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The ultimate goal of our research is to develop a computational model of human speech recognition that is able to capture the effects of fine-grained acoustic variation on speech recognition behaviour. As part of this work we are investigating automatic feature classifiers that are able to create reliable and accurate transcriptions of the articulatory behaviour encoded in the acoustic speech signal. In the experiments reported here, we analysed the classification results from support vector machines (SVMs) and multilayer perceptrons (MLPs). MLPs have been widely and successfully used for the task of multi-value articulatory feature classification, while (to the best of our knowledge) SVMs have not. This paper compares the performance of the two classifiers and analyses the results in order to better understand the articulatory representations. It was found that the SVMs outperformed the MLPs for five out of the seven articulatory feature classes we investigated while using only 8.8% to 44.2% of the training material used for training the MLPs. The structure in the misclassifications of the SVMs and MLPs suggested that there might be a mismatch between the characteristics of the classification systems and the characteristics of the description of the AF values themselves. The analyses showed that some of the misclassified features are inherently confusable given the acoustic space. We concluded that in order to come to a feature set that can be used for a reliable and accurate automatic description of the speech signal; it could be beneficial to move away from quantised representations.

Introduction

In everyday speech it is quite common for there to be no pauses between lexical items; words flow smoothly one into another with adjacent sounds coarticulated. This means that, if words are assumed to be constructed from a limited set of abstract phonemes, then virtually every contiguous phoneme string is compatible with many alternative word sequence interpretations. Human listeners, however, appear to be able to recognise intended word sequences without much difficulty. Even in the case of fully embedded words such as ham in hamster, listeners can make the distinction between the two interpretations even before the end of the first syllable "ham".

There is now considerable evidence from psycholinguistic and phonetic research that sub-segmental (i.e. subtle, fine-grained, acoustic-phonetic) and supra-segmental (i.e. prosodic) detail in the speech signal modulates human speech recognition (HSR), and helps the listener segment a speech signal into syllables and words (e.g. [START_REF] Davis | Leading up the lexical gardenpath: Segmentation and ambiguity in spoken word recognition[END_REF][START_REF] Kemps | Prosodic cues for morphological complexity: The case of Dutch plural nouns[END_REF][START_REF] Salverda | The role of prosodic boundaries in the resolution of lexical embedding in speech comprehension[END_REF]. It is this kind of information that appears to help the human perceptual system distinguish short words (like ham) from the longer words in which they are embedded (like hamster). [START_REF] Salverda | The role of prosodic boundaries in the resolution of lexical embedding in speech comprehension[END_REF], for instance, showed that the lexical interpretation of an embedded sequence is related to its duration; a longer sequence tends to be interpreted as a monosyllabic word more often than a shorter one. [START_REF] Kemps | Prosodic cues for morphological complexity: The case of Dutch plural nouns[END_REF] found that, in addition to duration, intonation seems to help the perceptual system in distinguishing singular forms from the stems of plural forms. However, currently no computational models of HSR exist that are able to model this fine phonetic variation [START_REF] Hawkins | Roles and representations of systematic fine phonetic detail in speech understanding[END_REF]. Our ultimate goal is to refine an existing computational model of HSR 'SpeM' [START_REF] Scharenborg | How should a speech recognizer work?[END_REF] such that it is able to capture and use fine-grained acousticphonetic variation during speech recognition. SpeM is a computational model of human word recognition built using techniques from the field of automatic speech recognition (ASR) that is able to recognise speech.

Articulatory features (AFs) describe properties of speech production and can be used to represent the acoustic signal in a compact manner. AFs are abstract classes which characterise the most essential aspects of articulatory properties of speech sounds (e.g. voice, nasality, roundedness, etc.) in a quantised form, leading to an intermediate representation between the signal and the lexical units [START_REF] Kirchhoff | Robust speech recognition using articulatory information[END_REF]. In this work, we are in search of automatic classifiers able to create reliable and accurate transcriptions of the acoustic signal in terms of these articulatory features for the development of a computational model of HSR that is able to model the effect of fine grained acoustic variation on HSR.

In the field of ASR, AFs are often put forward as a more flexible and parsimonious alternative [START_REF] Kirchhoff | Robust speech recognition using articulatory information[END_REF][START_REF] Wester | Syllable classification using articulatory-acoustic features[END_REF][START_REF] Wester | A Dutch treatment of an Elitist approach to articulatory-acoustic feature classification[END_REF] to modelling the variation in speech using the standard 'beads-on-a-string' paradigm [START_REF] Ostendorf | Moving beyond the 'beads-on-a-string' model of speech[END_REF], in which the acoustic signal is described in terms of phones, and words as phone sequences. It is known that speech recognition in adverse conditions poses severe problems for current phone-based ASR systems. However, [START_REF] Kirchhoff | Robust speech recognition using articulatory information[END_REF] showed that an ASR system based on AFs outperformed HMM-based ASR systems in certain adverse conditions. Furthermore, the modelling of spontaneous speech is a difficult issue for phone-based ASR systems. Many techniques and approaches have been tried to model spontaneous speech phenomena such as coarticulation, but only to limited successes (for an overview, see [START_REF] Strik | Modeling pronunciation variation for ASR: A survey of the literature[END_REF].

AFs offer the possibility of representing coarticulation and assimilation effects as simple feature spreading. For these reasons, we investigate the use of AFs to capture fine phonetic (subphonemic) variation.

Over the years, many different approaches have been investigated for incorporating AFs into ASR systems. For instance, artificial neural networks (ANNs) have shown high accuracies for classifying AFs [START_REF] King | Detection of phonological features in continuous speech using neural networks[END_REF][START_REF] Kirchhoff | Robust speech recognition using articulatory information[END_REF][START_REF] Wester | Syllable classification using articulatory-acoustic features[END_REF]. [START_REF] Frankel | Articulatory feature recognition using dynamic Bayesian networks[END_REF] provide a short overview of other modelling schemes, such as hidden Markov models [START_REF] Kirchhoff | Robust speech recognition using articulatory information[END_REF], linear dynamic models [START_REF] Frankel | Linear dynamic models for automatic speech recognition[END_REF] and dynamic Bayesian networks [START_REF] Livescu | Hidden feature models for speech recognition using dynamic Bayesian networks[END_REF]. For smaller tasks, support vector machines (SVMs) offer favourable properties: good generalisation given a small amount of high-dimensional data. SVMs have also been applied to the classification of articulatory features [START_REF] Juneja | Speech recognition based on phonetic features and acoustic landmarks[END_REF][START_REF] Niyogi | Detecting stop consonants in continuous speech[END_REF]. For instance, [START_REF] Juneja | Speech recognition based on phonetic features and acoustic landmarks[END_REF] developed SVM-based landmark detectors for classifying binary place and voicing features in TIMIT [START_REF] Garofolo | Getting started with the DARPA TIMIT CD-ROM: An acoustic phonetic continuous speech database[END_REF] and reported accuracies ranging from 79% to 95%. Also, [START_REF] Niyogi | Detecting stop consonants in continuous speech[END_REF] used SVMs to detect stop consonants in TIMIT. However, the research reported so far using SVMs to classify articulatory features have been mainly concerned with binary decision tasks, or with a limited domain. In the area of visual automatic speech recognition, however, SVMs have been used successfully for the automatic classification of multi-level articulatory features [START_REF] Saenko | Visual speech recognition with loosely synchronized feature streams[END_REF]. This leads us to hypothesise that SVMs could also offer a performance advantage in the classification of multi-level acoustic articulatory features.

