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Abstract

This paper presents several acoustic analyses carried out on read speech collected
from Italian children aged from 7 to 13 years and North American children aged
from 5 to 17 years. These analyses aimed at achieving a better understanding of
spectral and temporal changes in speech produced by children of various ages in
view of the development of automatic speech recognition applications. The results
of these analyses confirm and complement the results reported in the literature,
showing that characteristics of children’s speech change with age and that spectral
and temporal variability decrease as age increases. In fact, younger children show a
substantially higher intra- and inter-speaker variability with respect to older children
and adults. We investigated the use of several methods for speaker adaptive acoustic
modeling to cope with inter-speaker spectral variability and to improve recognition
performance for children. These methods proved to be effective in recognition of
read speech with a vocabulary of about 11k words.

Key words: Children’s speech analysis, automatic speech recognition for children,
speaker normalization, speaker adaptive acoustic modeling.

1 Introduction

Speech technology has a huge potential for use by children. In addition to
conventional applications in which speech replaces, or complements, other
modalities in the human-machine interaction (Gustafson and Sjölander, 2000;
Narayanan and Potamianos, 2002; Nisimura et al., 2004), there are applica-
tions in which speech is the key enabling technology, including voice inter-
active computer-based pronunciation or reading tuition and foreign language
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 learning (Russell et al., 2000; Eskenazi and Pelton, 2002; Hagen et al., 2003;
Banerjee et al., 2003; Mich et al., 2004). For this reason, in recent years an in-
creased attention has been devoted to children as potential users of automatic
speech recognition (ASR) technology.

It is well known that acoustic and linguistic characteristics of children’s speech
are widely different from those of adult speech (Lee et al., 1999; Huber et al.,
1999; Arunachalam et al., 2001). For example, children’s speech is character-
ized by higher pitch and formant frequencies with respect to adults’ speech.
Furthermore, the characteristics of children’s speech vary rapidly as a function
of age due to the anatomical and physiological changes that occur during a
child’s growth and because, with age, children become more skilled in articu-
lation.

This is the reason why the performance of an ASR system developed for adult
speech decreases drastically when employed to recognize children’s speech,
especially for younger children (Wilpon and Jacobsen, 1996; Burnett and
Fanty, 1996; Potamianos et al., 1997; Das et al., 1998; Claes et al., 1998).
Furthermore, recognition performance for children is usually lower than that
achieved for adults even when using a recognition system trained on children’s
speech (Potamianos and Narayanan, 2003; Gerosa et al., 2005). In fact, de-
velopmental changes contribute to variation of spectral and temporal parame-
ters of the children’s speech signal, resulting in a high inter- and intra-speaker
acoustic variability.

Much has been done in the past to analyze the acoustic characteristics of
children’s and adult speech, with a particular focus on the effect of vocal
tract variation on pitch and formant frequency values (Huber et al., 1999;
Lee et al., 1999; Whiteside and Hodgson, 2000). Understanding the effects of
developmental changes in children’s speech can help to devise strategies for
dealing with the acoustic mismatch between different age groups. However,
almost all these studies were carried out on American English speech with
little effort devoted to the analysis of other languages.

In this work, several analyses on children’s speech were carried out focusing on
aspects that still require further study, including phone duration, inter-speaker
spectral variability and intra-speaker spectral and temporal variability (i.e. the
variability of segment duration patterns). These analyses were carried out on
two corpora of American English and Italian read children’s speech, comparing
results achieved on children’s speech with those achieved on adult speech. The
results of the analyses confirmed and complemented the results reported in the
literature and improved our understanding of the characteristics of children’s
speech.

Results of the analyses showed that children in the age range 7-13 are not
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 a homogeneous group of speakers. Age-dependent variations in formant fre-
quencies introduce, in fact, variability in spectral features across age groups.
In ASR applications this variability impacts on recognition performance in-
creasing the word error rate. To cope with age-dependent spectral variability
and to improve recognition performance, age-specific acoustic models trained
on speech collected from children of the target age or group of ages can be
adopted (Wilpon and Jacobsen, 1996; Hagen et al., 2003). However, training
age-specific acoustic models is costly as it requires collecting enough speech
data for each target age. As a more general solution, to tackle inter-speaker
spectral variability in children’s speech when training on speech from children
of all ages, speaker adaptive acoustic modeling methods can be adopted (Giu-
liani and Gerosa, 2003; Hagen et al., 2004; Giuliani et al., 2006). In this work,
we investigated the use of speaker adaptive acoustic modeling methods, such
as vocal tract length normalization (VTLN) (Wegmann et al., 1996; Lee and
Rose, 1996; Eide and Gish, 1996), constrained MLLR based speaker normaliza-
tion (CMLSN) (Giuliani et al., 2006), speaker adaptive training (SAT) (Anas-
tasakos et al., 1996; Gales, 1998) and their combinations. These methods
proved to be effective in reducing inter-speaker variability and improved recog-
nition performance on children’s speech both in matched conditions, that is
training and testing on Italian children aged 7-13, and in unmatched condi-
tions, that is testing on children’s speech with models trained on adult speech.

The rest of the paper is organized as follows. The speech corpora used in this
work are described in Section 2. Section 3 presents the results of the analyses
performed on phone duration, formant patterns and intra-speaker spectral and
temporal variability. Methods adopted for speaker adaptive acoustic modeling
are presented in Section 4. Recognition experiments are described in Section 5
and final remarks are reported in Section 6, which concludes the paper.

2 Speech Corpora

Several speech corpora were used in this work: three consisting of children’s
speech and two consisting of adult speech. Main characteristics of the corpora
employed are summarized below.

The ChildIt corpus (Giuliani and Gerosa, 2003) is an Italian, task-independent,
speech database that consists of clean read speech from children aged from
7 to 13 years, with a mean age of 10 years. Children in ChildIt corpus are
evenly distributed by grade, from grade 2 through grade 8. Children in grade
2 were approximately 7 years old while children in grade 8 were approximately
13 years old. Acoustic analyses on the ChildIt corpus were performed on each
grade. However, for simplicity, the figures in this paper report the age roughly
corresponding to the speaker’s grade. About 10 hours of speech were collected
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 from 171 children. Each child read 58 or 65 sentences, depending on his/her
grade, selected from electronic texts concerning literature for children. Each
speaker read a different set of sentences. Speech was acquired at 16 kHz, with
16 bit accuracy, using a Shure SM10A head-worn microphone. The corpus
was partitioned into a training set, consisting of data from 129 speakers for
a total of 7h:47m of speech, and a test set, consisting of data from 42 speak-
ers balanced with respect to age and gender for a total of 2h:29m of speech.
This corpus was exploited for speech recognition experiments and for speech
analysis purposes.

