASR systems in certain adverse conditions. Furthermore, the 

modelling of spontaneous speech is a difficult issue for phone-based ASR systems. Many 

techniques and approaches have been tried to model spontaneous speech phenomena such as 

coarticulation, but only to limited successes (for an overview, see Strik & Cucchiarini, 1999). 

AFs offer the possibility of representing coarticulation and assimilation effects as simple 

feature spreading. For these reasons, we investigate the use of AFs to capture fine phonetic 

(subphonemic) variation. 

Over the years, many different approaches have been investigated for incorporating 

AFs into ASR systems. For instance, artificial neural networks (ANNs) have shown high 
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accuracies for classifying AFs (King & Taylor, 2000; Kirchhoff, 1999; Wester, 2003). 

Frankel et al. (2004) provide a short overview of other modelling schemes, such as hidden 

Markov models (Kirchhoff, 1999), linear dynamic models (Frankel, 2003) and dynamic 

Bayesian networks (Livescu et al., 2003). For smaller tasks, support vector machines (SVMs) 

offer favourable properties: good generalisation given a small amount of high-dimensional 

data. SVMs have also been applied to the classification of articulatory features (Juneja, 2004; 

Niyogi & Sondhi, 2002). For instance, Juneja (2004) developed SVM-based landmark 

detectors for classifying binary place and voicing features in TIMIT (Garofolo, 1988) and 

reported accuracies ranging from 79% to 95%. Also, Niyogi and Sondhi (2002) used SVMs to 

detect stop consonants in TIMIT. However, the research reported so far using SVMs to 

classify articulatory features have been mainly concerned with binary decision tasks, or with a 

limited domain. In the area of visual automatic speech recognition, however, SVMs have been 

used successfully for the automatic classification of multi-level articulatory features (Saenko 

et al., 2005). This leads us to hypothesise that SVMs could also offer a performance 

advantage in the classification of multi-level acoustic articulatory features. 

In the work reported here, we investigated the possibility of classifying multi-level 

acoustic articulatory features using SVMs. Given the existing high performance of ANNs on 

the task of AF classification, the classification performance of the SVMs has been compared 

with that of multilayer perceptrons (MLPs). Simultaneously, we use the SVMs as a tool for 

analysis in order to come to a better understanding of the AFs and their respective values (see 

Section 2.2). In our experiments, we started with a set of articulatory features that has been 

widely used (e.g. Kirchhoff, 1999; Wester, 2003; Wester et al., 2001) in the front-end of 

automatic speech recognition systems. An analysis of the AF value classification results is 

carried out to determine whether those AFs can also be used reliably to describe the speech 

signal as needed by a computational model able to capture and use fine phonetic detail. The 
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expectation is that an analysis of why specific AF values are more difficult to classify than 

others, for instance because they are more difficult to derive reliably from the acoustic signal, 

will lead to ideas for defining an improved set of articulatory features and values that better 

capture the fine phonetic detail in the speech signal. The results of the experiments and 

analyses will thus be used to infer a modified set of articulatory features. 

In order to allow a direct comparison between the SVM and the MLP, both types of 

systems have been trained on the same material (see Section 2.1) using the same AF set 

(Section 2.2). The remainder of Section 2 presents an overview of the experiments presented 

in this paper and their evaluation. Section 3 outlines details of the two classification systems 

that were used. Section 4 presents and analyses the results obtained using SVMs. Section 5 

presents the results obtained using MLPs and compares these with those of the SVMs. Section 

6 discusses the most notable findings. Lastly, conclusions as well as promising directions for 

future research are presented in Section 7. 

 

2. Experimental set-up 

 

2.1. Material 

 

The training and testing material used in this study are taken from the TIMIT corpus 

(Garofolo, 1988). TIMIT consists of reliably hand labelled and segmented data of quasi-

phonetically balanced sentences read by native speakers of eight major dialect regions of 

American English. Of the 630 speakers in the corpus, 438 (70%) were male. We followed 

TIMIT’s standard training and testing division, in which no sentence or speaker appeared in 

both the training and test set. The training set consisted of 3 696 utterances. The test set 

(excluding the sa sentences) consisted of 1 344 utterances. The speech was parameterised 
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with 12

th
 order MFCCs and log energy, augmented with 1

st
 and 2

nd
 order derivatives, resulting 

in 39-dimensional acoustic feature vectors. The features were computed on 25 ms windows 

shifted by 10 ms per frame. 

 

2.2. Articulatory features 

 

In this research, we used the set of seven articulatory features shown in Table 1. The names of 

the AFs are self-explanatory, except maybe for ‘static’ which gives an indication of the rate of 

acoustic change, e.g., during diphthongs (Frankel et al., 2004).  

 

Table 1. Specification of the AFs and their respective quantised values. 

AF Values 

‘manner’ approximant, retroflex, fricative, nasal, stop, vowel, silence 

‘place’ bilabial, labiodental, dental, alveolar, velar, nil, silence 

‘voice’ +voice, –voice 

‘high-low’ high, mid, low, nil, silence 

‘fr-back’ front, central, back, nil 

‘round’ +round, –round, nil 

‘static’ static, dynamic 

 

The chosen set is based on the six AFs proposed in Wester (2003). An initial experiment 

showed that the accuracies for the AF values in the ‘place’ AF class improved if the vowel-

related AF values (high, mid, low) were removed from ‘place’ and were put in a separate 

(new) ‘high-low’ AF class. For the training and testing data, the frame-level phonemic TIMIT 

labels were replaced by the canonical AF values using a table look-up procedure. The 

mappings between the phonemes and the AF values are based on Ladefoged (1982); note that, 

following Wester (2003), the silence part of a plosive is mapped onto stop and not onto 

silence in our experiments (we return to this in Section 4.4). Table 2 presents an overview of 

the feature value specification of each of the phone labels in the TIMIT set.  
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Table 2. Feature value specification of each phone label in the TIMIT set. 

Phoneme ‘manner’ ‘place’ ‘voice’ ‘high-low’ ‘fr-back’ ‘round’ ‘static’ 

ae vowel nil +voice low front -round static 

ax vowel nil +voice mid central -round static 

ao vowel nil +voice low back +round static 

aw vowel nil +voice low front -round dynamic 

ay vowel nil +voice low front -round dynamic 

b stop bilabial +voice nil nil nil dynamic 

ch fricative alveolar -voice nil nil nil dynamic 

d stop alveolar +voice nil nil nil dynamic 

dh fricative dental +voice nil nil nil dynamic 

dx stop alveolar +voice nil nil nil dynamic 

eh vowel nil +voice mid front -round static 

er retroflex nil +voice nil nil nil dynamic 

ey vowel nil +voice mid front -round dynamic 

f fricative labiodental -voice nil nil nil static 

g stop velar +voice nil nil nil dynamic 

hh fricative velar -voice nil nil nil static 

ix vowel nil +voice high front -round static 

iy vowel nil +voice high front -round dynamic 

jh fricative alveolar +voice nil nil nil dynamic 

k stop velar -voice nil nil nil dynamic 

l approximant alveolar +voice nil nil nil dynamic 

m nasal bilabial +voice nil nil nil static 

n nasal alveolar +voice nil nil nil static 

ng nasal velar +voice nil nil nil static 

ow vowel nil +voice mid back +round dynamic 

oy vowel nil +voice low back +round dynamic 

p stop bilabial -voice nil nil nil dynamic 

r retroflex alveolar +voice nil nil nil dynamic 

s fricative alveolar -voice nil nil nil static 

sh fricative alveolar -voice nil nil nil static 

t stop alveolar -voice nil nil nil dynamic 

th fricative dental -voice nil nil nil static 

uh vowel nil +voice high back +round static 

uw vowel nil +voice high back +round dynamic 

v fricative labiodental +voice nil nil nil static 

w approximant velar +voice nil nil nil dynamic 

y approximant velar +voice nil nil nil dynamic 

z fricative alveolar +voice nil nil nil static 

zh fricative alveolar +voice nil nil nil static 

em nasal bilabial +voice nil nil nil dynamic 

en nasal alveolar +voice nil nil nil dynamic 

eng nasal velar +voice nil nil nil dynamic 

nx nasal alveolar +voice nil nil nil static 

axr retroflex alveolar +voice nil nil nil dynamic 

aa vowel nil +voice low back +round static 

ah vowel nil +voice mid central -round static 
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ih vowel nil +voice high front -round static 

hv fricative velar -voice nil nil nil static 

el approximant alveolar +voice nil nil nil dynamic 

ux vowel nil +voice high back +round dynamic 

 