In the work reported here, we investigated the possibility of classifying multi-level acoustic articulatory features using SVMs. Given the existing high performance of ANNs on the task of AF classification, the classification performance of the SVMs has been compared with that of multilayer perceptrons (MLPs). Simultaneously, we use the SVMs as a tool for analysis in order to come to a better understanding of the AFs and their respective values (see Section 2.2). In our experiments, we started with a set of articulatory features that has been widely used (e.g. [START_REF] Kirchhoff | Robust speech recognition using articulatory information[END_REF][START_REF] Wester | Syllable classification using articulatory-acoustic features[END_REF][START_REF] Wester | A Dutch treatment of an Elitist approach to articulatory-acoustic feature classification[END_REF] in the front-end of automatic speech recognition systems. An analysis of the AF value classification results is carried out to determine whether those AFs can also be used reliably to describe the speech signal as needed by a computational model able to capture and use fine phonetic detail. The expectation is that an analysis of why specific AF values are more difficult to classify than others, for instance because they are more difficult to derive reliably from the acoustic signal, will lead to ideas for defining an improved set of articulatory features and values that better capture the fine phonetic detail in the speech signal. The results of the experiments and analyses will thus be used to infer a modified set of articulatory features.

In order to allow a direct comparison between the SVM and the MLP, both types of systems have been trained on the same material (see Section 2.1) using the same AF set (Section 2.2). The remainder of Section 2 presents an overview of the experiments presented in this paper and their evaluation. Section 3 outlines details of the two classification systems that were used. Section 4 presents and analyses the results obtained using SVMs. Section 5 presents the results obtained using MLPs and compares these with those of the SVMs. Section 6 discusses the most notable findings. Lastly, conclusions as well as promising directions for future research are presented in Section 7.

Experimental set-up

Material

The training and testing material used in this study are taken from the TIMIT corpus [START_REF] Garofolo | Getting started with the DARPA TIMIT CD-ROM: An acoustic phonetic continuous speech database[END_REF]. TIMIT consists of reliably hand labelled and segmented data of quasiphonetically balanced sentences read by native speakers of eight major dialect regions of American English. Of the 630 speakers in the corpus, 438 (70%) were male. We followed TIMIT's standard training and testing division, in which no sentence or speaker appeared in both the training and test set. The training set consisted of 3 696 utterances. The test set (excluding the sa sentences) consisted of 1 344 utterances. The speech was parameterised with 12 th order MFCCs and log energy, augmented with 1 st and 2 nd order derivatives, resulting in 39-dimensional acoustic feature vectors. The features were computed on 25 ms windows shifted by 10 ms per frame.

Articulatory features

In this research, we used the set of seven articulatory features shown in Table 1. The names of the AFs are self-explanatory, except maybe for 'static' which gives an indication of the rate of acoustic change, e.g., during diphthongs [START_REF] Frankel | Articulatory feature recognition using dynamic Bayesian networks[END_REF].

Table 1. Specification of the AFs and their respective quantised values.

AF

Values 'manner ' approximant, retroflex, fricative, nasal, stop, vowel, silence 'place' bilabial, labiodental, dental, alveolar, velar, nil, silence 'voice' +voice, -voice 'high-low' high, mid, low, nil, silence 'fr-back' front, central, back, nil 'round' +round, -round, nil 'static' static, dynamic The chosen set is based on the six AFs proposed in [START_REF] Wester | Syllable classification using articulatory-acoustic features[END_REF]. An initial experiment showed that the accuracies for the AF values in the 'place' AF class improved if the vowelrelated AF values (high, mid, low) were removed from 'place' and were put in a separate (new) 'high-low' AF class. For the training and testing data, the frame-level phonemic TIMIT labels were replaced by the canonical AF values using a table look-up procedure. The mappings between the phonemes and the AF values are based on [START_REF] Ladefoged | A course in Phonetics[END_REF]; note that, following [START_REF] Wester | Syllable classification using articulatory-acoustic features[END_REF], the silence part of a plosive is mapped onto stop and not onto silence in our experiments (we return to this in Section 4.4). Table 2 presents an overview of the feature value specification of each of the phone labels in the TIMIT set. 

Experiments and evaluation

In the first experiment (Section 4), we trained two types of SVM classification systems for the seven AFs (Table 1). For the '-WIN' SVM system, the input of the SVM was presented with single MFCC frames; no context window was used. For the '+WIN' SVM system, the input of the SVM was presented with a context window that included the three preceding and three following frames. This distinction allowed us to discern the potential benefit of using a context window to take into consideration the dynamic nature of speech. In the second experiment (Section 5), we trained a multilayer perceptron (MLP) system also using the +/three frames context window.

The results for all AF classification experiments are reported in terms of the percentage frames correctly classified, and they are presented at two different levels: per AF (the overall AF classification score) and per AF value. This was done because our ultimate goal is to build a computational model of HSR that is able to recognise fine-grained acoustic-phonetic variation, and to use it during speech recognition. Therefore, we are not only interested in overall classification scores, since these also include the classification of nil or silence (except for 'static' and 'voice'), but also in the classification of each AF value separately. The significance of the difference in performance between two sets of results is calculated using a significance test to compare continuous speech recognisers [START_REF] Harborg | Hidden Markov Models applied to automatic speech recognition[END_REF] and is based on the standard t-test.

One of the benefits of using AFs is that they are able to change asynchronously, which makes them suitable to describe the variation occurring in natural speech arising from effects such as coarticulation and assimilation. An estimate of the degree of the asynchrony in feature changes in speech is given in [START_REF] Wester | Asynchronous articulatory feature recognition using dynamic Bayesian networks[END_REF] in terms of AF combinations. Feature representations derived from the canonical phonemic transcription resulted in 62 AF combinations. When the features were allowed to change asynchronously, the number of AF combinations increased to 351. A transcription of the speech signal, however, that accounts for asynchronously changing features does not exist. In our experiments, the reference frame labels have therefore been derived by replacing the frame-level phonemic TIMIT labels by the canonical AF values, which causes the features to change synchronously. During classification, asynchronously changing AFs will thus be erroneously marked as errors. The impact on frame accuracy the lack of a transcription that accounts for asynchronously changing AFs has is illustrated by [START_REF] King | Detection of phonological features in continuous speech using neural networks[END_REF]. They showed that if the feature is allowed to change within a range of -/+ 2 frames from the phone boundary, the measure "all frames correct" increases significantly by 9% absolute to 63%. The number of errors occurring at canonical phoneme boundaries, thus, when not allowing asynchronously changing features, creates a substantial decrease in the frame accuracy.

The lack of a transcription of the speech signal that accounts for asynchronously changing

AFs also means that it is impossible to achieve 100% correct classification on the given task and that the 'upper-bound' of the classification accuracy is also unknown. Nevertheless, we present the results in terms of the percentage of correctly classified frames, for which the output of each of the systems (in the form of an AF value for each frame) is aligned with the reference frame labels. In addition, the most often occurring AF value confusions for each system are presented. We want to compare the performance of SVMs with that of MLPs on the same task; therefore, both systems will 'suffer' the same consequences of being compared to the same reference transcription. The absolute levels of performance of both systems will likely be a bit lower but the differences in the absolute levels of performance will be the same irrespective of the reference transcription used.

Section 4 presents the most remarkable findings and differences between the -WIN and +WIN systems, while Section 5 presents those for the +WIN and MLP systems. Both Sections comparison is a cross-check that investigates whether there is a mismatch between the characteristics of the classification systems and the characteristics of the description of the AF values.

The AF classification systems

Multilayer perceptron AF classification

Seven MLPs (one for each AF) were trained using the NICO Toolkit [START_REF] Ström | Phoneme probability estimation with dynamic sparsely connected artificial neural networks[END_REF]. All MLPs consisted of three layers. Each MLPs' input layer, with 273 nodes, was presented with 39 dimensional MFCC frames with a context window of plus and minus three frames. The hidden layer had tanh transfer functions and a different number of nodes depending upon the AF (see Table 8). In an initial experiment to determine the optimum network size, networks with various numbers of hidden units were trained. The network configurations that gave the best performance in the initial tests are used in the experiments and results presented in Section 5. The output layer was configured to estimate the posterior probabilities of the AF values given the input. The number of output nodes for each MLP is also listed in Table 8.