The SpontIt corpus is a task-independent Italian speech database that con-
sists of clean spontaneous speech from 21 children aged between 8 and 12,
with a mean age of 10 years. These 21 speakers were different from the 171
speakers in the ChildIt corpus. Each child was interviewed by an adult about
his/her preferred books, TV shows, hobbies, sports, etc. Recordings were per-
formed with a digital audio tape recorder using an head-worn Shure SM10A
microphone. Audio signals were then down-sampled from 48 kHz to 16 kHz,
with 16 bit accuracy. The SpontIt corpus was used in addition to ChildIt for
acoustic models training.

The CID corpus (Miller et al., 1996) is an American English, task-independent,
speech database that consists of read speech from 436 children aged from 5
to 18 and from 56 adults speakers. The data collection was a joint effort of
Southwestern Bell Technology Resources and the Central Institute for the
Deaf. Recordings were made using a high-fidelity microphone (Bruel & Kjaer
model #4179) connected to a real-time waveform digitizer with 20 kHz sam-
pling rate and 16-bit resolution. Audio signals were then down-sampled to 16
kHz before analysis. Only a subset of this database was exploited for acoustic
analysis purposes in this work. For this subset, manual segmentation at the
phone level was available. This subset consisted of data from five speakers,
3 females and 2 males, for ages 5, 7, 9, 11, 13, 15, 17 and from five adult
speakers, for a total of 40 subjects. The speech material analyzed in this pa-
per consisted of repetitions of five phonetically-rich and meaningful sentences.
Each sentence was uttered two times by each speaker. Prior to the recording
session, target utterances that the speakers, mostly 5 years olds, had diffi-
culty reading were identified and then elicited through imitation of a sample
prerecorded by a female speech pathologist.

Two Italian speech corpora collected from adult speakers were also used in
this work: the APASCI corpus and the IBN corpus.

The APASCI speech corpus (Angelini et al., 1994) is a task-independent, high
quality, acoustic-phonetic Italian database. APASCI was developed at ITC-
irst and consists of speech data collected from 176 adult speakers, gender
balanced. Acquisitions were performed in quiet rooms using a digital audio
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 tape recorder and a high quality close talk microphone. Audio signals were
down-sampled from 48 kHz to 16 kHz with 16 bit accuracy. Only a portion of
APASCI corpus, consisting of speech from 124 speakers for a total of 5h:38m,
was used in this work. This corpus was exploited for acoustic analysis of adult
speech.

The IBN speech corpus is used for training the automatic broadcast news (BN)
transcription system developed at ITC-irst for the Italian language (Bertoldi
et al., 2001; Brugnara et al., 2002). It is composed of several speech data
collections: speech from radio news programs, speech from television news
programs and clean read speech from the APASCI and the SPEEDATA cor-
pora. SPEEDATA (Ackermann et al., 1997) is a corpus designed and collected
by ITC-irst with criteria very similar to those adopted for APASCI and con-
sisting of about 5h:48m of speech. Recordings from radio and television news
programs in the IBN corpus were manually segmented in sentences and only
the utterances in clean conditions were included in the training portion of
the corpus. The IBN corpus consists of 57h:07m of speech. In this work, the
IBN corpus was used to train acoustic models for ASR experiments and for
acoustic analysis.

Table 1 summarizes the characteristics of the speech corpora used in this work.

Corpus ChildIt SpontIt CID subset IBN APASCI

Language Italian Italian English Italian Italian

Speaking mode Read Spont. Read Read/Spont. Read

Speaker age 7-13 8-12 5-17/Adult Adult Adult

# of speakers 171 21 40 > 1000 124

# of diff. words 11447 2141 27 31400 2191

Recording hours 10h:16m 1h:20m 0h:17m 57h:07m 5h:38m
Table 1
Main characteristics of the speech corpora used in this work.

3 Children’s Speech Analysis

This section presents several acoustic analyses on children’s speech. These
analyses were carried out in order to achieve a better understanding of spectral
and temporal changes occurring in speech produced by children of various ages.
This section is organized in four parts, presenting analysis on phone duration,
intra-speaker variability, characterization of the acoustic space and effects of
vocal tract length variations, respectively.
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 3.1 Phone Duration

In previous studies, younger children have been reported to exhibit longer
segment duration patterns compared to older children and adults (Lee et al.,
1999; Gerosa et al., 2005). In this work we analyzed phone duration as a
function of age on Italian and American English read speech. The mean phone
duration was computed first averaging phone duration over all phones of each
speaker and then across all speakers in each age group.

For Italian speech, duration statistics were computed by exploiting a phone-
level segmentation produced automatically. Each utterance was time-aligned
with the HMM concatenation corresponding to the uttered words allowing
insertion of an optional “silence” model between words and at the beginning
and the end of the utterance. Segments of signals aligned with the “silence”
HMM were not taken into account in computing temporal statistics. Two
group-specific sets of triphone HMMs were used for children and adults. The
first set was trained using the ChildIt training set and the SpontIt corpus,
while the second set was trained using the IBN training set. Both HMM sets
were state-tied context-dependent triphone HMMs with up to 8 Gaussian den-
sities per state. Acoustic features were 13 mel frequency cepstral coefficients
(MFCCs) (Davis and Mermelstein, 1980) plus their first and second order time
derivatives.

Mispronunciations and time alignment errors may affect the phone duration
analysis. However, in the ChildIt corpus mispronounced words were manu-
ally annotated and utterances including these words were not included in the
speech data used in this work (see Table 1). Furthermore, time alignment er-
rors do not affect significantly the duration analysis presented here, since it
depends only on the accurate detection of boundaries toward silence, that is
very reliable.

Figure 1 reports the mean phone duration for children, computed on the train-
ing portion of the ChildIt corpus (at least 14 speakers per age), and for adults,
computed on the training portion of the IBN corpus.

Mean phone duration varies with age and older age groups exhibit shorter
mean phone durations. However, we have to point out that the mean phone
durations reported here are likely affected by reading ability and length of
sentences (much shorter for younger children). Furthermore, the significant
difference in mean phone duration between 13 years old children and adults
can be partially explained by the fact that the IBN corpus is formed mostly
of speech from professional radio and TV announcers that speak quite fast.

For English speech, duration statistics were computed by exploiting a phone-
level manual segmentation obtained in the following way. First, automatic seg-
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Fig. 1.Mean duration of phones (msec) per age computed on the ChildIt training set.
For comparison purpose, the mean phone duration for adults, computed on the IBN
training set, is also reported. Vertical bars denote inter-speaker variability (standard
deviation).

mentation was obtained adopting the same procedure used for Italian speech.
Each utterance was time-aligned with the HMM concatenation corresponding
to the uttered words allowing insertion of an optional “silence” model between
words and at the beginning and the end of the utterance. Age-dependent
HMMs, trained on a subset of the CID corpus, were used. After automatic
segmentation, each utterance was analyzed by a native speaker of English
with good phonetics knowledge. The annotator modified the boundaries of
the automatic phonetic segmentation in order to correct segmentation errors.