2.3. Experiments and evaluation 

 

In the first experiment (Section 4), we trained two types of SVM classification systems for the 

seven AFs (Table 1). For the ‘–WIN’ SVM system, the input of the SVM was presented with 

single MFCC frames; no context window was used. For the ‘+WIN’ SVM system, the input 

of the SVM was presented with a context window that included the three preceding and three 

following frames. This distinction allowed us to discern the potential benefit of using a 

context window to take into consideration the dynamic nature of speech. In the second 

experiment (Section 5), we trained a multilayer perceptron (MLP) system also using the +/- 

three frames context window. 

The results for all AF classification experiments are reported in terms of the percentage 

frames correctly classified, and they are presented at two different levels: per AF (the overall 

AF classification score) and per AF value. This was done because our ultimate goal is to build 

a computational model of HSR that is able to recognise fine-grained acoustic-phonetic 

variation, and to use it during speech recognition. Therefore, we are not only interested in 

overall classification scores, since these also include the classification of nil or silence (except 

for ‘static’ and ‘voice’), but also in the classification of each AF value separately. The 

significance of the difference in performance between two sets of results is calculated using a 

significance test to compare continuous speech recognisers (Harborg, 1990) and is based on 

the standard t-test. 

One of the benefits of using AFs is that they are able to change asynchronously, which 

makes them suitable to describe the variation occurring in natural speech arising from effects 
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such as coarticulation and assimilation. An estimate of the degree of the asynchrony in feature 

changes in speech is given in Wester et al. (2004) in terms of AF combinations. Feature 

representations derived from the canonical phonemic transcription resulted in 62 AF 

combinations. When the features were allowed to change asynchronously, the number of AF 

combinations increased to 351. A transcription of the speech signal, however, that accounts 

for asynchronously changing features does not exist. In our experiments, the reference frame 

labels have therefore been derived by replacing the frame-level phonemic TIMIT labels by the 

canonical AF values, which causes the features to change synchronously. During 

classification, asynchronously changing AFs will thus be erroneously marked as errors. The 

impact on frame accuracy the lack of a transcription that accounts for asynchronously 

changing AFs has is illustrated by King and Taylor (2000). They showed that if the feature is 

allowed to change within a range of -/+ 2 frames from the phone boundary, the measure “all 

frames correct” increases significantly by 9% absolute to 63%. The number of errors 

occurring at canonical phoneme boundaries, thus, when not allowing asynchronously 

changing features, creates a substantial decrease in the frame accuracy.  

The lack of a transcription of the speech signal that accounts for asynchronously changing 

AFs also means that it is impossible to achieve 100% correct classification on the given task 

and that the ‘upper-bound’ of the classification accuracy is also unknown. Nevertheless, we 

present the results in terms of the percentage of correctly classified frames, for which the 

output of each of the systems (in the form of an AF value for each frame) is aligned with the 

reference frame labels. In addition, the most often occurring AF value confusions for each 

system are presented. We want to compare the performance of SVMs with that of MLPs on 

the same task; therefore, both systems will ‘suffer’ the same consequences of being compared 

to the same reference transcription. The absolute levels of performance of both systems will 
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likely be a bit lower but the differences in the absolute levels of performance will be the same 

irrespective of the reference transcription used. 

Section 4 presents the most remarkable findings and differences between the –WIN and 

+WIN systems, while Section 5 presents those for the +WIN and MLP systems. Both Sections 

4 and 5 end with an in-depth analysis and discussion. The –WIN/+WIN systems’ comparison 

provides insights into: 1) the effect of having knowledge about the spectral change (in the 

+WIN condition) on the classification accuracy; 2) which AF values are still being classified 

badly even though knowledge about the context is known. The +WIN SVM/MLP systems’ 

comparison is a cross-check that investigates whether there is a mismatch between the 

characteristics of the classification systems and the characteristics of the description of the AF 

values. 

 

3. The AF classification systems 

 

3.1. Multilayer perceptron AF classification 

 

Seven MLPs (one for each AF) were trained using the NICO Toolkit (Ström, 1997). All 

MLPs consisted of three layers. Each MLPs’ input layer, with 273 nodes, was presented with 

39 dimensional MFCC frames with a context window of plus and minus three frames. The 

hidden layer had tanh transfer functions and a different number of nodes depending upon the 

AF (see Table 8). In an initial experiment to determine the optimum network size, networks 

with various numbers of hidden units were trained. The network configurations that gave the 

best performance in the initial tests are used in the experiments and results presented in 

Section 5. The output layer was configured to estimate the posterior probabilities of the AF 

values given the input. The number of output nodes for each MLP is also listed in Table 8.  
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When training each MLP the performance on a validation set (consisting of 100 utterances 

randomly selected and taken from the training material) was monitored and training was 

terminated when the validation set’s error rate began to increase. During classification, the 

class with the highest associated posterior probability is chosen. 

 

3.2. Support Vector Machine AF classification 

 

SVMs are binary maximum margin classifiers (for a full introductory text, the reader is 

directed to Burges, 1998). For this paper we present a brief introduction to provide an insight 

into these classifiers. 

 

 

Figure 1. Finding the decision boundary using SVMs. 

 

One of the benefits of SVMs over MLPs is that their training may be formulated as a 

quadratic programming optimisation problem that guarantees a globally optimal solution. 

However, unlike MLPs, SVMs are not statistical classifiers and do not estimate posterior 

probabilities directly. The maximum margin principle underlying an SVM is illustrated in 

Figure 1. Given two separable classes the decision boundary is found by maximising the 

(margin or) distance between the two dotted parallel lines such that no data occupy the space 

in-between. The decision boundary is chosen to be the solid line midway between the dotted 

lines. In this case, the solution for the decision boundary is expressed entirely in terms of the 

points that lie on the dotted lines, which are known as the support vectors (SVs), and all other 

points may be discarded.  
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When the data is non-separable then a soft margin is used that allows some points to 

enter the margin or be misclassified entirely. Incursions into the margin are penalised so a 

search for the best solution maximises the margin and minimises the penalties simultaneously. 

The trade-off between the two is controlled by a single regularisation parameter, c, applied as 

a multiplying factor on the penalties. Smaller values of c will result in solutions that weight 

margin maximisation more importantly while larger values will move the focus towards 

fitting the training data which may lead to poor generalisation. Thus c controls how well an 

SVM generalises to test data. In this case, the SVs are those points that lie within the margin 

(including those on the ‘dotted-line’ boundaries) or are misclassified. 

SVMs are easily extended to non-linear problems by mapping the data non-linearly 

onto a manifold embedded in a higher dimensional space and constructing a linear boundary 

there. A practical way to demonstrate this is to fold a flat sheet of paper (a 2D space) into a 

3D shape, cut it linearly and unfold to reveal the non-linear cuts. Such transformations are 

implemented efficiently within the SVM framework by the use of kernel functions (for more 

detail see Burges, 1998).  

Classification of more than two classes is achieved by combining the decisions of 

several binary SVMs by error correcting codes (Wu et al., 2004). The number of SVMs 

required depends on the number of classes. For each data point the adopted approach takes the 

hard decisions of each SVM (encoded, for example, as a 1 if the data point lies on one side of 

the boundary and 0 if it lies on the other) and combines them into a binary number string. 