When training each MLP the performance on a validation set (consisting of 100 utterances randomly selected and taken from the training material) was monitored and training was terminated when the validation set's error rate began to increase. During classification, the class with the highest associated posterior probability is chosen.

Support Vector Machine AF classification

SVMs are binary maximum margin classifiers (for a full introductory text, the reader is directed to [START_REF] Burges | A Tutorial on Support Vector Machines for Pattern Recognition[END_REF]. For this paper we present a brief introduction to provide an insight into these classifiers.

Figure 1. Finding the decision boundary using SVMs.

One of the benefits of SVMs over MLPs is that their training may be formulated as a quadratic programming optimisation problem that guarantees a globally optimal solution.

However, unlike MLPs, SVMs are not statistical classifiers and do not estimate posterior probabilities directly. The maximum margin principle underlying an SVM is illustrated in Figure 1. Given two separable classes the decision boundary is found by maximising the (margin or) distance between the two dotted parallel lines such that no data occupy the space in-between. The decision boundary is chosen to be the solid line midway between the dotted lines. In this case, the solution for the decision boundary is expressed entirely in terms of the points that lie on the dotted lines, which are known as the support vectors (SVs), and all other points may be discarded.

When the data is non-separable then a soft margin is used that allows some points to enter the margin or be misclassified entirely. Incursions into the margin are penalised so a search for the best solution maximises the margin and minimises the penalties simultaneously.

The trade-off between the two is controlled by a single regularisation parameter, c, applied as a multiplying factor on the penalties. Smaller values of c will result in solutions that weight margin maximisation more importantly while larger values will move the focus towards fitting the training data which may lead to poor generalisation. Thus c controls how well an SVM generalises to test data. In this case, the SVs are those points that lie within the margin (including those on the 'dotted-line' boundaries) or are misclassified.

SVMs are easily extended to non-linear problems by mapping the data non-linearly onto a manifold embedded in a higher dimensional space and constructing a linear boundary there. A practical way to demonstrate this is to fold a flat sheet of paper (a 2D space) into a 3D shape, cut it linearly and unfold to reveal the non-linear cuts. Such transformations are implemented efficiently within the SVM framework by the use of kernel functions (for more detail see [START_REF] Burges | A Tutorial on Support Vector Machines for Pattern Recognition[END_REF].

Classification of more than two classes is achieved by combining the decisions of several binary SVMs by error correcting codes [START_REF] Wu | Probability estimates for multi-class classification by pairwise coupling[END_REF]. The number of SVMs required depends on the number of classes. For each data point the adopted approach takes the hard decisions of each SVM (encoded, for example, as a 1 if the data point lies on one side of the boundary and 0 if it lies on the other) and combines them into a binary number string.

Each unique string is then mapped to a class label.

In our experiments, we used LIBSVM [START_REF] Chang | LIBSVM: a library for support vector machines[END_REF]. For the -WIN condition, the input of the SVMs consisted of single MFCC frames. For the +WIN condition a context window of plus and minus three frames was also presented resulting in 273-dimensional MFCC vectors. Two common kernels are the polynomial kernel and the radial basis function (RBF) kernel. In an initial experiment, we tested both the polynomial and the RBF kernels and found the RBF performed better. Let us examine RBF kernel SVMs in more detail.

Figure 2. Visualising the output of an RBF kernel SVM.

Figure 2 is an illustration of the output of an RBF kernel SVM (it is important to note that the figure is not an illustration of the non-linear mapping to the higher dimensional space). The x and y directions correspond to the inputs to the SVM while the z direction represents the (unthresholded) output score of the SVM at each {x,y} coordinate. Figure 2 shows the simplest possible SVM solution with two SVs, one for each class. The SVM places a spherical Gaussian (with a standard deviation σ) centred on each SV. The sign of the Gaussian is dependent upon the SV's class label. One may try to infer that RBF kernel SVMs have a loose analogy to density estimation. However, it is not a true density estimate and is actually closer to nearest neighbour clustering. In a classifier involving many SVs, the output score is the weighted sum over a set of basis Gaussians, one centred on each of the SVs and all with the same σ. Comparing the results in Tables 3 and4 shows that, unsurprisingly, using a context window increases the AF accuracies for all AFs. (Although the -WIN condition also uses context knowledge via the first and second order derivatives, such knowledge is more reliable and is encoded differently when using a context window.) The size of this increase, however, is not the same for all AFs: comparing the accuracies after training on 100K training frames shows that the increase in accuracy for 'voice' is only 0.4%, while the increase for 'static' is the biggest at 4.6%. The difference in accuracies between the -WIN and +WIN condition is, however, significant at the 99% confidence level for each AF. Adding a ± three frame context window is, thus, beneficial for all AFs but not to the same extent. We return to this issue in Section 4.4.

SVM AF classification results

Classification results per AF

A second difference between the AF classifiers for 'voice', 'manner', 'fr-back', and 'highlow' is that the percentage of support vectors increased when a context window was used, while there was a decrease for 'round', 'static', and 'place'. The explanation of the increase in support vectors is rather straightforward. In the case where no context window is used, the dimensionality of the MFCCs is 39, while the dimensionality increases to 273 when a context window is used. Because of this high dimensionality the data points are more dissimilar, resulting in more support vectors needed to cluster the data. The reduction in support vectors for 'static', 'round', and 'place' is thus surprising, we return to this issue in Section 4.4.

Classification results per AF value

Table 6 lists the classification accuracies in terms of frames correctly classified for each AF value for the SVM classification systems (trained on 100K training frames) as well as the difference in accuracy (all differences are significant at the 99% confidence level). A quick glance at the results shows that the +WIN condition also outperforms the -WIN condition on an AF value level, with the exception of vowel and front. The differences in accuracies can be as high as 14.9% (e.g. for central). The higher AF accuracies for the +WIN conditionreported in Tables 3 and4 -are thus not simply a result of a better classification of silence and nil. the classification accuracy for mid is about 25% lower than the classification accuracies for high and low. Furthermore, the classification accuracy for labiodental is 7% higher than the classification accuracy for velar, while there are 2.6 times more velar frames in the training data than there are labiodental frames. So, there has to be other reasons as to why some of the AF values are so difficult to classify. We will return to this issue in Section 6. 

AF value confusions

Table 7 shows an overview of the six most frequently occurring AF value confusions for both the -WIN and the +WIN SVM systems. What is immediately evident is that four of the five AF values that scored the lowest accuracies as listed in Table 6 appear within the top 4 most frequent confusions in Table 7. Furthermore, the six most frequent -WIN confusions are also the six most frequent +WIN confusions, but with a slightly different ranking; both systems, thus, make the same confusions most frequently. The misclassifications made by the two AF classification systems are thus not 'random', but contain some structure.

Discussion and analysis

A context window is usually added to take into consideration the dynamic nature of speech, which usually spans more than the size of one frame (i.e. 25 ms). There are three AFs that are critically dependent on the availability of information on spectral change (as will be explained below), these are 'static', 'manner', and 'place'. These three AFs are, indeed, among the four AFs that have the biggest improvement when using a context window. Unlike the other AF values, 'voice' does not benefit much from using a context window. This is because all the information that is needed for a proper classification can be found in a single frame. The fundamental frequency (F0) range for a male speaker is 80-200 Hz, and for females 150-350

Hz. This means that even in case of the lowest F0 (80 Hz), two full periods are present in a frame of 25 ms.