Figure 2 reports the mean phone duration for children of different ages and
adults, computed in the subset of CID corpus described in Section 2.

As for Italian speech, the mean phone duration varies with age and older
age groups exhibit shorter mean phone duration. The significant difference
between values obtained for children of age 5 and 7 can be explained by
the fact that for children of age 5 speech was elicited through imitation of
a sample recorded by an adult, while older children were able to read the set
of sentences. Analysis of variance (ANOVA) (Clarke and Cooke, 1998) showed
that variation of phone duration with respect to the age of the speakers is
significant with p < .001 for both American English and Italian speech.

We have to point out that even if the ChildIt and the CID copora were designed
with different purposes and concern different languages, variations with age
of mean phone duration show a similar trend.
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Fig. 2. Mean phone duration (msec) per age computed on the CID subset. Vertical
bars denote inter-speaker variability (standard deviation).

Age-dependent variation in phone duration introduces variabilities that may
affect ASR performance. In case of adults speakers, it is well known in fact that
for speakers speaking much faster than the average of the training population
low ASR performance is achieved (Mirghafori et al., 1996). The problem is
sometimes tackled by training rate-specific acoustic models to describe speech
of different rates (Mirghafori et al., 1996; Zheng et al., 2000).

3.2 Intra-speaker Variability

Intra-speaker variability is a measure of the maturity of speech motor control.
In (Lee et al., 1999), by exploiting the CID corpus, intra-speaker variability
was characterized as the temporal and spectral difference between correspond-
ing vowels in two repetitions of the same sentence. We carried out similar anal-
yses on both vowels and consonants exploiting the CID subset consisting of
five phonetically rich sentences for which manual segmentation at the phone-
level was available. We considered the two repetitions of the same sentence
uttered by a given speaker and measured the spectral and temporal difference
between the corresponding realizations of a given phone in the two utterances.

To perform the spectral analysis, the speech signal was first blocked into frames
of 20 ms duration (with 50% frame overlapping), then each speech frame was
parameterized into 12 MFCCs. Cepstral mean subtraction was performed on
an utterance-by-utterance basis and each MFCC was scaled with the inverse
of its standard deviation computed over all data. The mel cepstrum distance
between two speech segments, each corresponding to a phone occurrence, was
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 computed by first computing the mean MFCC vector for each segment, and
then taking the Euclidean distance between the two mean vectors as proposed
in (Lee et al., 1999) and (Nakamura et al., 2005).

Figures 3 and 4 show the temporal and spectral difference averaged over all
phones of a given speaker and then across all speakers in each age group.
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Fig. 3.Mean duration difference, as a function of age, between corresponding phones
in two repetitions of the same sentence by a given speaker in the CID subset. Vertical
bars denote inter-speaker variability (standard deviation).
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Fig. 4. Mean mel cepstrum distance, as a function of age, between corresponding
phones in two repetitions of the same sentence by a given speaker in the CID subset.
Vertical bars denote inter-speaker variability (standard deviation).
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 Observing Figures 3 and 4, it is clear that intra-speaker variability, both spec-
tral and temporal, decreases as age increases. Analysis of variance showed
that effect of age is significant in both cases with p < .001. Imitated speech
produced by speakers of age 5 shows smaller temporal variability but higher
spectral variability with respect to children of age 7. One possible explanation
is that by repeating speech uttered by an adult, children are able to imitate
his/her temporal pattern but their articulation control remains still uncertain.

It can be noted that the minimum for spectral variability is observed for
children of age 15. This behavior was already observed when analyzing vowels
on the same corpus (Lee et al., 1999), however the reason is not clear. This
phenomenon could be associated with the learning process or it may be that
the articulation control capability peaks during teenage years.

3.3 Characterization of the Acoustic Space

We tried to characterize the acoustic space by measuring the scattering of
the observation densities of the phone models. For this purpose we modeled
each phone by means of a single Gaussian density and we measured how
much Gaussian densities were scattered in the acoustic feature space, when
Gaussian parameters were estimated from speech examples collected by a pool
of speakers. A statistical measure was used to determine how well phones were
scattered in the acoustic space.

Given two phones i and j, modeled by Gaussian distributions, N (x;µi,Σi)
and N (x;µj,Σj), the distance between them can be measured by means of
the Bhattacharyya distance (Fukunaga, 1990) as follows:

B(i, j) =
1

8

(
µi − µj

)T
(
Σi +Σj

2

)−1 (
µi − µj

)
+

1

2
log

∣∣∣Σi+Σj

2

∣∣∣√
|Σi||Σj|

(1)

where x is a D-dimensional vector and µi, Σi, µj and Σj are the mean vectors
and the covariance matrices of the Gaussian distributions of phones i and j,
respectively. The Bhattacharyya distance has been used to measure phone
separability and similarity in many works (Mak and Barnard, 1996; Salvi,
2003; Kumar et al., 2005).

Given a set of N Gaussian densities the average Bhattacharyya distance can
be defined as follows:
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AveB =
2

N(N − 1)

N−1∑
i=1

N∑
j=i+1

B(i, j). (2)

The average Bhattacharyya distance, AveB, can be considered a statistical
measure of how scattered the N phones are in the acoustic space. High values
of AveB indicate that phone distributions are well scattered in the acoustic
space and thus phones should be more easily discriminated, while low values
of AveB can be interpreted as an higher superposition of phone distributions
and thus the phone discrimination task should be harder.

To estimate the parameters of Gaussian densities associated to phones, we
trained a set of context-independent HMMs for each age group and gender.
In all cases, a three-state left-to-right topology with a single Gaussian den-
sity per state was adopted. Each speech frame was parameterized into a 13-
dimensional observation vector composed of 13 MFCCs plus their first and
second order time derivatives. Frame energy was represented as the zero order
(c0) MFCC. Cepstral mean subtraction was performed on static features on
an utterance-by-utterance basis. For children, HMM training was performed
using the ChildIt training set, while, for adults, HMMs were trained using
APASCI and SPEEDATA corpora. The ChildIt, APASCI and SPEEDATA
corpora consist of read speech collected in controlled environments.

In computing the average Bhattacharyya distance, only Gaussian densities
associated to the central states of context-independent HMMs were considered.
We assumed that the Gaussian density associated to the central state of an
HMM better reflects the acoustic characteristics of the modeled phone than
Gaussian densities associated to the initial and final states.