Each unique string is then mapped to a class label. 

 In our experiments, we used LIBSVM (Chang & Lin, 2001). For the –WIN condition, 

the input of the SVMs consisted of single MFCC frames. For the +WIN condition a context 

window of plus and minus three frames was also presented resulting in 273-dimensional 

MFCC vectors. Two common kernels are the polynomial kernel and the radial basis function 
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(RBF) kernel. In an initial experiment, we tested both the polynomial and the RBF kernels 

and found the RBF performed better. Let us examine RBF kernel SVMs in more detail. 

 

 

Figure 2. Visualising the output of an RBF kernel SVM. 

 

Figure 2 is an illustration of the output of an RBF kernel SVM (it is important to note 

that the figure is not an illustration of the non-linear mapping to the higher dimensional 

space). The x and y directions correspond to the inputs to the SVM while the z direction 

represents the (unthresholded) output score of the SVM at each {x,y} coordinate. Figure 2 

shows the simplest possible SVM solution with two SVs, one for each class. The SVM places 

a spherical Gaussian (with a standard deviation σ) centred on each SV. The sign of the 

Gaussian is dependent upon the SV’s class label. One may try to infer that RBF kernel SVMs 

have a loose analogy to density estimation. However, it is not a true density estimate and is 

actually closer to nearest neighbour clustering. In a classifier involving many SVs, the output 

score is the weighted sum over a set of basis Gaussians, one centred on each of the SVs and 

all with the same σ. 
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4. SVM AF classification results 

 

4.1. Classification results per AF 

 

Table 3 (without a context window; ‘–WIN’) and Table 4 (with a context window of ± 3 

frames; ‘+WIN’) show the classification results of the SVM systems for varying amounts of 

training data; from 2K training frames (or 0.18% of the total amount of training data) to 500K 

training frames (or 44.2% of the total amount of training data). These smaller training sets are 

created by randomly selecting frames from the full training set while maintaining the same 

prior distribution of the AF value classes as in the full training set. In the case of ‘voice’, ‘fr-

back’, ‘manner’, ‘static’, and ‘high-low’ there are no results for the 500K training set, because 

the optimisation did not finish after two weeks. The results are reported in terms of the 

percentage frames correctly classified for each AF classifier separately. Also, the number of 

training frames and the percentage of support vectors for each AF classifier are listed.  

The percentage of support vectors can give an indication of the relative difficulty of 

the task and/or separability of the AF values: a larger percentage suggests either more 

complex decision boundaries or highly overlapping data. The values for 1/σ
2
 and c (see 

Section 3.2) for each SVM in both the –WIN and +WIN condition are listed in Table 5. The 

results show increasing accuracies (and percentage of support vectors) for increasing number 

of training utterances. For both –WIN and +WIN conditions, the ranking of the best 

performing AF classifiers is identical; the best performance is obtained for ‘voice’, followed 

by ‘round’.  

 

 



 

 

 

ACCEPTED MANUSCRIPT 

 
Table 3.  SVM AF classification accuracies (Acc; decreasing from left to right) for each AF 

and the percentage of support vectors (SV) in each SVM when using no context window. 

voice round fr-back manner static high-low place #utts 

SV(%) Acc(%) SV(%) Acc(%) SV(%) Acc(%) SV(%) Acc(%) SV(%) Acc(%) SV(%) Acc(%) SV(%) Acc(%) 

2K 30.2 89.5 61.6 83.2 41.8 80.3 60.7 73.8 92.4 73.3 58.5 73.1 76.4 69.7 

10K 26.8 90.3 48.7 84.8 36.9 82.3 51.2 77.0 85.4 76.0 53.1 75.9 66.7 73.5 

50K 25.1 90.8 40.4 86.1 34.0 83.4 46.8 78.9 76.4 78.0 48.7 77.6 57.5 76.4 

100K 24.2 91.0 37.3 86.6 33.3 83.7 44.6 79.6 72.0 78.6 47.8 78.0 53.8 77.5 

500K 22.9 91.3 32.3 87.3 32.0 84.3 41.5 80.8 60.9 79.8 45.8 79.0 47.3 79.4 

 

Table 4.  SVM AF classification accuracies (Acc; decreasing from left to right) for each AF 

and the percentage of support vectors (SV) in each SVM when using a 7-frame context 

window. 

voice round fr-back manner static high-low place #utts 

SV(%) Acc(%) SV(%) Acc(%) SV(%) Acc(%) SV(%) Acc(%) SV(%) Acc(%) SV(%) Acc(%) SV(%) Acc(%) 

2K 36.4 89.6 48.1 83.9 75.9 81.4 77.4 76.5 90.2 75.0 85.2 74.6 69.0 71.2 

10K 29.4 90.4 39.7 85.6 60.8 83.5 59.6 78.9 80.4 79.5 76.4 78.3 59.6 75.9 

50K 25.8 91.1 33.7 87.0 51.6 85.4 53.4 83.1 68.3 82.3 64.2 81.0 49.9 79.6 

100K 24.6 91.4 31.6 87.6 47.9 86.0 48.7 84.0 62.7 83.2 60.7 81.9 46.7 80.6 

500K -- -- 27.9 88.6 -- -- -- -- -- -- -- -- 40.4 83.1 

 

Table 5. Values of the 1/σ
2
 and c parameters for each SVM without (‘–WIN’) and with a 7-

frame context window (‘+WIN’). 

-WIN +WIN  AF 

1/σ
2
 c 1/σ

2
 c 

voice 0.5 5 0.5 1 

round 1.5 1 0.1 1 

fr-back 0.01 300 0.1 5 

manner 0.01 15 0.01 5 

static 10 10 1 1 

high-low 0.01 100 0.05 5 

place 0.1 3 0.005 5 

 

Comparing the results in Tables 3 and 4 shows that, unsurprisingly, using a context 

window increases the AF accuracies for all AFs. (Although the –WIN condition also uses 

context knowledge via the first and second order derivatives, such knowledge is more reliable 

and is encoded differently when using a context window.) The size of this increase, however, 
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is not the same for all AFs: comparing the accuracies after training on 100K training frames 

shows that the increase in accuracy for ‘voice’ is only 0.4%, while the increase for ‘static’ is 

the biggest at 4.6%. The difference in accuracies between the   –WIN and +WIN condition is, 

however, significant at the 99% confidence level for each AF. Adding a ± three frame context 

window is, thus, beneficial for all AFs but not to the same extent. We return to this issue in 

Section 4.4. 

A second difference between the AF classifiers for ‘voice’, ‘manner’, ‘fr-back’, and ‘high-

low’ is that the percentage of support vectors increased when a context window was used, 

while there was a decrease for ‘round’, ‘static’, and ‘place’. The explanation of the increase in 

support vectors is rather straightforward. In the case where no context window is used, the 

dimensionality of the MFCCs is 39, while the dimensionality increases to 273 when a context 

window is used. Because of this high dimensionality the data points are more dissimilar, 

resulting in more support vectors needed to cluster the data. The reduction in support vectors 

for ‘static’, ‘round’, and ‘place’ is thus surprising, we return to this issue in Section 4.4. 

 

4.2. Classification results per AF value 

 

Table 6 lists the classification accuracies in terms of frames correctly classified for each AF 

value for the SVM classification systems (trained on 100K training frames) as well as the 

difference in accuracy (all differences are significant at the 99% confidence level). A quick 

glance at the results shows that the +WIN condition also outperforms the –WIN condition on 

an AF value level, with the exception of vowel and front. The differences in accuracies can be 

as high as 14.9% (e.g. for central). The higher AF accuracies for the +WIN condition – 

reported in Tables 3 and 4 – are thus not simply a result of a better classification of silence 

and nil.  
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Table 6. AF value classification accuracies and differences (‘Diff’) for the –WIN and +WIN 

SVM  systems and for the MLP system and the difference with the +WIN SVM system, and the 

percentage of training frames for each AF (‘%frames’). 