In our classification scheme (based on [START_REF] Ladefoged | A course in Phonetics[END_REF], [w], [j], and [l] are marked as approximant, but the formant structure of approximant is very similar to the formant structure of high vowels, with the difference being that approximant has relatively slow, but clear, formant changes shortly before and after a (incomplete) constriction. Furthermore, the formant structure of retroflex is also very similar to the formant structure of vowel, with the difference being here that retroflex has clear formant changes at the transitions with adjacent vowels and consonants. To be able to distinguish between vowel, approximant, and retroflex information about the spectral changes is fundamental. An analysis of the most occurring confusions showed that the dramatic improvements for approximant and retroflex (11.6% and 7.3%, respectively) are indeed mainly due to a dramatic decrease in approximant-vowel (10.6% absolute improvement) and retroflex-vowel (6.9% absolute improvement) confusions.

The slight decrease in vowel classification is caused by an increase of 0.5% of vowelapproximant confusions. Nevertheless, it is clear that the availability of the spectral changes is vital for the classification approximant and retroflex. However, the accuracy for approximant is still low. Also in the case of nasal, the 4.0% improvement in accuracy is due entirely to a reduction in nasal-vowel confusions.

A context window can also help to distinguish between a fricative and a stop. It can help in determining whether a silent period preceded the frication, and thus whether the frication comes from a fricative or a stop. This is exactly what happened. An analysis of the most frequent confusions revealed that the 9.4% increase in classification accuracy for +WIN is mainly due to a 3.6% reduction in stop-fricative confusions and a 3.5% reduction in stopsilence confusions. The 3.9% improvement for fricative is largely due to a decrease in The AF 'place' is also helped by using a context window. The second formant (F2)

values and the amount and direction of F2 changes in vowels adjacent to a plosive or nasal consonant give a clear indication of where in the vocal tract the constriction for the plosive or nasal occurred. To execute a gesture and reach the articulatory target, a speaker's articulators need between 30 ms and 100 ms [START_REF] Rietveld | Algemene Fonetiek[END_REF]. Therefore, in this study, not every frame will contain information about articulator movement, since the MFCCs used in this study were created on the basis of a 25 ms windows with a 10 ms shift. Hence, a context window provides this information to the classifiers thereby making it easier to classify the correct place of articulation. This explains the relatively large increase in accuracy (3.1% absolute) for 'place'.

In general, many of the 'place' AF values are often confused with alveolar. The relatively large reduction in percentage confusions for bilabial is due to a reduction of 3.3% absolute of the bilabial-silence confusions and a reduction of 2.9% absolute of the bilabialalveolar confusions. The biggest factor for the improvement of labiodental is a reduction of 3.5% in the confusions with alveolar. Furthermore, for dental the 5.5% improvement is due to a 2.6% absolute reduction in dental-alveolar confusions and a 1.6% absolute reduction in dental-bilabial confusions. Finally, velar had a reduction in velar-alveolar confusions (1.4% absolute), and an absolute reduction of 2.2% in velar-alveolar confusions. Overall, the classification accuracies for the AF values are somewhat low. We return to this point in Section 6.

Using a context window for the AF 'static' improves both AF values to the same extent. However, it is interesting that the overall classification performance of this binary classification task performs 11.5% worse than the other binary task 'voice' in the -WIN condition (see Table 3, 500K training frames) and 5.8% in the +WIN condition (see Table 4, 500K training frames). The percentage of support vectors for 'static' was relatively high in the -WIN condition (almost three times as many as for 'voice'). Following [START_REF] Frankel | Articulatory feature recognition using dynamic Bayesian networks[END_REF], the value dynamic in the 'static' class is assigned to frames that come from various diverse (groups of) phonemes, which have spectral change during production in common. These include, e.g., diphthongs, laterals, trills, and plosives. Classifying 'static' is thus a difficult task for SVMs that do not use a context window. A deeper analysis of the SVMs in the -WIN condition showed that the support vectors had Lagrange multipliers that did not reach c, which means that they able to separate the training data completely. However, the width of the RBFs is also small (indicated by the large value for 1/σ 2 ). This, coupled with the large number of support vectors, suggests that the clusters representing static and dynamic are irregularly distributed and highly localised, resulting in poor generalisation. This can be explained by the great diversity of the (groups of) phonemes assigned with the dynamic label.

This problem is somewhat alleviated by using a context window. Using a context window reduced the percentage of support vectors and increased the width of the RBFs (indicated by the much smaller value for 1/σ 2 ). This indicates that the clusters representing static and dynamic are less irregularly distributed and less localised. Using a context window thus simplifies the classification task for 'static'; it is easier to group together the input samples, resulting in the biggest increase of the classification accuracy for all AFs. However, compared to 'voice' the percentage support vectors is still much higher and the value for 1/σ 2 is larger.

This indicates that the clusters representing +voice and -voice are much more coherent and regularly distributed than the clusters representing dynamic and static. This is not surprising since the acoustic phenomena associated with static and dynamic are much more diverse than those for +voice and -voice.

The effects of using a context window on the AF values of 'fr-back' are quite different. First of all, the classification accuracy of front deteriorates somewhat. This is due to an increase in the front-central and front-back confusions of 1.0% and 0.4% absolute, respectively. The classification accuracy for central in the -WIN condition is quite bad, it is thus not surprising that the accuracy is improved for the +WIN condition. The 14.9% absolute improvement for central is due to a 9.9% absolute reduction in central-front confusions and a 4.5% absolute reduction in central-nil reductions. For back, the 9.1% absolute increase is caused by a big reduction in back-front confusions (7.9% absolute) and a small increase in back-central confusions (1.5% absolute). Although a context window improves the classification accuracy for both central and back, the classification accuracies remain low, this will be further discussed in Section 6.

Of the 'high-low' AF values, mid is least well classified and therefore has the most room for improvement. When a context window is used, indeed mid benefits most, increasing with 8.1% absolute in classification accuracy. This increase is mostly due to a reduction in mid-high confusions (3.0% absolute) and a reduction in mid-low confusions (3.1% absolute).

In Section 6, this is further discussed.

A side-effect of using a context window is that the number of times a change in AF value occurs between two consecutive frames is greatly reduced. For instance, for 'place' adding a context window reduced the number of 'frame changes' with 7.4% absolute, while for 'static' the number of frame changes was reduced with 45.0% absolute. Adding a context window thus 'smoothes' the output and removes quick alterations in AF values.

MLP AF classification results

Classification results per AF

Table 8 shows, in decreasing order, the MLP classification results in terms of percentage frames correctly classified for each AF separately. Furthermore, the sizes of the hidden and output layers of each MLP are listed. The best results are obtained for 'voice', followed by 'round'. The results in Table 8 are not quite as good as the results presented in [START_REF] Wester | Syllable classification using articulatory-acoustic features[END_REF], with the exception of the performances for 'place' and 'high-low', which are better. From Table 8, it is not possible to deduce a clear relationship between the number of output nodes (or the difficulty of the classification task) and the accuracy of the AF classifier.

For instance, 'static' has two output nodes, like 'voice', but the performance of 'static' is almost 10% lower (see also the discussion on this difference in Section 4.4). On the other hand, 'manner' has seven output nodes, but gets a relatively high accuracy compared to, for instance, 'place' and 'high-low' which have an equal and a lower number of output nodes, respectively, but a lower accuracy.

Comparing MLP and SVM AF classification results

For convenience, the best AF classification accuracies for the SVM classifiers (i.e. those +WIN classifiers trained on 100K training frames) and for the MLP classifiers are listed sideby-side in Table 9. 