In Figure 5 the average Bhattacharyya distance is reported per age groups
and genders. In order to have a more robust estimation of model parameters
three age groups were considered: children aged 7-9, 10-11 and 12-13. Only
vowels were considered in computing the measures reported in the Figure. It
can be noted that the average Bhattacharyya distance among vowel distribu-
tions increases with age for both genders showing that vowels distributions
are less overlapped in the acoustic spaces of older age groups. This can be
interpreted as the effect of a reduction in inter-speaker acoustic variability
as age increases (Lee et al., 1999). Analysis of variance showed that the in-
crease in average Bhattacharyya distance with respect to age is significant
with p < .001, while the difference in the average Bhattacharyya distance due
to the speaker gender was found not significant.
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Fig. 5. Average Bhattacharyya distance across vowel sounds per gender and age
groups.

3.4 Effects of Vocal Tract Length Variations

The correspondence between vocal tract morphology and speech acoustics
predicted by the acoustic theory of speech (Wakita, 1977), has been studied
in several works on vocal tract length (Fitch and Giedd, 1999) and formant
patterns in speech (Huber et al., 1999; Lee et al., 1999). Anatomical measure-
ments presented in (Fitch and Giedd, 1999) document the changes in vocal
tract anatomy occurring during growth and maturity. Measurements reveal
that during childhood there is a steady gradual lengthening of the vocal tract
as the child grows while a concomitant decrease in formant frequencies is re-
ported in (Huber et al., 1999; Lee et al., 1999).

For children up to age 11 no significant difference in vocal tract length is ob-
served between males and females of the same age, however formant frequen-
cies of females tend to be higher than those of males of the same age. While for
females there is a gradual continuous growth of vocal tract through puberty
into adulthood, for males during puberty there is a disproportional growth of
vocal tract, which lowers formant frequencies, together with an enlargement of
the glottis, which lowers the pitch. Adult males show a longer, about 10% on
average, vocal tract than adult females. These anatomical measurements cor-
relates well with the acoustic data and the formant pattern analysis presented
in (Huber et al., 1999; Lee et al., 1999), where it is reported a steady gradual
decreasing of formant frequencies with age for boys and girls up to the age
of 11. After this age, for females a gradual decrease in formant frequencies is
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 still observed until age 15, when formant frequencies become similar to those
of women. For males, beyond age 11, a substantial lowering in formant fre-
quency is observed until the age 15, when formants frequencies become similar
to those of men. This is largely explained by the disproportional growth of the
vocal tract occurring during puberty (about age 11-15) in male subjects (Fitch
and Giedd, 1999). After age 15, males show a substantial longer vocal tract
and lower formant frequencies than females.

The above mentioned results from the literature are essentially confirmed by
acoustic measurements we carried out during this work. We measured formant
frequency values on the ChildIt corpus and on the APASCI corpus, exploiting
the phone level automatic segmentation obtained as described in Section 3.1.
Segments corresponding to vowel sounds were extracted and their mean for-
mant frequencies were estimated using the Praat software tool (Boersma and
Weenink, 2001). In Figure 6 the mean frequencies, for each age and gender,
of the fundamental frequency (F0) and of the first, second and third formants
(F1, F2, F3) are reported. Frequency values were first averaged across all vow-
els of a given speaker and then across all speakers in each age group. It can be
noted that the mean frequency values decrease with age, as expected, and that
F1, F2 and F3 values are higher for female speakers than for male speakers.
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Fig. 6. Mean frequency values, per age and gender, of the fundamental frequency
(F0) and the first three formants (F1, F2, F3).

Age-dependent variation in formant frequencies introduces variability in the
spectral features across age groups, this concurs to explain the degradation in
performance that can be observed when an ASR system trained on speakers
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 of a certain age group is tested on speakers of a different age group (Wilpon
and Jacobsen, 1996; Hagen et al., 2003). As will be described in Section 4, a
common practice in automatic speech recognition is to try to compensate for
spectral differences caused by differences in vocal tract length (and shape) by
warping the frequency axis of the speech power spectrum of each speaker (Lee
and Rose, 1996).

To measure the spectral mismatch between adult and children’s speech caused
by differences in vocal tract length, we computed the mean warping factor
for speakers in the ChildIt corpus with respect to two HMM sets trained on
adult speech. These two HMM sets were trained on the IBN training set, us-
ing speech from male speakers only (“Adult male HMMs”) and from female
speakers only (“Adult female HMMs”), respectively. For both males and fe-
males triphone HMMs, with a single Gaussian density per state, were trained.
Warping factors, that are scaling factors to be applied to the frequency axis
of the speech power spectrum, were determined according to the procedure
summarized in Section 4.1. A grid search over 28 possible warping factors,
evenly distributed (with step 0.02) in the range 0.66-1.20, was performed for
each speaker in order to maximize the likelihood of the speaker’s data with
respect to a reference model set.

In Figure 7 the mean warping factor, averaged across speakers in each age,
is reported for children in the ChildIt corpus (at least 10 speakers for each
age and gender) and, for comparison purpose, for adult speakers in the test
portion of the IBN corpus.

A mean warping factor of 1.0 denotes that there is, on average, no spectral
mismatch between the training and testing populations. An almost linear vari-
ation of the warping factor with respect to children’s age can be observed. On
average, significantly lower warping factors are reported for younger children
than for the older ones. Analysis of variance showed that this variation is sig-
nificant in all cases reported (p < .001). Furthermore, girls show a constant
lower warping factor with respect to boys of the same age. It can be noted
that for each age and gender the mean warping factor estimated with respect
to reference HMMs trained on adult female voices is closer to 1.0 than the cor-
responding mean warping factor estimated with respect to reference HMMs
trained on adult male voices. This confirms that voices of children tend to be
more similar to the voices of women than to those of men. In general, mean
warping factors per age and gender reported in Figure 7 are compatible with
results on formant pattern analysis reported in the literature for this range of
ages (Huber et al., 1999; Lee et al., 1999) and with measurements of formant
frequencies we carried out on the ChildIt corpus, reported in Figure 6.
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Fig. 7. Mean warping factor, per age and gender, estimated with respect to two ref-
erence adult HMM sets, the first one trained on adult males (“Adult male HMMs”)
and the second one trained on adult females (“Adult female HMMs”).

4 Speaker Normalization

As we have seen in Section 3, children are not a homogeneous group of speakers
due to the changes occurring with age, and even when considering a particular
age group children’s speech is characterized by a higher acoustic variability
than adult speech. Therefore, it is expected that speaker adaptive acoustic
modeling methods have a high potential of application in the context of chil-
dren’s speech recognition. In fact, speaker adaptive acoustic modeling aims at
reducing or compensating for acoustic variations induced by different charac-
teristics of each training and testing speaker. In this work, speaker adaptive
acoustic modeling was investigated through VTLN, SAT and CMLSN meth-
ods.