Accuracy (%) AF value 

–WIN +WIN Diff MLP Diff 

%frames 

manner 

approximant 43.2 54.8 11.6 54.7 0.1 4.8 

retroflex 65.1 72.4 7.3 71.1 1.3 5.8 

fricative 81.7 85.6 3.9 87.2 -1.6 17.1 

nasal 73.3 77.3 4.0 79.1 -1.8 6.3 

stop 70.9 80.3 9.4 86.1 -5.8 16.1 

vowel 91.9 91.4 -0.5 91.0 0.4 34.1 

place 

bilabial 55.1 63.2 8.1 68.4 -5.2 6.1 

labiodental 57.8 65.4 7.6 70.9 -5.5 3.1 

dental 21.8 27.3 5.5 22.3 5.0 1.4 

alveolar 75.2 77.4 2.2 78.3 -0.9 29.5 

velar 50.8 55.8 5.0 64.4 -8.6 8.2 

high-low 

high 70.4 71.3 0.9 71.0 0.3 12.3 

mid 45.3 53.4 8.1 54.9 -1.5 10.5 

low 71.3 73.9 2.6 75.7 -1.8 11.4 

voice 

+voice 91.3 91.7 0.4 93.8 2.1 61.3 

–voice 90.4 90.8 0.4 90.3 0.5 38.7 

fr-back 

front 82.0 81.6 -0.4 81.5 0.1 21.8 

central 12.5 27.4 14.9 33.2 -5.8 3.4 

back  48.2 57.3 9.1 54.0 3.3 8.8 

round 

+round 49.2 51.5 2.3 56.8 -5.3 8.9 

–round 81.8 84.2 2.4 82.3 1.9 25.3 

static 

static 81.0 85.6 4.6 84.4 1.2 56.7 

dynamic 75.6 80.2 4.6 81.2 -1.0 43.3 

    

For both conditions, the three easiest AF values to classify are +voice, –voice, and vowel, 

while the three most difficult are dental, central, and +round for +WIN, and dental, central, 

and approximant for –WIN. The variation in the AF value classification accuracies is rather 

wide: ranging from 12.5% (central) to 91.9% (vowel) for the –WIN condition and from 27.3% 

(dental) to 91.7% (+voice) for +WIN. There seems to be, however, no straightforward 
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relationship between the percentage of training frames available for a certain AF value (see 

column ‘%frames’ in Table 6) and the obtained AF value’s classification accuracy. For 

instance, the percentage of training frames for high, mid, and low is more or less balanced, but 

the classification accuracy for mid is about 25% lower than the classification accuracies for 

high and low. Furthermore, the classification accuracy for labiodental is 7% higher than the 

classification accuracy for velar, while there are 2.6 times more velar frames in the training 

data than there are labiodental frames. So, there has to be other reasons as to why some of the 

AF values are so difficult to classify. We will return to this issue in Section 6. 

 

Table 7. The six most frequent occurring AF value confusions for the SVM and MLP systems 

where  a ‘from’ AF value is labelled as the ‘to’ AF value. 

–WIN +WIN MLP 

from to % from to % from to % 

approx vowel 46.6 dental alveolar 38.6 dental alveolar 36.9 

dental alveolar 41.2 approx vowel 36.0 approx vowel 35.5 

central front 40.4 central front 30.5 +round –round 26.9 

+round –round 30.4 +round –round 30.0 central front 28.5 

central nil 29.5 central nil 25.0 retroflex vowel 23.5 

retroflex vowel 29.0 retroflex vowel 22.1 central nil 22.5 

 

4.3. AF value confusions 

 

Table 7 shows an overview of the six most frequently occurring AF value confusions for both 

the  –WIN and the +WIN SVM systems. What is immediately evident is that four of the five 

AF values that scored the lowest accuracies as listed in Table 6 appear within the top 4 most 

frequent confusions in Table 7. Furthermore, the six most frequent –WIN confusions are also 

the six most frequent +WIN confusions, but with a slightly different ranking; both systems, 

thus, make the same confusions most frequently. The misclassifications made by the two AF 

classification systems are thus not ‘random’, but contain some structure. 
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4.4. Discussion and analysis 

 

A context window is usually added to take into consideration the dynamic nature of speech, 

which usually spans more than the size of one frame (i.e. 25 ms). There are three AFs that are 

critically dependent on the availability of information on spectral change (as will be explained 

below), these are ‘static’, ‘manner’, and ‘place’. These three AFs are, indeed, among the four 

AFs that have the biggest improvement when using a context window. Unlike the other AF 

values, ‘voice’ does not benefit much from using a context window. This is because all the 

information that is needed for a proper classification can be found in a single frame. The 

fundamental frequency (F0) range for a male speaker is 80-200 Hz, and for females 150-350 

Hz. This means that even in case of the lowest F0 (80 Hz), two full periods are present in a 

frame of 25 ms. 

In our classification scheme (based on Ladefoged, 1982), [w], [j], and [l] are marked 

as approximant, but the formant structure of approximant is very similar to the formant 

structure of high vowels, with the difference being that approximant has relatively slow, but 

clear, formant changes shortly before and after a (incomplete) constriction. Furthermore, the 

formant structure of retroflex is also very similar to the formant structure of vowel, with the 

difference being here that retroflex has clear formant changes at the transitions with adjacent 

vowels and consonants. To be able to distinguish between vowel, approximant, and retroflex 

information about the spectral changes is fundamental. An analysis of the most occurring 

confusions showed that the dramatic improvements for approximant and retroflex (11.6% and 

7.3%, respectively) are indeed mainly due to a dramatic decrease in approximant-vowel 

(10.6% absolute improvement) and retroflex-vowel (6.9% absolute improvement) confusions. 

The slight decrease in vowel classification is caused by an increase of 0.5% of vowel-

approximant confusions. Nevertheless, it is clear that the availability of the spectral changes is 
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vital for the classification of approximant and retroflex. However, the accuracy for 

approximant is still low. Also in the case of nasal, the 4.0% improvement in accuracy is due 

entirely to a reduction in nasal-vowel confusions.  

A context window can also help to distinguish between a fricative and a stop. It can 

help in determining whether a silent period preceded the frication, and thus whether the 

frication comes from a fricative or a stop. This is exactly what happened. An analysis of the 

most frequent confusions revealed that the 9.4% increase in classification accuracy for +WIN 

is mainly due to a 3.6% reduction in stop-fricative confusions and a 3.5% reduction in stop-

silence confusions. The 3.9% improvement for fricative is largely due to a decrease in 

fricative-stop confusions by 2.4%. These reductions are mainly caused by a reduction in the 

number of (erroneous or unwanted) ‘frame changes’: the number of times two consecutive 

frames have a different label. The number of times two consecutive frames were marked as 

silence and stop is 4 053 for the –WIN condition while this only occurs 2 591 times in the 

+WIN condition. Likewise, the number of frame changes from stop to fricative reduces from 

3 906 to 3 321. Adding a context window thus not only ‘smoothes’ the output in time, but it 

also ensures that both the silence and the frication parts are marked as stop. This suggests that 

the model of stop does not model the different stages of a plosive very well. It might therefore 

be better not to model the different stages using one AF value, but to re-label the silence part 

of a stop as stop-closure. 