Comparing MLP and SVM AF value classification results

A comparison of the AF value accuracies of the MLP classifiers and the +WIN SVM classifiers is shown in Table 6. Except for approximant, high, and front all differences are significant at the 99% confidence level. A quick glance at the results shows that there is little difference between the two systems. Some of the AF values are better classified by the SVMs while others are classified by the MLPs; the deteriorations and improvements per AF more or less 'balance' each other. For both types of system, the three easiest AF values to classify are +voice, vowel, and -voice, while the three most difficult are dental, central, and +round for the SVM system, and dental, central, and back for the MLP system. These latter observations are discussed in Section 6.

Comparing MLP and SVM AF value confusions

Similar to the -WIN and +WIN SVM systems, the six most frequently occurring AF value confusions are listed in Table 7. Again similar to the -WIN and +WIN SVM systems, for the MLP system, four of the five AF values that have the lowest accuracies as listed in Table 6 appear within the top 4 most frequent confusions in Table 7. Comparing the SVM and MLP systems shows that the most frequent confusions for both types of systems are the same, but again with a slightly different ranking.

Discussion and analysis

The above analyses indicate that the SVM and MLP systems give similar classification results. But what is striking is that a more detailed analysis of all occurring confusions for both the SVM and the MLP systems revealed that both types of systems also tend to make the same relative number of confusions. The analysis revealed that, in general, if the AF value accuracy for the SVM system is higher than that of the MLP system then all possible confusions for that specific AF value for the SVM system are proportionally lower; and vice versa. There are, however, a couple of differences. Firstly, for all 'manner' and 'place' AF values, remarkably, more AF value-silence confusions occur for the SVM system. Secondly,
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with respect to 'place', bilabial, labiodental, dental, and velar are more often classified as alveolar by the SVM system. Looking more closely at the AF value classification accuracies for both systems reveals that for all 'real' consonants (during articulation a closure or stricture of the vocal tract occurs that is sufficient to cause audible turbulence; this thus excludes more vowel-like consonants like approximant and retroflex), the MLP system outperforms the SVM system, with the exception of dental but this can be explained by the fact that there are only few training frames for dental (see also Section 6.1) and that SVMs are better able in dealing with sparse data. Like the 'real' consonants, the AF value dynamic is critically dependent on the availability of spectral change.

General discussion and further analyses

6.1. Place of articulation of consonants ('place') [START_REF] Miller | An analysis of perceptual confusions among some English consonants[END_REF] already pointed out that place of articulation is the easiest to see on the speaker's lips, but the hardest to hear out of all features they investigated (voicing, nasality, affrication, duration, and place of articulation). This study shows that, just as it is for human listeners, place of articulation is the most difficult feature for automatic systems to classify: for all three systems (-WIN SVM, +WIN SVM, and MLP) 'place' and 'high-low'

were the two AFs that were classified worst.

As pointed out before, many of the AF 'place' values are most often confused with alveolar. We analysed the MFCCs to investigate why bilabial, labiodental, velar, and especially dental are confusable with alveolar. For the 10K training frames set, we calculated the Bhattacharyya distances for each of the 39 Mel-frequency cepstral coefficients for the bilabial, labiodental, velar, and dental frames compared with each of the MFCCs of the ACCEPTED MANUSCRIPT alveolar frames. The distance is a separability measure between two Gaussian distributions and is explained in many texts on statistical pattern recognition (e.g. [START_REF] Fukunaga | Introduction to statistical pattern recognition[END_REF]. The results are plotted in Figure 3. The x-axis shows the coefficient number, while the y-axis shows the Bhattacharyya distance. What immediately stands out is that overall the differences between the distributions are rather small, with the exception of only one coefficient: coefficient 13, which represents the energy (and in case of bilabial and velar also the first coefficient, representing the overall spectrum shape).

Figure 3. The Bhattacharyya distances between the 'bilabial ', 'labiodental', 'dental', 'velar' frames and the 'alveolar' frames for each of the 39 MFCCs, calculated on the 10K training frames set.

As pointed out in Section 4.4, the change of F2 gives a clear indication of where in the vocal tract the constriction for plosives and nasals occurs. Given that 1) the higher order Melfrequency cepstral coefficients represent more detailed spectral structure between the formants, and 2) all bilabial consonants in English are either plosive or nasal, one would expect that the differences between the means for the bilabial-alveolar pair in Figure 3 for coefficients 6 to 12 are relatively large. There are indeed minor peaks for bilabial-alveolar at ACCEPTED coefficients 8 and 9. For the other AF values, there are peaks at coefficients 6 and 8 for labiodental-alveolar, and peaks at coefficient 9 for dental-alveolar and velar-alveolar. This suggests that indeed, some information about F2 is represented there, but these peaks are not as pronounced as one might have expected. The largest Bhattacharyya distances are to be found for the lower order MFCCs, which represent the overall spectrum shape and the general formant structure, especially for labiodental-alveolar and to a lesser extent dental-alveolar.

Of the bilabial-alveolar confusions, most confusions are caused by the nasal consonants. The two bilabial nasals were 29.0% and 36.4% confused with alveolar; while for the two bilabial plosives this was only 12.4% and 14.4%. Also for velar consonants, the nasals were much more often confused with alveolar than the other types (fricatives, approximants, and plosives). The confusion percentages for velar nasals with alveolar ranged from 45.0% to 46.9%; while for the other consonants the confusion percentages ranged from 4.5% to 26.9%. This suggests that the peaks for bilabial-alveolar and velar-alveolar that are around coefficients 8 and 9 are mostly 'caused' by the bilabial and velar plosives. It looks like the MFCCs are able to represent the acoustics for the place of articulation for plosives better than for nasal sounds.

As Table 6 shows, dental is classified worst of all 'place' AF values and is most often confused with alveolar (see Table 7). In English, all dental consonants are fricatives. Unlike non-fricative sounds, there are no clear formant changes for dental and alveolar fricatives that give an indication of where in the vocal tract the constriction occurs; they are distinguished by the overall energy and the duration of the noise. The peaks in the Bhattacharyya distances, especially for the lower order MFCCs, are most likely due to the fact that there are no nonfricative dentals but there are non-fricative alveolars, which thus have clear formant changes.

Since the places of articulation of dental and alveolar are very close to one another, there is only a small articulatory difference between the two. Both dental and alveolar consonants have a concentration energy in the higher frequency regions of the spectrum. Figure 3 confirms that the most important coefficient for distinguishing dental and alveolar indeed turns out to be the energy (coefficient 13), with coefficient 1 representing the overall spectrum shape being of a slightly lesser importance. TIMIT). This means that labiodental fricatives can only be distinguished from alveolar fricatives using the intensity and the duration of the energy. Again, this is shown in Figure 3: coefficient 13, the energy, contributes most to the difference between alveolar and labiodental. The comparatively low percentage of confusions of labiodental with alveolar (16.8%; the lowest of all AF values) is most likely due to the rather large differences in the lower order MFCCs; they are more pronounced than the differences in the lower order MFCCs for dental-alveolar. ('front-back' and 'high-low') From Tables 6 and7 it can be deduced that the poor classification of central (27.4% for +WIN) results from the high number of confusions with front and, surprisingly, nil. Table 6 shows that 8.8% of the training frames are labelled as back, 3.4% as central, 21.8% as front, and thus 66.0% as nil. As explained above, this will result in a good posterior probability for nil -and good classification accuracy for nil -but poorer ones for the other three AF values.

Place of articulation of vowels

This might explain the rather low accuracies for both central and back (57.3%). Furthermore, this might also explain the central-nil and back-nil confusions. However, there are also high numbers of central-front (30.5%), back-front (19.4%), and central-back (17.1%) confusions.

An explanation might be that the confusability of these AFs results from the fact that back, central, and front are positions along a continuum of tongue positions from the back of the mouth to the front of the mouth. Thus, the continuous positions have to be quantised. There The most important observation to be made from Figure 5 is that the distribution for front overlaps the distribution for central entirely for each classifier. This means that it is impossible for these classifiers to separate central from front given the MFCCs. This finding explains the low classification accuracy of central and its high confusion rate with front (see Table 7). Figure 5 also presents an explanation for the rather low classification accuracy for back: there is only a small number of back frames that lie outside of the distribution for front.