4.1 VTLN

VTLN aims at reducing inter-speaker acoustic variability due to vocal tract
length (and shape) variations among speakers by warping the frequency axis
of the speech power spectrum (Lee and Rose, 1996; Wegmann et al., 1996;
Eide and Gish, 1996). In the frequency warping approach to speaker normal-
ization, typical issues are the estimation of a proper frequency scaling factor
for each speaker, or utterance, and the implementation of the frequency scal-
ing during speech analysis. A well known method for estimating the scaling
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 factor is based on a grid search over a discrete set of possible scaling factors
by maximizing the likelihood of warped data given a current set of acoustic
models (Lee and Rose, 1996). Frequency scaling is performed by warping the
power spectrum during signal analysis or, for filter-bank based acoustic front-
end, by changing the spacing and width of the filters while maintaining the
spectrum unchanged (Lee and Rose, 1996).

Let us consider a set Λ of speaker independent (SI) HMMs trained with speech
data from a pool of training speakers. The optimal scaling factor α̂ for an ut-
terance x = x1, ..., xT , with xt denoting the acoustic observation at time t, can
be determined according to the maximum likelihood criterion as follows (Lee
and Rose, 1996):

α̂ = argmax
α

P (xα|w,Λ) (3)

where xα = xα
1 , ..., xα

T denotes the acoustic observation sequence obtained
by applying the scaling factor α to the frequency axis of the speech power
spectrum and w denotes the sequence of uttered words. The optimal scaling
factor α̂ can be determined for each utterance or for a group of utterances
uttered by a given speaker. Ideally, the effect of adopting a scaling factor
selected in this way for each utterance or speaker is that of normalizing speech
data with respect to the average vocal tract length of the training population
of the model set Λ, thus reducing inter-speaker acoustic variability.

In this work, frequency warping was always implemented by changing the
spacing and width of the filters in the mel filter-bank while maintaining the
speech spectrum unchanged. To cope with the problem of accommodating
filters near the band edge, a piece-wise linear warping function of the frequency
axis of the mel filter-bank was adopted. During training the reference acoustic
models for scaling factor selection, carried out on a speaker-by-speaker basis,
were SI triphone HMMs with 1 Gaussian per state and trained on unwarped
data. Differently, during testing scaling factor selection was performed with
respect to the HMMs, trained on warped data, used for the final decoding step.
Furthermore word level transcription of incoming utterances were generated by
a preliminary decoding step carried out with models trained on unnormalized
data. During both training and testing a grid search over 21 warping factors
evenly distributed, with step 0.02, in the range 0.80-1.20, was performed. The
training and recognition procedures adopted for implementing VTLN follow
closely those proposed in (Welling et al., 1999) and are described in detail
in (Giuliani et al., 2006).
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 4.2 SAT

Speaker adaptive training aims at compensating for inter-speaker acoustic
variability present in the training set by means of speaker-specific transfor-
mations. In the original formulation (Anastasakos et al., 1996) it involved
maximum likelihood linear regression (MLLR) adaptation of the means of
output distributions of continuous density HMMs. The resulting HMMs ex-
hibit usually smaller variances and lead to significantly higher likelihood. The
use of these models in combination with speaker adaptation techniques can
result in an improvement of recognition performance.

The variant of the SAT scheme developed by Gales (Gales, 1998) was used
in this work. This variant makes use of an affine transformation, estimated
through constrained MLLR, for mapping acoustic observations of each training
and testing speaker, instead of adapting model parameters. Transformation
parameters are estimated with the aim of reducing the acoustic mismatch
between speaker data and the reference models. With this method, a set of
SI HMMs is first fully trained on unnormalized data and then used as seed
models. Then, the parameters of speaker-specific affine transformations and
the parameters of the Guassian densities are jointly estimated by means of
an iterative procedure which alternates estimation of transformations with
respect to the current models and estimation of model parameters on the
data normalized with the current transformations. The resulting normalized
models are used for decoding on normalized test data. Data of each test speaker
are normalized through the application of an affine transformation iteratively
estimated adopting a procedure similar to the one used in training, except
that in this case model parameters are not updated.

4.3 CMLSN

The CMLSN method performs speaker normalization by transforming the
acoustic observation vectors by means of speaker-specific affine transforma-
tions, estimated through constrained MLLR. However, differently from the
variant of SAT proposed by Gales in (Gales, 1998), speaker-specific transfor-
mations are estimated with the aim of reducing the acoustic mismatch of the
speaker’s data with respect to a set of target HMMs which is different from
the HMM set to be used for recognition. Target models are, in fact, triphone
HMMs, having a single Gaussian density per state with diagonal covariance
matrix, trained on unnormalized data. These models are used as target models
during both training and recognition.

For each speaker, estimation of transformation parameters is carried out within
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 the Expectation-Maximization (EM) framework, which requires the maximiza-
tion of the following auxiliary function in order to increase the likelihood of
the transformed data:

Q = −1

2

∑
x∈X

G∑
g=1

T (x)∑
t=1

γt(g)
(
− log(|A|2)+

+(Axt + b − µg)
∗Σ−1

g (Axt + b − µg)
)

(4)

where X denotes the set of available utterances, g denotes a Gaussian density
of the target HMMs, t denotes a time frame and A and b represent the matrix
and the offset vector of the constrained transformation. γt(g) represents the
conditional probability of Gaussian density g at time t given the observation
sequence and the current set of model parameters. A re-estimation procedure
for A and b was proposed in (Gales, 1998) under the assumption of diagonal
covariance matrices. Maximization of Eq. (4) is carried out with respect to
the triphone HMM concatenation corresponding to word level transcriptions
of the available utterances.

Once training data have been transformed, acoustic models to be used for
recognition, that is HMMs having output distributions modeled with Gaussian
mixtures, are trained from scratch exploiting normalized data. During recog-
nition, for each test speaker, word level transcription of incoming utterances,
needed for the estimation of the transformation parameters, are generated by
a preliminary decoding step carried out with models trained on unnormalized
data. Then transformation parameters are estimated with respect to the same
target models used during training and finally speaker’s data are transformed
and decoded with the models trained on normalized data. Details about train-
ing and testing procedures can be found in (Giuliani et al., 2006).

4.4 Combination of Techniques

With SAT and CMLSN no assumption is made about the nature of the acous-
tic mismatch between the speaker’s data and the target HMMs. On the con-
trary the VTLN method is tailored to reduce spectral differences induced by
variations in vocal tract by warping the frequency axis of the power spectrum.
Therefore, it can be expected that the VTLN method can be applied in com-
bination with either of the CMLSN or SAT procedure with good results (Giu-
liani et al., 2006). In fact, after VTLN is performed, the two methods can be
applied with the aim of reducing the residual acoustic mismatch induced by
sources of speaker individualities different from vocal tract variations (e.g. ac-
cent or dialect) or/and by acquisition conditions (e.g. environment and type
of microphone). During recognition, as the most computationally expensive
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Fig. 8. Average Bhattacharyya distance across all phones per gender and age groups,
computed on the baseline models and on models trained using the VTLN and CMLSN
procedures.

stage is the generation of the transcription of test data, the computational
cost of these combinations of methods is not much higher than the cost of the
application of only one of them.