The AF ‘place’ is also helped by using a context window. The second formant (F2) 

values and the amount and direction of F2 changes in vowels adjacent to a plosive or nasal 

consonant give a clear indication of where in the vocal tract the constriction for the plosive or 

nasal occurred. To execute a gesture and reach the articulatory target, a speaker’s articulators 

need between 30 ms and 100 ms (Rietveld & van Heuven, 1997). Therefore, in this study, not 

every frame will contain information about articulator movement, since the MFCCs used in 
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this study were created on the basis of a 25 ms windows with a 10 ms shift.  Hence, a context 

window provides this information to the classifiers thereby making it easier to classify the 

correct place of articulation. This explains the relatively large increase in accuracy (3.1% 

absolute) for ‘place’.  

In general, many of the ‘place’ AF values are often confused with alveolar. The 

relatively large reduction in percentage confusions for bilabial is due to a reduction of 3.3% 

absolute of the bilabial-silence confusions and a reduction of 2.9% absolute of the bilabial-

alveolar confusions. The biggest factor for the improvement of labiodental is a reduction of 

3.5% in the confusions with alveolar. Furthermore, for dental the 5.5% improvement is due to 

a 2.6% absolute reduction in dental-alveolar confusions and a 1.6% absolute reduction in 

dental-bilabial confusions. Finally, velar had a reduction in velar-alveolar confusions (1.4% 

absolute), and an absolute reduction of 2.2% in velar-alveolar confusions. Overall, the 

classification accuracies for the AF values are somewhat low. We return to this point in 

Section 6. 

Using a context window for the AF ‘static’ improves both AF values to the same 

extent. However, it is interesting that the overall classification performance of this binary 

classification task performs 11.5% worse than the other binary task ‘voice’ in the –WIN 

condition (see Table 3, 500K training frames) and 5.8% in the +WIN condition (see Table 4, 

500K training frames). The percentage of support vectors for ‘static’ was relatively high in the 

–WIN condition (almost three times as many as for ‘voice’). Following Frankel et al. (2004), 

the value dynamic in the ‘static’ class is assigned to frames that come from various diverse 

(groups of) phonemes, which have spectral change during production in common. These 

include, e.g., diphthongs, laterals, trills, and plosives. Classifying ‘static’ is thus a difficult 

task for SVMs that do not use a context window. A deeper analysis of the SVMs in the –WIN 

condition showed that the support vectors had Lagrange multipliers that did not reach c, 
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which means that they are able to separate the training data completely. However, the width 

of the RBFs is also small (indicated by the large value for 1/σ
2
). This, coupled with the large 

number of support vectors, suggests that the clusters representing static and dynamic are 

irregularly distributed and highly localised, resulting in poor generalisation. This can be 

explained by the great diversity of the (groups of) phonemes assigned with the dynamic label. 

This problem is somewhat alleviated by using a context window. Using a context window 

reduced the percentage of support vectors and increased the width of the RBFs (indicated by 

the much smaller value for 1/σ
2
). This indicates that the clusters representing static and 

dynamic are less irregularly distributed and less localised. Using a context window thus 

simplifies the classification task for ‘static’; it is easier to group together the input samples, 

resulting in the biggest increase of the classification accuracy for all AFs. However, compared 

to ‘voice’ the percentage support vectors is still much higher and the value for 1/σ
2
 is larger. 

This indicates that the clusters representing +voice and –voice are much more coherent and 

regularly distributed than the clusters representing dynamic and static. This is not surprising 

since the acoustic phenomena associated with static and dynamic are much more diverse than 

those for +voice and –voice. 

The effects of using a context window on the AF values of ‘fr-back’ are quite 

different. First of all, the classification accuracy of front deteriorates somewhat. This is due to 

an increase in the front-central and front-back confusions of 1.0% and 0.4% absolute, 

respectively. The classification accuracy for central in the –WIN condition is quite bad, it is 

thus not surprising that the accuracy is improved for the +WIN condition. The 14.9% absolute 

improvement for central is due to a 9.9% absolute reduction in central-front confusions and a 

4.5% absolute reduction in central-nil reductions. For back, the 9.1% absolute increase is 

caused by a big reduction in back-front confusions (7.9% absolute) and a small increase in 

back-central confusions (1.5% absolute). Although a context window improves the 
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classification accuracy for both central and back, the classification accuracies remain low, 

this will be further discussed in Section 6. 

Of the ‘high-low’ AF values, mid is least well classified and therefore has the most 

room for improvement. When a context window is used, indeed mid benefits most, increasing 

with 8.1% absolute in classification accuracy. This increase is mostly due to a reduction in 

mid-high confusions (3.0% absolute) and a reduction in mid-low confusions (3.1% absolute). 

In Section 6, this is further discussed. 

A side-effect of using a context window is that the number of times a change in AF 

value occurs between two consecutive frames is greatly reduced. For instance, for ‘place’ 

adding a context window reduced the number of ‘frame changes’ with 7.4% absolute, while 

for ‘static’ the number of frame changes was reduced with 45.0% absolute. Adding a context 

window thus ‘smoothes’ the output and removes quick alterations in AF values. 

 

5. MLP AF classification results 

 

5.1. Classification results per AF 

 

Table 8 shows, in decreasing order, the MLP classification results in terms of percentage 

frames correctly classified for each AF separately. Furthermore, the sizes of the hidden and 

output layers of each MLP are listed. The best results are obtained for ‘voice’, followed by 

‘round’. The results in Table 8 are not quite as good as the results presented in Wester (2003), 

with the exception of the performances for ‘place’ and ‘high-low’, which are better. 
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Table 8. MLP AF classification accuracies (Acc; in decreasing order), the number of hidden 

nodes, and the number of output nodes used for each MLP. 

AF Acc. (%) #hidden nodes #output nodes 

‘voice’ 92.5 100 2 

‘round’ 87.5 100 3 

‘fr-back’ 85.6 200 4 

‘manner’ 84.8 300 7 

‘static’ 82.9 100 2 

‘place’ 81.6 200 7 

‘high-low’ 80.8 100 5 

 

From Table 8, it is not possible to deduce a clear relationship between the number of 

output nodes (or the difficulty of the classification task) and the accuracy of the AF classifier. 

For instance, ‘static’ has two output nodes, like ‘voice’, but the performance of ‘static’ is 

almost 10% lower (see also the discussion on this difference in Section 4.4). On the other 

hand, ‘manner’ has seven output nodes, but gets a relatively high accuracy compared to, for 

instance, ‘place’ and ‘high-low’ which have an equal and a lower number of output nodes, 

respectively, but a lower accuracy. 

 

5.2. Comparing MLP and SVM AF classification results 

 

For convenience, the best AF classification accuracies for the SVM classifiers (i.e. those 

+WIN classifiers trained on 100K training frames) and for the MLP classifiers are listed side-

by-side in Table 9. Table 9 also shows the AF classification accuracy at chance level; i.e. that 

accuracy that would be obtained by a classifier that labelled all frames with the most frequent 

AF value – since it can safely be assumed that speech/silence detection for TIMIT is easy the 

chance levels are calculated on the non-silence frames only. It is clear that both SVM and 

MLP systems perform far above chance level. Comparing the results of the SVM classifiers 

and the MLP classifiers in Table 9 shows that the two systems have similar performance; the 

overall rankings for the best performing classifiers are very much alike, with only ‘place’ and 
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‘high-low’ swapping places. The SVMs outperform the MLPs significantly (at the 99% 

confidence level) for ‘fr-back’, ‘static’, and ‘high-low’, while the MLPs significantly (again at 

the 99% confidence level) outperform the SVMs for ‘voice’, ‘manner’, and ‘place’. The 

slightly better performance of the SVMs for ‘round’ is not significant. Thus, the SVM 

systems outperform the MLP systems while only using 8.8% of training frames (100K 

training frames) that was used to train the MLPs. When increasing the training set for the 

SVMs to 500K (44.2% of the full training set), the SVMs outperformed the MLPs for another 

two AF values, ‘round’ and ‘place’.  

The SVMs outperformed the MLPs for five out of seven AFs despite using less training 

material. The training algorithm for SVMs guarantees that a global optimum will be reached, 

while the back-propagation training algorithm for MLPs only converges to a local optimum.  