These frames will most likely be classified correctly, while the others are being classified as front.

Our assumption that the high number of confusions of central and back with front was due to the quantisation of the front-back continuum is thus correct: the MFCCs do not allow reliable estimation of the front-back continuum. Similar to the 'fr-back' AF value central, the classification accuracy for the 'high-low' AF value mid is relatively poor (53.4% for +WIN), with high confusion rates with low (14.7%) and high (14.1%). Unlike 'fr-back', however, the distribution of the training frames for the 'high-low' AF values is more or less balanced (high: 12.3%; mid: 10.5%; low: 11.4% of the training frames). This suggests that the placing of the decision boundaries or the estimation of the posterior probabilities is not necessarily leading to a bias towards one of the AF value classes. further analysis of the confusions for low and high revealed that they were hardly ever confused with one another, but relatively often with mid (11.1% for low and 11.3% for high). The same explanation as for 'fr-back' might be applicable for 'high-low'; the AF values are positions along a continuum of tongue positions from the roof of the mouth to the bottom, which has to be quantised, introducing some error. Again, we also investigated the distribution of the SVM scores calculated by the SVMs for the test material in order to investigate the separability of the three classes. Figure 6 shows that the distributions for the three AF values generated by the three classifiers are overlapping in a fashion consistent with the rather low classification accuracies as listed in Table 6. More importantly, however, the distribution for mid as scored by the mid classifier (middle panel) is overlapping with low and high even more. This can be explained by taking into account the actual pronunciation of mid vowels. For the articulation of mid vowels, the tongue will be in-between the positions for the articulation of low and high vowels, the acoustics associated with mid will thus be in-between the acoustics of low and high. The explanation for the somewhat disappointing results for mid are thus caused by thenot so surprising -fact that the frames for mid are very similar to low and high frames, making it very hard for the classification systems to tell mid apart from the other two AF values. The finding that low and high are more often confused with mid than each other is also to be explained by looking at these distributions. In the left panel, the mid distribution is much closer to the low distribution than the high distribution; and vice versa for the right panel. In addition these classifiers (see Figure 6), we also trained classifiers to discriminate low from high only (Figure 7, left panel) and low from mid only (Figure 7, right panel). The distributions of Figure 7 show how the SVMs behave when they have been trained on only two out of the three AF values. In the left hand panel, mid was excluded from training but during testing it is clearly placed in-between the distributions of high and low. When high was omitted from training (in the right hand panel), the SVM still places the high distribution to the left of mid. These results suggest that there is indeed a continuum from low to high via mid and that the mapping from phonemic labels to a quantised set of AF values is inaccurate with respect to the acoustic phenomena associated with the low, mid, and high frames. Indeed quantisation is inconsistent with the physical system that we wish to model. Furthermore, 
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Table 6 shows an approximately 30% difference in AF value accuracies for +round and -round. As Table 7 shows, this is almost totally caused by the classification of +round frames as -round. Although the percentage of frames in the training data labelled as +round (8.9%, see Table 6) is about one third the percentage of training frames labelled as -round (25.3%, see Table 6), the amount of training data is not as unbalanced as, for instance, was the case for dental in relation to alveolar. In a subsequent analysis, we examined the distribution of the SVM scores calculated by the SVMs for the test material like we did for 'fr-back' and 'high-low'. Figure 8 shows the distributions of the SVM scores of the +round (dotted line) frames and -round (solid line) frames of the test material. The further apart the two distributions are, the easier the +round and -round frames can be separated. As is clear from Figure 8, the distribution of -round is Gaussian shaped and the majority of the -round frames are above '0'. The distribution of +round, however, seems bimodal, with the frames belonging to the right-most 'Gaussian'

shape having an SVM score above '0' as well. These +round frames will incorrectly be classified as -round. Based on these results, we suspect there to be a mismatch between the articulatory description as derived from TIMIT and the actual way the speaker has produced the sound, in other words, the behavioural reality. This needs further investigation.

Concluding remarks future work

To develop a computational model of HSR that is able to simulate the effect of fine-grained acoustic variation on human speech perception, we are in search of AF classifiers that are able to create reliable and accurate AF transcriptions of the acoustic signal. To this end, we The classification accuracies obtained for the AF values varied widely; by more than 70% absolute. This behaviour and the very low classification scores for, for instance, dental, central, mid, and approximant (see also Table 6 and Section 4.2) cannot simply be explained by the fact that an AF reference transcription of the speech signal was used in which the AF values did not change asynchronously, since the errors introduced by using the canonical AF transcription will have affected all AF values to more or less the same extent (see also Section 2.3). An in-depth analysis of the classification performance of the SVMs was carried out to get a better understanding of the articulatory features and to explain why some of the investigated AFs were so difficult to classify. The expectation was that this analysis would
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give an indication of the way to proceed towards the definition of a feature set that can be used for a reliable and accurate automatic description of the speech signal. The structure in the misclassifications of the SVMs and MLPs suggested that there might be a mismatch between the characteristics of the classification systems and the characteristics of the description of the AF values themselves. The analyses presented in Section 6.2 showed that some of the misclassified features are inherently confusable given the acoustic space.

Furthermore, the preliminary results presented in Section 6.2 suggested that it is better to train SVMs on samples of the extremes of an AF class distribution and allow them to infer the intermediate points of the continuum than to train separate classifiers to identify artificially quantised AF values. Thus, in order to come to a feature set that can be used for a reliable and accurate automatic description of the speech signal, it is concluded that it could be beneficial to move away from quantised representations. This will be confirmed in follow-up research.

In our experiments, we used MFCCs as input for the two classification systems. It is, however, questionable whether MFCCs are the most appropriate type of acoustic features for the task of articulatory feature classification (for instance, as was already pointed out in Section 6.2, MFCCs do not allow reliable estimation of the 'front-back' continuum), and whether other types of acoustic feature will yield improved performance because they better capture the AF value information. Additionally, other types of acoustic feature might show differences between the MLP and SVM classifiers that can further improve our understanding of the AFs and provide insights into an improved definition of a feature set that can be used for a reliable and accurate automatic description of the speech signal. Future research will investigate whether acoustic features based on the human auditory system [START_REF] Cooke | Modelling auditory processing and organization[END_REF] will improve the classification performance of the SVMs and MLPs and our understanding of the AFs.

4 and 5

 5 end with an in-depth analysis and discussion. The -WIN/+WIN systems' comparison provides insights into: 1) the effect of having knowledge about the spectral change (in the +WIN condition) on the classification accuracy; 2) which AF values are still being classified badly even though knowledge about the context is known. The +WIN SVM/MLP systems'

  fricative-stop confusions by 2.4%. These reductions are mainly caused by a reduction in the number of (erroneous or unwanted) 'frame changes': the number of times two consecutive frames have a different label. The number of times two consecutive frames were marked as silence and stop is 4 053 for the -WIN condition while this only occurs 2 591 times in the +WIN condition. Likewise, the number of frame changes from stop to fricative reduces from 3 906 to 3 321. Adding a context window thus not only 'smoothes' the output in time, but it also ensures that both the silence and the frication parts are marked as stop. This suggests that the model of stop does not model the different stages of a plosive very well. It might therefore be better not to model the different stages using one AF value, but to re-label the silence part of a stop as stop-closure.

Figure 4 .

 4 Figure 4. Scatter plots of the SVM scores of the central and back test material as scored by

Figure 5 .

 5 Figure 5. Distributions of the SVM scores of the 'fr-back' test material as scored by the

Figure 6 .