4.5 Effect of the VTLN and CMLSN Methods on the Acoustic Space

We tried to characterize the effect of the VTLN and CMLSN methods on
the acoustic space by measuring the scattering of Gaussian densities model-
ing phones in the normalized feature space using the average Bhattacharyya
distance as described in Section 3.3. We trained context-independent HMMs
with one Gaussian density per state on the original data and on data nor-
malized through the VTLN and CMLSN methods. Different sets of models
were trained for adults and children, and for males and females of the two
population groups. HMMs training was performed exploiting the training sets
available for children and adults described in Section 2.

Figure 8 reports the average Bhattacharyya distance per age group and gender
computed on baseline HMMs and on HMMs trained by adopting the VTLN
and CMLSN training procedures. As expected, the average Bhattacharyya
distance computed on HMM sets trained on adult speech is higher than the
distance computed on HMMs trained using children’s speech. Furthermore, it
is clear that with both normalization techniques the average Batthacharyya
distance increases, supporting the hypothesis that in the normalized acoustic
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 space phones are better scattered and thus phone discrimination should be
easier. In all cases, the average Batthacharyya distance increases more for
models trained using the CMLSN procedure than for models trained with the
procedure based on VTLN.

5 Recognition Experiments

Several recognition experiments were carried out to investigate the impact of
the increased variability in children’s speech on ASR performance.

In all the experiments carried out acoustic models were state-tied, cross-word
triphone HMMs. In particular, a Phonetic Decision Tree (PDT) was used for
tying the states of triphone HMMs (Young et al., 1994). Output distributions
associated with HMM states were modeled with mixtures with up to 8 diagonal
covariance Gaussian densities.

A set of 48 phonetic units, 7 vowels and 41 consonants, corresponding to
the Italian phonemes, were modeled. “Silence” was modeled with a single
state HMM. In addition, a number of models for common extra linguistic
phenomena, such as human noises (e.g. breathing and lip smacks), non-verbal
sounds and filled pauses, were trained.

Each speech frame was parameterized into a 39-dimensional observation vector
composed of 13 MFCCs plus their first and second order time derivatives.
Cepstral mean subtraction (CMS) was performed on static features on an
utterance-by-utterance basis.

For “batch” recognition experiments, where data of each speaker were as-
sumed available in a single block, a different acoustic feature normalization
was adopted. Mean and variance normalization was performed on all 39 acous-
tic features, on a speaker-by-speaker basis, forcing each acoustic feature to
have zero mean and unit variance. Preliminary experiments showed that this
kind of normalization ensures systematic benefits with respect to the CMS
adopted in the standard acoustic front-end, especially in case of unmatched
training and testing conditions.

The language model used was an 11k word trigram language model estimated
on a corpus of newspaper articles. The recognition vocabulary was composed
of the words occurring in the training and test set of the ChildIt corpus. The
perplexity of the 11k word LM on the ChildIt test set was 900. This high
perplexity is explained by the fact that the n-gram statistics estimated on the
training text corpus, composed of newspaper articles, did not reflect well the
word distribution in the ChildIt corpus, which was made of texts extracted
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 from literature for children. In addition, most of the sentences in the ChildIt
corpus are short (with an average sentence length of 7 words and a minimum
sentence length of 4 words). In perplexity computation, this results in a high
number of unseen trigrams and bigrams at the sentence boundaries and in the
use of many back off probabilities.

5.1 Baseline for Children’s Speech Recognition

We trained a set of SI cross-word triphone HMMs using the ChildIt training
set and the SpontIt corpus (about 9 hours of speech). The total number of
independent states was 1700 for a total of about 13200 Gaussian densities. We
evaluated recognition performance on the ChildIt test set and used this result
as a reference for all the experiments reported below.

A second set of SI cross-word triphone HMMs was trained adopting the VTLN
training procedure described in Section 4.1, with warping factor selection per-
formed on a speaker-by-speaker basis. During the decoding stage the warping
factor selection was instead carried out on an utterance-by-utterance basis.
Table 2 reports the word error rates (WERs) achieved on the ChildIt test set
by using baseline models and models trained on warped data.

HMM set Baseline VTLN

Child HMMs 14.4 12.7
Table 2
Recognition results (% WER) obtained on the ChildIt test set using models trained
on children’s speech with and without adopting VTLN.

Adopting VTLN in training and test reduces the WER with respect to the
baseline system by 1.7%, from 14.4% to 12.7%, that corresponds to a relative
reduction in WER of 11.8%.

Figure 9 shows the WER as a function of age in the ChildIt test set, achieved
using the acoustic models trained on children speech, with and without ap-
plying VTLN. While the mean WER reported in Table 2 is 14.4%, there is
a large difference in performances achieved for children in different ages. It
can be noted that recognition results achieved on children with ages in the
middle of the age range considered are better than those achieved on younger
and older children. This can be explained by the fact that acoustic character-
istics of voices of children in the middle age groups are better represented in
the training set. Applying the VTLN method gives recognition results consis-
tently better for all ages. However, the performance trend is still similar to
that achieved using the baseline models.
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Fig. 9. Recognition results (% WER) on the ChildIt test set as a function of age by
using HMMs trained on children’s speech with and without applying VTLN.

5.2 Experiments in Unmatched Conditions

A set of recognition experiments was carried out with the aim of measuring
how much recognition performance decreases, within our experimental frame-
work, under unmatched training and testing conditions. By using adult speech
from the IBN corpus, three different HMM sets were trained: the first one us-
ing speech from adult male speakers in the IBN training set, the second one
using speech from adult female speakers in the IBN training set and, finally,
the third one using the whole IBN training set. This resulted in three cross-
word triphone HMM sets having 40000, 29560 and 53860 Gaussian densities,
respectively.

Table 3 reports the WERs achieved on the ChildIt test set by using model
trained on adult speech (“Adult HMMs”), on adult male speech only (“Adult
male HMMs”) and adult female speech only (“Adult female HMMs”). Recog-
nition results, in column “Baseline”, show that WER achieved by using HMMs
trained on adult male speech is more than twice higher than WER achieved
by using HMMs trained on adult female speech (72.1% vs 31.2%). This is con-
sistent with results of analysis reported in Section 3, where it is shown that
spectral characteristics of children’s voices are more similar to those of female
voices than those of male voices.

Figure 10 shows the WER as a function of age on the ChildIt test set, achieved
using acoustic models trained on adult speech. As we can see, while the mean
WER reported in Table 3 is 41%, there is a large difference in performance
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Fig. 10. Recognition results (% WER) on the ChildIt test set as a function of age
by using HMMs trained on adult speech.

achieved for younger children and older children. WER for children aged 7-
9 years is more than 95% higher than that achieved for children aged 13
years. This preformance trend is in agreement with the effect of developmental
changes on acoustic parameters discussed in Section 3.4.