 

Table 9. Overview of the AF classification accuracies at chance level, for the +WIN SVM 

systems trained on 100K training frames, and the MLP systems. 

AF Chance level (%) SVM Acc. (%) MLP Acc. (%) 

‘voice’ 74.0 91.4 92.5 

‘round’ 59.7 87.6 87.5 

‘fr-back’ 59.7 86.0 85.6 

‘manner’ 40.3 84.0 84.8 

‘static’ 51.8 83.2 82.9 

‘high-low’ 59.7 81.9 80.8 

‘place’ 42.6 80.6 81.6 

 

5.3. Comparing MLP and SVM AF value classification results 

 

A comparison of the AF value accuracies of the MLP classifiers and the +WIN SVM 

classifiers is shown in Table 6. Except for approximant, high, and front all differences are 

significant at the 99% confidence level. A quick glance at the results shows that there is little 

difference between the two systems. Some of the AF values are better classified by the SVMs 
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while others are better classified by the MLPs; the deteriorations and improvements per AF 

more or less ‘balance’ each other. For both types of system,  the  three easiest AF values to 

classify are  +voice,  vowel, and  -voice, while the three most difficult are dental, central, and 

+round for the SVM system, and dental, central, and back for the MLP system. These latter 

observations are discussed in Section 6. 

 

5.4. Comparing MLP and SVM AF value confusions 

 

Similar to the –WIN and +WIN SVM systems, the six most frequently occurring AF value 

confusions are listed in Table 7. Again similar to the –WIN and +WIN SVM systems, for the 

MLP system, four of the five AF values that have the lowest accuracies as listed in Table 6 

appear within the top 4 most frequent confusions in Table 7. Comparing the SVM and MLP 

systems shows that the most frequent confusions for both types of systems are the same, but 

again with a slightly different ranking.  

 

5.5. Discussion and analysis 

 

The above analyses indicate that the SVM and MLP systems give similar classification 

results. But what is striking is that a more detailed analysis of all occurring confusions for 

both the SVM and the MLP systems revealed that both types of systems also tend to make the 

same relative number of confusions. The analysis revealed that, in general, if the AF value 

accuracy for the SVM system is higher than that of the MLP system then all possible 

confusions for that specific AF value for the SVM system are proportionally lower; and vice 

versa. There are, however, a couple of differences. Firstly, for all ‘manner’ and ‘place’ AF 

values, remarkably, more AF value-silence confusions occur for the SVM system. Secondly, 
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with respect to ‘place’, bilabial, labiodental, dental, and velar are more often classified as 

alveolar by the SVM system. Looking more closely at the AF value classification accuracies 

for both systems reveals that for all ‘real’ consonants (during articulation a closure or stricture 

of the vocal tract occurs that is sufficient to cause audible turbulence; this thus excludes more 

vowel-like consonants like approximant and retroflex), the MLP system outperforms the 

SVM system, with the exception of dental but this can be explained by the fact that there are 

only few training frames for dental (see also Section 6.1) and that SVMs are better able in 

dealing with sparse data. Like the ‘real’ consonants, the AF value dynamic is critically 

dependent on the availability of spectral change.  

 

6. General discussion and further analyses 

 

6.1. Place of articulation of consonants (‘place’) 

 

Miller and Nicely (1955) already pointed out that place of articulation is the easiest to see on 

the speaker’s lips, but the hardest to hear out of all features they investigated (voicing, 

nasality, affrication, duration, and place of articulation). This study shows that, just as it is for 

human listeners, place of articulation is the most difficult feature for automatic systems to 

classify: for all three systems (-WIN SVM, +WIN SVM, and MLP) ‘place’ and ‘high-low’ 

were the two AFs that were classified worst. 

As pointed out before, many of the AF ‘place’ values are most often confused with 

alveolar. We analysed the MFCCs to investigate why bilabial, labiodental, velar, and 

especially dental are confusable with alveolar. For the 10K training frames set, we calculated 

the Bhattacharyya distances for each of the 39 Mel-frequency cepstral coefficients for the 

bilabial, labiodental, velar, and dental frames compared with each of the MFCCs of the 
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alveolar frames. The Bhattacharyya distance is a separability measure between two Gaussian 

distributions and is explained in many texts on statistical pattern recognition (e.g. Fukunaga, 

1990). The results are plotted in Figure 3. The x-axis shows the coefficient number, while the 

y-axis shows the Bhattacharyya distance. What immediately stands out is that overall the 

differences between the distributions are rather small, with the exception of only one 

coefficient: coefficient 13, which represents the energy (and in case of bilabial and velar also 

the first coefficient, representing the overall spectrum shape).  

 

 

Figure 3. The Bhattacharyya distances between the ‘bilabial’, ‘labiodental’, ‘dental’, ‘velar’ 

frames and the ‘alveolar’ frames for each of the 39 MFCCs, calculated on the 10K training 

frames set. 

 

As pointed out in Section 4.4, the change of F2 gives a clear indication of where in the 

vocal tract the constriction for plosives and nasals occurs. Given that 1) the higher order Mel-

frequency cepstral coefficients represent more detailed spectral structure between the 

formants, and 2) all bilabial consonants in English are either plosive or nasal, one would 

expect that the differences between the means for the bilabial-alveolar pair in Figure 3 for 

coefficients 6 to 12 are relatively large. There are indeed minor peaks for bilabial-alveolar at 
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coefficients 8 and 9. For the other AF values, there are peaks at coefficients 6 and 8 for 

labiodental-alveolar, and peaks at coefficient 9 for dental-alveolar and velar-alveolar.  This 

suggests that indeed, some information about F2 is represented there, but these peaks are not 

as pronounced as one might have expected. The largest Bhattacharyya distances are to be 

found for the lower order MFCCs, which represent the overall spectrum shape and the general 

formant structure, especially for labiodental-alveolar and to a lesser extent dental-alveolar. 

Of the bilabial-alveolar confusions, most confusions are caused by the nasal 

consonants. The two bilabial nasals were 29.0% and 36.4% confused with alveolar; while for 

the two bilabial plosives this was only 12.4% and 14.4%. Also for velar consonants, the 

nasals were much more often confused with alveolar than the other types (fricatives, 

approximants, and plosives). The confusion percentages for velar nasals with alveolar ranged 

from 45.0% to 46.9%; while for the other consonants the confusion percentages ranged from 

4.5% to 26.9%. This suggests that the peaks for bilabial-alveolar and velar-alveolar that are 

around coefficients 8 and 9 are mostly ‘caused’ by the bilabial and velar plosives. It looks 

like the MFCCs are able to represent the acoustics for the place of articulation for plosives 

better than for nasal sounds. 

As Table 6 shows, dental is classified worst of all ‘place’ AF values and is most often 

confused with alveolar (see Table 7). In English, all dental consonants are fricatives. Unlike 

non-fricative sounds, there are no clear formant changes for dental and alveolar fricatives that 

give an indication of where in the vocal tract the constriction occurs; they are distinguished by 

the overall energy and the duration of the noise. The peaks in the Bhattacharyya distances, 

especially for the lower order MFCCs, are most likely due to the fact that there are no non-

fricative dentals but there are non-fricative alveolars, which thus have clear formant changes. 

Since the places of articulation of dental and alveolar are very close to one another, there is 

only a small articulatory difference between the two. Both dental and alveolar consonants 
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have a concentration of energy in the higher frequency regions of the spectrum. Figure 3 

confirms that the most important coefficient for distinguishing dental and alveolar indeed 

turns out to be the energy (coefficient 13), with coefficient 1 representing the overall spectrum 

shape being of a slightly lesser importance. Secondly, during training, significantly fewer 

examples of dental were encountered than for the other ‘place’ AF values – just over 15K 

frames in the full training set (1.4%, see Table 6). The poor classification results for dental are 

thus likely caused by a poor estimation of the posterior probability for dental, which leads to a 

bias towards the other AF value classes. Note that, although the SVM for ‘place’ only 

received 1 356 frames for dental (in the 100K training frames set), it detects dental better than 

the MLP, which is expected as SVMs tend to generalise better to sparse data. Furthermore, 

the percentage of alveolar frames in the training material is the highest (29.5%, see Table 6) 

in the training material, thus it is to be expected that alveolar has a better estimated posterior 

probability distribution or decision boundary than the other AF values. 