 6 Figure 6. Distributions of the SVM scores of the 'high-low' test material as scored by the

Figure 7 .

 7 Figure 7. Distributions of the SVM scores of the 'high-low' test material as scored by the
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 7 Figure7suggests that it is better to train SVMs on the extremes of 'high-low' and allow them

Figure 8 .

 8 Figure 8. Distributions of the SVM scores of the 'round' test material for +round (dotted line)

  analysed the classification results from SVMs and MLPs. MLPs have been widely used for the task of articulatory feature classification and have a reasonable level performance, while SVM classifiers had until now (to the best of our knowledge) not been used for the task of multi-value acoustic AF classification. Both the SVMs and the MLPs are trained discriminatively, but use different optimisation criteria; MLPs estimate posterior probabilities, whereas SVMs estimate the optimum decision boundary by maximising a margin. Despite this difference, both systems show similar classification behaviour as is shown by our analyses of the performances of the two systems. However, the SVMs significantly outperformed the MLPs for five out of the seven AFs while only using 8.8% to 44.2% of the training material used to train the MLPs.

Table 2 .

 2 Feature value specification of each phone label in the TIMIT set.

	ae	vowel	nil	+voice	low	front	-round	static
	ax	vowel	nil	+voice	mid	central	-round	static
	ao	vowel	nil	+voice	low	back	+round	static
	aw	vowel	nil	+voice	low	front	-round dynamic
	ay	vowel	nil	+voice	low	front	-round dynamic
	b	stop	bilabial	+voice	nil	nil	nil	dynamic
	ch	fricative	alveolar	-voice	nil	nil	nil	dynamic
	d	stop	alveolar	+voice	nil	nil	nil	dynamic
	dh	fricative	dental	+voice	nil	nil	nil	dynamic
	dx	stop	alveolar	+voice	nil	nil	nil	dynamic
	eh	vowel	nil	+voice	mid	front	-round	static
	er	retroflex	nil	+voice	nil	nil	nil	dynamic
	ey	vowel	nil	+voice	mid	front	-round dynamic
	f	fricative	labiodental -voice	nil	nil	nil	static
	g	stop	velar	+voice	nil	nil	nil	dynamic
	hh	fricative	velar	-voice	nil	nil	nil	static
	ix	vowel	nil	+voice	high	front	-round	static
	iy	vowel	nil	+voice	high	front	-round dynamic
	jh	fricative	alveolar	+voice	nil	nil	nil	dynamic
	k	stop	velar	-voice	nil	nil	nil	dynamic
	l	approximant	alveolar	+voice	nil	nil	nil	dynamic
	m	nasal	bilabial	+voice	nil	nil	nil	static
	n	nasal	alveolar	+voice	nil	nil	nil	static
	ng	nasal	velar	+voice	nil	nil	nil	static
	ow	vowel	nil	+voice	mid	back	+round dynamic
	oy	vowel	nil	+voice	low	back	+round dynamic
	p	stop	bilabial	-voice	nil	nil	nil	dynamic
	r	retroflex	alveolar	+voice	nil	nil	nil	dynamic
	s	fricative	alveolar	-voice	nil	nil	nil	static
	sh	fricative	alveolar	-voice	nil	nil	nil	static
	t	stop	alveolar	-voice	nil	nil	nil	dynamic
	th	fricative	dental	-voice	nil	nil	nil	static
	uh	vowel	nil	+voice	high	back	+round	static
	uw	vowel	nil	+voice	high	back	+round dynamic
	v	fricative	labiodental +voice	nil	nil	nil	static
	w	approximant	velar	+voice	nil	nil	nil	dynamic
	y	approximant	velar	+voice	nil	nil	nil	dynamic
	z	fricative	alveolar	+voice	nil	nil	nil	static
	zh	fricative	alveolar	+voice	nil	nil	nil	static
	em	nasal	bilabial	+voice	nil	nil	nil	dynamic
	en	nasal	alveolar	+voice	nil	nil	nil	dynamic
	eng	nasal	velar	+voice	nil	nil	nil	dynamic
	nx	nasal	alveolar	+voice	nil	nil	nil	static
	axr	retroflex	alveolar	+voice	nil	nil	nil	dynamic
	aa	vowel	nil	+voice	low	back	+round	static
	ah	vowel	nil	+voice	mid	central	-round	static

Phoneme 'manner'

'place' 'voice' 'high-low' 'fr-back' 'round' 'static'

Table 3 (

 3 without a context window; '-WIN') and Table 4 (with a context window of ± 3 frames; '+WIN') show the classification results of the SVM systems for varying amounts of training data; from 2K training frames (or 0.18% of the total amount of training data) to 500K training frames (or 44.2% of the total amount of training data). These smaller training sets are

created by randomly selecting frames from the full training set while maintaining the same prior distribution of the AF value classes as in the full training set. In the case of 'voice

', 'frback', 'manner', 'static', and 'high-low' 

there are no results for the 500K training set, because the optimisation did not finish after two weeks. The results are reported in terms of the percentage frames correctly classified for each AF classifier separately. Also, the number of training frames and the percentage of support vectors for each AF classifier are listed.

The percentage of support vectors can give an indication of the relative difficulty of the task and/or separability of the AF values: a larger percentage suggests either more complex decision boundaries or highly overlapping data. The values for 1/σ 2 and c (see Section 3.2) for each SVM in both the -WIN and +WIN condition are listed in Table

5

. The results show increasing accuracies (and percentage of support vectors) for increasing number of training utterances. For both -WIN and +WIN conditions, the ranking of the best performing AF classifiers is identical; the best performance is obtained for 'voice', followed by 'round'.

Table 3 .

 3 SVM AF classification accuracies (Acc; decreasing from left to right) for each AF and the percentage of support vectors (SV) in each SVM when using no context window.

	#utts	voice		round	fr-back	manner	static		high-low	place
		SV(%) Acc(%) SV(%) Acc(%) SV(%) Acc(%) SV(%) Acc(%) SV(%) Acc(%) SV(%) Acc(%) SV(%) Acc(%)
	2K	30.2 89.5 61.6 83.2 41.8	80.3 60.7 73.8 92.4 73.3 58.5 73.1 76.4 69.7
	10K	26.8 90.3 48.7 84.8 36.9	82.3 51.2 77.0 85.4 76.0 53.1 75.9 66.7 73.5
	50K	25.1 90.8 40.4 86.1 34.0	83.4 46.8 78.9 76.4 78.0 48.7 77.6 57.5 76.4
	100K 24.2 91.0 37.3 86.6 33.3	83.7 44.6 79.6 72.0 78.6 47.8 78.0 53.8 77.5
	500K 22.9 91.3 32.3 87.3 32.0	84.3 41.5 80.8 60.9 79.8 45.8 79.0 47.3 79.4
		Table 4. SVM AF classification accuracies (Acc; decreasing from left to right) for each AF
		and the percentage of support vectors (SV) in each SVM when using a 7-frame context
		window.										
	#utts	voice		round	fr-back	manner	static		high-low	place
		SV(%) Acc(%) SV(%) Acc(%) SV(%) Acc(%) SV(%) Acc(%) SV(%) Acc(%) SV(%) Acc(%) SV(%) Acc(%)
	2K	36.4 89.6 48.1 83.9 75.9	81.4 77.4 76.5 90.2 75.0 85.2 74.6 69.0 71.2
	10K	29.4 90.4 39.7 85.6 60.8	83.5 59.6 78.9 80.4 79.5 76.4 78.3 59.6 75.9
	50K	25.8 91.1 33.7 87.0 51.6	85.4 53.4 83.1 68.3 82.3 64.2 81.0 49.9 79.6
	100K 24.6 91.4 31.6 87.6 47.9	86.0 48.7 84.0 62.7 83.2 60.7 81.9 46.7 80.6
	500K	--	--	27.9 88.6	--	--	--	--	--	--	--	--	40.4 83.1

Table 5 .