A simple approach to compensate the mismatch between children’s voices and
acoustic models trained on adult speech is to introduce a fixed scaling, constant
over all speakers, in the frequency axis of the speech spectrum (Das et al.,
1998; Claes et al., 1998; Giuliani and Gerosa, 2003). Figure 11 reports WERs
achieved on the ChildIt training set as function of the warping factor adopted.
We considered 13 warping factors, evenly distributed (with step 0.02) in the
range 0.76-1.00, where a warping factor of 1.00 corresponds to the case of no
warping applied. As in the VTLN experiments, speaker-independent frequency
warping was implemented by changing the spacing and width of the filters in
the mel filter-bank while maintaining the speech spectrum unchanged.

Looking at results reported in Figure 11, we can see that a warping factor
of 0.86 is the best suited to compensate for the existing mismatch between
children’s speech and HMMs trained on adult voices. The best warping factor
for models trained on adult female speakers is 0.92, while the one for mod-
els trained on adult male speakers is 0.80. Recognition results obtained on
the ChildIt test set with the estimated optimal speaker-independent warping
factors are reported in Table 3 in the column “SI Warping”.

Recognition performance improvement is significant in all cases even if still
far from that achieved under matched conditions (training and testing on
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Fig. 11. Recognition results (% WER) on the ChildIt training set as function of the
warping factor by using HMMs trained on adult males and females (“Adult HMMs”),
adult males (“Adult male HMMs”) and adult females (“Adult female HMMs”).

HMM set Baseline SI Warping UD Warping SI Adaptation

Adult HMMs 41.0 23.2 22.4 14.8

Adult male HMMs 72.1 28.6 27.3 14.8

Adult female HMMs 31.2 23.5 21.2 14.4
Table 3
Recognition results (% WER) obtained on the ChildIt test set using models trained on
adult speech, performing SI warping of children’s speech spectrum (“SI Warping”),
adopting an utterance-dependent warping factor (“UD Warping”) and adapting to
children’s speech the HMMs trained on adult speech (“SI Adaptation”).

children). Performance achieved by models trained on adults of both genders
and by models trained on adult females are very similar and still much better
than that achieved by models trained on adult males.

Instead of applying a speaker-independent frequency scaling factor, the warp-
ing factor can be selected on an utterance-by-utterance basis adopting the
VTLN testing procedure. Baseline acoustic models, trained on unwarped adult
data, were exploited for the preliminary decoding step, warping factor selection
and final recognition step. Recognition results obtained using the utterance-
dependent warping factors are reported in Table 3 in the column “UD Warp-
ing”. It can be noted that using an utterance-dependent warping factor gives
performance only slightly better than using a speaker-independent frequency
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 warping factor.

Finally, we tried to improve recognition performance by using the data in the
training set for children (about 9h of speech) to perform acoustic model adap-
tation on the three HMM sets trained with adult data. Means and variances
of Gaussian densities were adapted through 4 iterations of MLLR exploiting a
regression class tree for dynamic allocation of regression classes according to
the amount of adaptation data (Leggetter and Woodland, 1995). The mini-
mum occupancy threshold was fixed to 1000, roughly 10 seconds of speech. For
each regression class a full transformation matrix was estimated for Gaussian
mean adaptation while a diagonal transformation matrix was used for variance
adaptation. Recognition results are reported in Table 3 in column “SI Adap-
tation”. As expected performance improves substantially for all the three set
of models. Adapting HMMs trained on adult females results in best recogni-
tion performance with a 14.4% WER which is the same results achieved with
HMMs trained on the same children’s data (see Table 2). We have to point
out that MLLR adaptation does not adapt state transition probabilities and
mixture weights.

5.3 Speaker Adaptive Acoustic Modeling

This section reports results of recognition experiments that were carried out
in batch mode, assuming all the data of each test speaker available in block for
multiple processing. For this purpose, the manual annotation of the speaker
identity, in addition to the manual segmentation into separate utterances, was
exploited. The decoder was run twice, and the output of the first decoding
step was exploited as a supervision for performing system adaptation before
the second decoding step took place. Unsupervised speaker adaptation was
performed by adapting means and variances of Gaussian densities through
MLLR. Two regression classes were defined and the associated transforma-
tion matrices were estimated through three MLLR iterations exploiting the
data of each speaker. Full transformation matrices were used for transforming
the means, while diagonal transformation matrices were used for transform-
ing the variances. In the experiments reported below the word transcriptions
generated with the first decoding step were exploited as a supervision also for
performing speaker normalization.

For both adults and children, we trained three normalized HMM sets using
the VTLN, CMLSN and SAT training procedures summarized in Section 4,
with the aim of reducing the effect of inter-speaker acoustic variability and
improving recognition performance.

Table 4 reports recognition results obtained on the ChildIt test set by adopt-
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 ing the three above mentioned speaker adaptive acoustic modeling methods
and two combinations of methods, “VTLN+SAT” and “VTLN+CMLSN”.
Note that both in case of baseline models and of models trained with speaker
adaptive methods, unsupervised static MLLR speaker adaptation of acoustic
models was performed before the second decoding step.

HMM set Baseline VTLN CMLSN SAT VTLN + VTLN +

CMLSN SAT

Adult HMMs 20.0 15.4 15.2 16.0 14.4 14.8

Child HMMs 11.6 11.2 10.6 11.0 10.6 10.5
Table 4
Recognition results (% WER) obtained on the ChildIt test set using HMMs trained
on adult speech and children’s speech with several speaker adaptive acoustic modeling
methods.

It can be noted that the CMLSN method outperforms the VTLN and SAT
methods in both matched and unmatched conditions. This improvement in
performance was validated using the matched-pair sentence test (Gillick and
Cox, 1989) to ascertain whether the observed results were inconsistent with
the null hypothesis that the output of two systems were statistically identical.
Considered significance levels were .01, .005 and .001. In matched condition
(see row “Child HMMs”) the improvements achieved with the CMLSN method
with respect to the VTLN and SAT methods are statistically significant with
p < .005 and p < .01, respectively. In unmatched conditions (see row “Adult
HMMs”) the CMLSN method ensures better result than the SAT method,
with p < .001, while the difference in performance between the CMLSN and
the VTLN method is not statistically significant.