Like dental consonants, labiodental consonants in English are fricatives (with the 

exception of the nasal [�] which is an allophone of [m], but this phoneme is not transcribed in 

TIMIT). This means that labiodental fricatives can only be distinguished from alveolar 

fricatives using the intensity and the duration of the energy. Again, this is shown in Figure 3: 

coefficient 13, the energy, contributes most to the difference between alveolar and 

labiodental. The comparatively low percentage of confusions of labiodental with alveolar 

(16.8%; the lowest of all AF values) is most likely due to the rather large differences in the 

lower order MFCCs; they are more pronounced than the differences in the lower order 

MFCCs for dental-alveolar. 

 

6.2. Place of articulation of vowels (‘front-back’ and ‘high-low’) 
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From Tables 6 and 7 it can be deduced that the poor classification of central (27.4% for 

+WIN) results from the high number of confusions with front and, surprisingly, nil. Table 6 

shows that 8.8% of the training frames are labelled as back, 3.4% as central, 21.8% as front, 

and thus 66.0% as nil. As explained above, this will result in a good posterior probability for 

nil – and good classification accuracy for nil – but poorer ones for the other three AF values. 

This might explain the rather low accuracies for both central and back (57.3%). Furthermore, 

this might also explain the central-nil and back-nil confusions. However, there are also high 

numbers of central-front (30.5%), back-front (19.4%), and central-back (17.1%) confusions. 

An explanation might be that the confusability of these AFs results from the fact that back, 

central, and front are positions along a continuum of tongue positions from the back of the 

mouth to the front of the mouth. Thus, the continuous positions have to be quantised. There 

are, however, problems with using quantised values. People have different lengths and shapes 

of the vocal tract; articulation is thus speaker dependent. Furthermore, articulation positions 

are not absolute. These two factors combined can result in a (broad) range of possible values 

of MFCCs associated with the same quantised AF value. The high number of confusions of 

central with front combined with the high number of confusions of back with front also 

suggests that the distribution of central frames is rather broad. We examined this by plotting 

the distribution of the SVM scores calculated by the SVMs for the test material. 

 

---- insert Figure 4 here --- 

 

Figure 4. Scatter plots of the SVM scores of the central and back test material as scored by 

the classifiers trained to discriminate back from front and central (x-axis) and central from 

front and back (y-axis). In the left panel, the SVM scores of all central (darker crosses) and 
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back (lighter dots) frames are plotted; in the right panel, the SVM scores of only the correctly 

classified central and back frames are plotted.  

 

We trained three separate classifiers, one each for front, central, and back, to 

discriminate that specific AF value from the other two. We then scored the test material using 

the three classifiers and examined the distribution of the SVM scores. Figure 4 shows scatter 

plots of the SVM scores for the central (darker crosses) and the back (lighter dots) frames. 

The x-axis denotes the SVM score obtained with the classifier trained on the back frames; the 

y-axis denotes the SVM score of the corresponding frame obtained with the classifier trained 

on the central frames. In the left panel of Figure 4, the SVM scores of all central and back 

frames are plotted; in the right panel, the SVM scores of only the correctly classified central 

and back frames are plotted. Note that misclassified points that were removed include points 

that were classified as front. It can be seen from the right panel that there are many points 

close to the diagonal line indicating that the SVMs scored those points similarly. The left 

panel shows how much the SVM score distributions overlap. Similar figures are obtained for 

all combinations of back-front and high-low. Figure 5 shows the distribution of the SVM 

scores of the test material as scored by the classifier trained to classify front (left panel), 

central (middle panel), and back (right panel). The solid line represents the distribution of the 

SVM scores of the front frames, the dashed line represents the central frames, and the dotted 

line represents the back frames. The further apart the distribution of the AF value on which 

the classifier is trained and the distributions of the other two AF values, the easier that AF 

value can be separated from the two other. So, in the left panel, one wants to see the 

distribution of front as far away as possible from the distributions of central and back.  

The most important observation to be made from Figure 5 is that the distribution for 

front overlaps the distribution for central entirely for each classifier. This means that it is 
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impossible for these classifiers to separate central from front given the MFCCs. This finding 

explains the low classification accuracy of central and its high confusion rate with front (see 

Table 7). Figure 5 also presents an explanation for the rather low classification accuracy for 

back: there is only a small number of back frames that lie outside of the distribution for front. 

These frames will most likely be classified correctly, while the others are being classified as 

front. Our assumption that the high number of confusions of central and back with front was 

due to the quantisation of the front-back continuum is thus correct: the MFCCs do not allow 

reliable estimation of the front-back continuum. 

 

 

Figure 5. Distributions of the SVM scores of the ‘fr-back’ test material as scored by the 

classifier trained to discriminate front from central and back (solid line, left panel), central 

from back and front (dashed line, middle panel), and back from front and central (dotted line, 

right panel). The solid lines represent the distribution of scores for the front AF value, the 

dashed lines represent central, and the dotted lines represent back. 

 

Similar to the ‘fr-back’ AF value central, the classification accuracy for the ‘high-low’ 

AF value mid is relatively poor (53.4% for +WIN), with high confusion rates with low 

(14.7%) and high (14.1%). Unlike ‘fr-back’, however, the distribution of the training frames 

for the ‘high-low’ AF values is more or less balanced (high: 12.3%; mid: 10.5%; low: 11.4% 

of the training frames). This suggests that the placing of the decision boundaries or the 

estimation of the posterior probabilities is not necessarily leading to a bias towards one of the  
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AF value classes. A further analysis of the confusions for low and high revealed that they 

were hardly ever confused with one another, but relatively often with mid (11.1% for low and 

11.3% for high). The same explanation as for ‘fr-back’ might be applicable for ‘high-low’; the 

AF values are positions along a continuum of tongue positions from the roof of the mouth to 

the bottom, which has to be quantised, introducing some error.  Again, we also investigated 

the distribution of the SVM scores calculated by the SVMs for the test material in order to 

investigate the separability of the three classes. 

 

Figure 6. Distributions of the SVM scores of the ‘high-low’ test material as scored by the 

classifier trained to discriminate low from mid and high (solid line, left panel), mid from low 

and high (dashed line, middle panel), and high from mid and low (dotted line, right panel). 

The solid lines represent the distribution of scores for the low AF value, the dashed lines 

represent mid, and the dotted lines represent high. 

 

Again, we trained three separate classifiers, one for low, mid, and high, tested each 

classifier on the test material, and examined the distribution of the SVM scores. We believe 

that the distributions of the SVM scores as presented in Figure 5 are easier and clearer to 

interpret than the scatter plots in Figure 4; therefore, all subsequent results are presented in the 

form of the distributions of the SVM scores. Figure 6 shows the distributions of the SVM 

scores of the test material as scored by the classifier trained to discriminate low (left panel), 

mid (middle panel), and high (right panel) from their respective other AF values. In each 
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figure, the solid line represents the distribution of the SVM scores of the low frames, the 

dashed line represents the mid frames, and the dotted line represents the high frames.  