 5 Values

	AF	-WIN	+WIN
		1/σ 2	c	1/σ 2	c
	voice	0.5	5	0.5	1
	round	1.5	1	0.1	1
	fr-back	0.01 300	0.1	5
	manner	0.01	15	0.01	5
	static	10	10	1	1
	high-low 0.01 100 0.05	5
	place	0.1	3	0.005	5

of the 1/σ 2 and c parameters for each SVM without ('-WIN') and with a 7frame context window ('+WIN').

Table 6 .

 6 AF value classification accuracies and differences ('Diff') for the -WIN and +WIN SVM systems and for the MLP system and the difference with the +WIN SVM system, and the percentage of training frames for each AF ('%frames').For both conditions, the three easiest AF values to classify are +voice, -voice, and vowel, while the three most difficult are dental, central, and +round for +WIN, and dental, central, and approximant for -WIN. The variation in the AF value classification accuracies is rather the percentage of training frames available for a certain AF value (see column '%frames' in Table6) and the obtained AF value's classification accuracy. For instance, the percentage of training frames for high, mid, and low is more or less balanced, but

	AF value		Accuracy (%)			%frames
		-WIN	+WIN	Diff	MLP	Diff	
				manner			
	approximant	43.2	54.8	11.6	54.7	0.1	4.8
	retroflex	65.1	72.4	7.3	71.1	1.3	5.8
	fricative	81.7	85.6	3.9	87.2	-1.6	17.1
	nasal	73.3	77.3	4.0	79.1	-1.8	6.3
	stop	70.9	80.3	9.4	86.1	-5.8	16.1
	vowel	91.9	91.4	-0.5	91.0	0.4	34.1
				place			
	bilabial	55.1	63.2	8.1	68.4	-5.2	6.1
	labiodental	57.8	65.4	7.6	70.9	-5.5	3.1
	dental	21.8	27.3	5.5	22.3	5.0	1.4
	alveolar	75.2	77.4	2.2	78.3	-0.9	29.5
	velar	50.8	55.8	5.0	64.4	-8.6	8.2
				high-low			
	high	70.4	71.3	0.9	71.0	0.3	12.3
	mid	45.3	53.4	8.1	54.9	-1.5	10.5
	low	71.3	73.9	2.6	75.7	-1.8	11.4
				voice			
	+voice	91.3	91.7	0.4	93.8	2.1	61.3
	-voice	90.4	90.8	0.4	90.3	0.5	38.7
				fr-back			
	front	82.0	81.6	-0.4	81.5	0.1	21.8
	central	12.5	27.4	14.9	33.2	-5.8	3.4
	back	48.2	57.3	9.1	54.0	3.3	8.8
				round			
	+round	49.2	51.5	2.3	56.8	-5.3	8.9
	-round	81.8	84.2	2.4	82.3	1.9	25.3
				static			
	static	81.0	85.6	4.6	84.4	1.2	56.7
	dynamic	75.6	80.2	4.6	81.2	-1.0	43.3

wide: ranging from 12.5% (central) to 91.9% (vowel) for the -WIN condition and from 27.3% (dental) to 91.7% (+voice) for +WIN. There seems to be, however, no straightforward relationship between

Table 7 .

 7 The six most frequent occurring AF value confusions for the SVM and MLP systems where a 'from' AF value is labelled as the 'to' AF value.

		-WIN			+WIN			MLP	
	from	to	%	from	to	%	from	to	%
	approx	vowel	46.6 dental	alveolar 38.6 dental	alveolar 36.9
	dental alveolar 41.2 approx	vowel	36.0 approx	vowel	35.5
	central	front	40.4 central	front	30.5 +round -round 26.9
	+round -round 30.4 +round -round 30.0 central	front	28.5
	central	nil	29.5 central	nil	25.0 retroflex vowel	23.5
	retroflex vowel	29.0 retroflex vowel	22.1 central	nil	22.5

Table 8 .

 8 MLP classification accuracies (Acc; in decreasing order), the number of hidden nodes, and the number of output nodes used for each MLP.

	AF	Acc. (%) #hidden nodes #output nodes
	'voice'	92.5	100	2
	'round'	87.5	100	3
	'fr-back'	85.6	200	4
	'manner'	84.8	300	7
	'static'	82.9	100	2
	'place'	81.6	200	7
	'high-low'	80.8	100	5

Table 9 .

 9 Table9also shows the AF classification accuracy at chance level; i.e. that accuracy that would be obtained by a classifier that labelled all frames with the most frequent AF value -since it can safely be assumed that speech/silence detection for TIMIT is easy the chance levels are calculated on the non-silence frames only. It is clear that both SVM and MLP systems perform far above chance level. Comparing the results of the SVM classifiers and the MLP classifiers in Table9shows that the two systems have similar performance; the overall rankings for the best performing classifiers are very much alike, with only 'place' and ACCEPTED 'high-low' swapping places. The SVMs outperform the MLPs significantly (at the 99% confidence level) for 'fr-back', 'static', and 'high-low', while the MLPs significantly (again at the 99% confidence level) outperform the SVMs for 'voice', 'manner', and 'place'. The slightly better performance of the SVMs for 'round' is not significant. Thus, the SVM systems outperform the MLP systems while only using 8.8% of training frames (100K training frames) that was used to train the MLPs. When increasing the training set for the SVMs to 500K (44.2% of the full training set), the SVMs outperformed the MLPs for another two AF values, 'round' and 'place'. The SVMs outperformed the MLPs for five out of seven AFs despite using less training material. The training algorithm for SVMs guarantees that a global optimum will be reached, while the back-propagation training algorithm for MLPs only converges to a local optimum. Overview of the AF classification accuracies at chance level, for the +WIN SVM systems trained on 100K training frames, and the MLP systems.

	AF	Chance level (%) SVM Acc. (%)	MLP Acc. (%)
	'voice'	74.0	91.4	92.5
	'round'	59.7	87.6	87.5
	'fr-back'	59.7	86.0	85.6
	'manner'	40.3	84.0	84.8
	'static'	51.8	83.2	82.9
	'high-low'	59.7	81.9	80.8
	'place'	42.6	80.6	81.6

  Secondly, during training, significantly fewer examples of dental were encountered than for the other 'place' AF values -just over 15K frames in the full training set (1.4%, see Table6). The poor classification results for dental are thus likely caused by a poor estimation of the posterior probability for dental, which leads to a bias towards the other AF value classes. Note that, although the SVM for 'place' only received 1 356 frames for dental (in the 100K training frames set), it detects dental better than the MLP, which is expected as SVMs tend to generalise better to sparse data. Furthermore, the percentage of alveolar frames in the training material is the highest (29.5%, see Table6) in the training material, thus it is to be expected that alveolar has a better estimated posterior probability distribution or decision boundary than the other AF values.

	Like dental consonants, labiodental consonants in English are fricatives (with the
	exception of the nasal [։] which is an allophone of [m], but this phoneme is not transcribed in

In the current we tried to get the best possible performance for the SVM and MLP classification systems. However, for a computational model of HSR it is important to model human recognition behaviour. For example, such a computational model should correctly model the pattern of confusion of AF values. Comparisons of human and computer recognition behaviour have shown that, e.g., voicing information is recognised much more poorly by machines than by human listeners [START_REF] Cooke | A glimpsing model of speech perception in noise[END_REF][START_REF] Meyer | A human-machine comparison in speech recognition based on a logatome corpus[END_REF]. In follow-up research, we intend to extend the comparisons of the articulatory feature recognition/classification confusion patterns of human listeners and computers to include all AF values. Capturing a better understanding of fine phonetic detail will be achieved by examining such confusion patterns at the AF value level.
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