Figure 6 shows that the distributions for the three AF values generated by the three 

classifiers are overlapping in a fashion consistent with the rather low classification accuracies 

as listed in Table 6. More importantly, however, the distribution for mid as scored by the mid 

classifier (middle panel) is overlapping with low and high even more. This can be explained 

by taking into account the actual pronunciation of mid vowels. For the articulation of mid 

vowels, the tongue will be in-between the positions for the articulation of low and high 

vowels, the acoustics associated with mid will thus be in-between the acoustics of low and  

high. The explanation for the somewhat disappointing results for mid are thus caused by the – 

not so surprising – fact that the frames for mid are very similar to low and high frames, 

making it very hard for the classification systems to tell mid apart from the other two AF 

values. The finding that low and high are more often confused with mid than each other is also 

to be explained by looking at these distributions. In the left panel, the mid distribution is much 

closer to the low distribution than the high distribution; and vice versa for the right panel.  

 

 

Figure 7. Distributions of the SVM scores of the ‘high-low’ test material as scored by the 

classifier trained to discriminate low from high only (left panel) and low from mid only (right 

panel). The solid lines represent the distribution of scores for the low AF value, the dashed 

lines represent mid and the dotted lines represent high. 
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In addition to these classifiers (see Figure 6), we also trained classifiers to discriminate 

low from high only (Figure 7, left panel) and low from mid only (Figure 7, right panel). The 

distributions of Figure 7 show how the SVMs behave when they have been trained on only 

two out of the three AF values. In the left hand panel, mid was excluded from training but 

during testing it is clearly placed in-between the distributions of high and low. When high was 

omitted from training (in the right hand panel), the SVM still places the high distribution to 

the left of mid. These results suggest that there is indeed a continuum from low to high via 

mid and that the mapping from phonemic labels to a quantised set of AF values is inaccurate 

with respect to the acoustic phenomena associated with the low, mid, and high frames. Indeed 

quantisation is inconsistent with the physical system that we wish to model. Furthermore, 

Figure 7 suggests that it is better to train SVMs on the extremes of ‘high-low’ and allow them 

to infer the continuum than to train separate classifiers to identify artificially quantised AF 

values. The accuracy of the classifiers can be inferred from the areas under the curves; in the 

left panel of Figure 6, setting the threshold at the crossover point between the high and low 

distributions (ignoring the mid AF value in the test data) the accuracy of discriminating high 

from low is 84.9% for high and 82.4% for low; in the right panel of Figure 6, setting the 

threshold at the crossover point between the high and low distributions, the accuracy of 

discriminating high from low is 78.9% for high and 86.9% for low; in Figure 7 (left panel), 

again setting the threshold at the crossover of the high and low distributions, the 

corresponding accuracies are 88.5% and 87.6%, i.e. including mid for training reduces the 

accuracy of high and low. 

 

 

6.3. Round 
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Table 6 shows an approximately 30% difference in AF value accuracies for +round and          

–round. As Table 7 shows, this is almost totally caused by the classification of +round frames 

as –round. Although the percentage of frames in the training data labelled as +round (8.9%, 

see Table 6) is about one third the percentage of training frames labelled as –round (25.3%, 

see Table 6), the amount of training data is not as unbalanced as, for instance, was the case for 

dental in relation to alveolar.  

 

 

Figure 8. Distributions of the SVM scores of the ‘round’ test material for +round (dotted line) 

and –round (solid line). 

 

In a subsequent analysis, we examined the distribution of the SVM scores calculated by 

the SVMs for the test material like we did for ‘fr-back’ and ‘high-low’. Figure 8 shows the 

distributions of the SVM scores of the +round (dotted line) frames and –round (solid line) 

frames of the test material. The further apart the two distributions are, the easier the +round 

and –round frames can be separated. As is clear from Figure 8, the distribution of –round is 

Gaussian shaped and the majority of the –round frames are above ‘0’. The distribution of 

+round, however, seems bimodal, with the frames belonging to the right-most ‘Gaussian’ 

shape having an SVM score above ‘0’ as well. These +round frames will incorrectly be 

classified as –round. Based on these results, we suspect there to be a mismatch between the 

articulatory description as derived from TIMIT and the actual way the speaker has produced 

the sound, in other words, the behavioural reality. This needs further investigation. 
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7. Concluding remarks and future work 

 

To develop a computational model of HSR that is able to simulate the effect of fine-grained 

acoustic variation on human speech perception, we are in search of AF classifiers that are able 

to create reliable and accurate AF transcriptions of the acoustic signal. To this end, we 

analysed the classification results from SVMs and MLPs. MLPs have been widely used for 

the task of articulatory feature classification and have a reasonable level of performance, 

while SVM classifiers had until now (to the best of our knowledge) not been used for the task 

of multi-value acoustic AF classification. Both the SVMs and the MLPs are trained 

discriminatively, but use different optimisation criteria; MLPs estimate posterior probabilities, 

whereas SVMs estimate the optimum decision boundary by maximising a margin. Despite 

this difference, both systems show similar classification behaviour as is shown by our 

analyses of the performances of the two systems. However, the SVMs significantly 

outperformed the MLPs for five out of the seven AFs while only using 8.8% to 44.2% of the 

training material used to train the MLPs.  

The classification accuracies obtained for the AF values varied widely; by more than 70% 

absolute. This behaviour and the very low classification scores for, for instance, dental, 

central, mid, and approximant (see also Table 6 and Section 4.2) cannot simply be explained 

by the fact that an AF reference transcription of the speech signal was used in which the AF 

values did not change asynchronously, since the errors introduced by using the canonical AF 

transcription will have affected all AF values to more or less the same extent (see also Section 

2.3). An in-depth analysis of the classification performance of the SVMs was carried out to 

get a better understanding of the articulatory features and to explain why some of the 

investigated AFs were so difficult to classify. The expectation was that this analysis would 
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give an indication of the way to proceed towards the definition of a feature set that can be 

used for a reliable and accurate automatic description of the speech signal. The structure in 

the misclassifications of the SVMs and MLPs suggested that there might be a mismatch 

between the characteristics of the classification systems and the characteristics of the 

description of the AF values themselves. The analyses presented in Section 6.2 showed that 

some of the misclassified features are inherently confusable given the acoustic space. 

Furthermore, the preliminary results presented in Section 6.2 suggested that it is better to train 

SVMs on samples of the extremes of an AF class distribution and allow them to infer the 

intermediate points of the continuum than to train separate classifiers to identify artificially 

quantised AF values. Thus, in order to come to a feature set that can be used for a reliable and 

accurate automatic description of the speech signal, it is concluded that it could be beneficial 

to move away from quantised representations. This will be confirmed in follow-up research. 

In our experiments, we used MFCCs as input for the two classification systems. It is, 

however, questionable whether MFCCs are the most appropriate type of acoustic features for 

the task of articulatory feature classification (for instance, as was already pointed out in 

Section 6.2, MFCCs do not allow reliable estimation of the ‘front-back’ continuum), and 

whether other types of acoustic feature will yield improved performance because they better 

capture the AF value information. Additionally, other types of acoustic feature might show 

differences between the MLP and SVM classifiers that can further improve our understanding 

of the AFs and provide insights into an improved definition of a feature set that can be used 

for a reliable and accurate automatic description of the speech signal. Future research will 

investigate whether acoustic features based on the human auditory system (Cooke, 1993) will 

improve the classification performance of the SVMs and MLPs and our understanding of the 

AFs. 
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In the current study, we tried to get the best possible performance for the SVM and MLP 

classification systems. However, for a computational model of HSR it is important to model 

human recognition behaviour. For example, such a computational model should correctly 

model the pattern of confusion of AF values. Comparisons of human and computer 

recognition behaviour have shown that, e.g., voicing information is recognised much more 

poorly by machines than by human listeners (Cooke, 2006; Meyer et al., 2006). In follow-up 

research, we intend to extend the comparisons of the articulatory feature 

recognition/classification confusion patterns of human listeners and computers to include all 

AF values. Capturing a better understanding of fine phonetic detail will be achieved by 

examining such confusion patterns at the AF value level. 
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