By using the CMLSN method in matched conditions a 8.6% WER relative
reduction was achieved with respect to the baseline system, from 11.6% to
10.6% WER, while in unmatched conditions a 23.0% WER relative reduction
was achieved, from 20.0% to 15.2%. We have to point out that the recognition
results achieved using models trained on adult data using VTLN, CMLSN and
SAT (15.4%, 15.2% and 16.0% WER, respectively) are still worse than those
achieved by the baseline models trained on children’s speech (11.6% WER).
When cascading the VTLN method with the CMLSN and SAT methods,
results achieved are always equal or better than those achieved using one of
the normalization method alone. It is to point out that while the difference in
WER achieved with baseline models for adults and children is around 72.0%
relative (20.0% vs 11.6%), using the VTLN+CMLSN method the difference is
reduced to 36.0% relative (14.4% vs 10.6%).
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 6 Conclusions

In this paper, results of several acoustic analyses on children’s and adult read
speech were presented. These analyses focused on phone duration, effects of
vocal tract length variation and intra-speaker spectral and temporal variabil-
ity.

Speech analyses were carried out on read Italian speech collected from children
7-13 years old and on read American English speech collected from children
5-17 years old. Measurements of fundamental and formant frequencies, carried
out on Italian speech, and of phone duration, carried out on both Italian and
American English speech, showed that spectral and temporal characteristics
of children’s speech vary with age, as it was expected from results reported
in the literature for American English speech. In particular for the age range
considered we observed a significant decrease of pitch and formant frequencies
as a child’s age increases. A similar trend was observed for phone duration.
Also intra-speaker temporal and spectral variability, measured on American
English speech, decreases as age increases.

Results of the analyses carried out confirmed that children are not a homoge-
neous group of speakers. In addition, measures of intra- and inter-speaker spec-
tral variability showed that spectral variability of children’s speech is higher
than that of adult speech even when a specific age group is considered. This
raises challenging issues in the development of highly effective acoustic models
for ASR applications.

In this work, to cope with variations in spectral parameters induced by de-
velopmental changes, speaker adaptive acoustic modeling was investigated
through the use of the VTLN, CMLSN and SAT methods. These methods
proved to be effective when used to train acoustic models on adult and chil-
dren’s speech. In particular, the CMLSN method always outperformed the
other methods used in this work.

The best recognition results were achieved by cascading the VTLN method
with the CMLSN method. Using this combination of methods, we obtained
a relative WER reduction, with respect to the baseline systems, of 8.6% and
28.0%, respectively, for matched and unmatched conditions. However, even
with the adoption of speaker adaptive acoustic modeling techniques, recogni-
tion results achieved using HMMs trained on children’s speech were signifi-
cantly better than those achieved using HMMs trained on adult speech.

The improvement in recognition performance achieved with the adopted speaker
adaptive acoustic modeling methods opens new prospectives for developing of
general acoustic models able to perform well on speakers of all ages, thereby
reducing the need for age-specific acoustic models.

27



 

 

 

ACCEPTED MANUSCRIPT 

 Acknowledgements

This work was partially financed by the Autonomous Province of Trento (Italy)
under the project PEACH (Fondo Unico Program).

References

Ackermann, U., Angelini, B., Brugnara, F., Federico, M., Giuliani, D., Gret-
ter, R., Niemann, H., 1997. Speedata: A Prototype for Multilingual Spoken
Data-Entry. In: Proc. of EUROSPEECH. Rhodes, Greece, pp. 1807–1810.

Anastasakos, T., McDonough, J., Schwartz, R., Makhoul, J., Oct. 1996.
A Compact Model for Speaker-Adaptive Training. In: Proc. of ICSLP.
Philadelphia, PA, pp. 1137–1140.

Angelini, B., Brugnara, F., Falavigna, D., Giuliani, D., Gretter, R., Omologo,
M., Sept. 1994. Speaker Independent Continuous Speech Recognition Using
an Acoustic-Phonetic Italian Corpus. In: Proc. of ICSLP. Yokohama, Japan,
pp. 1391–1394.

Arunachalam, S., Gould, D., Andersen, E., Byrd, D., Narayanan, S., Sept.
2001. Politeness and Frustration Language in Child-Machine Interactions.
In: Proc. of EUROSPEECH. Aalborg, Denmark, pp. 2675–2679.

Banerjee, S., Beck, J. E., Mostow, J., Sept. 2003. Evaluating the Effect of
Predicting Oral Reading Miscues. In: Proc. of EUROSPEECH. Geneva,
Switzerland.

Bertoldi, N., Brugnara, F., Cettolo, M., Federico, M., Giuliani, D., 2001. From
Broadcast News to Spontaneous Dialogue Transcription: Portability Issues.
In: Proc. of ICASSP. Vol. 1. Salt Lake City, UT, pp. 37–40.

Boersma, P., Weenink, D., 2001. Praat, a system for doing phonetics by com-
puter. Glot International 5 (9/10), 341–345.

Brugnara, F., Cettolo, M., Federico, M., Giuliani, D., Sept. 2002. Issues in
automatic transcription of historical audio data. In: Proc. of ICSLP. Denver,
CO, pp. 1441–1444.

Burnett, D. C., Fanty, M., 1996. Rapid Unsupervised Adaptation to Children’s
Speech on a Connected-Digit Task. In: Proc. of ICSLP. Vol. 2. Philadelphia,
PA, pp. 1145–1148.

Claes, T., Dologlou, I., ten Bosch, L., Compernolle, D. V., Nov. 1998. A Novel
Feature Transformation for Vocal Tract Length Normalisation in Automatic
Speech Recognition. IEEE Trans. on Speech and Audio Processing 6 (6),
549–557.

Clarke, G. M., Cooke, D., 1998. A Basic Course in Statistics. Arnold, chapter
22, pages 520-546.

Das, S., Nix, D., Picheny, M., May 1998. Improvements in Children’s Speech
Recognition Performance. In: Proc. of ICASSP. Seattle,WA.

28



 

 

 

ACCEPTED MANUSCRIPT 

 Davis, S., Mermelstein, P., 1980. Comparison of parametric representations
for monosyllabic word recognition in continuously spoken sentences. IEEE
Trans. on Acoustics, Speech and Signal Processing 28, 357–366.

Eide, E., Gish, H., May 1996. A Parametric Approach to Vocal Tract Lenght
Normalization. In: Proc. of ICASSP. Atlanta, GA, pp. 346–349.

Eskenazi, M., Pelton, G., Sept. 2002. Pinpointing pronunciation errors in chil-
dren’s speech: examining the role of the speech recognizer. In: PMLA. Aspen
Lodge, CO, pp. 48–52.

Fitch, W. T., Giedd, J., Sept. 1999. Morphology and development of the hu-
man vocal tract: A study using magnetic resonance imaging. Journal of
Acoust. Soc. Amer. 106 (3), 1511–1522.

Fukunaga, K., 1990. Introduction to Statistical Pattern Recognition, 2nd Edi-
tion. Academic Press, New York.

Gales, M. J. F., 1998. Maximum likelihood linear transformations for HMM-
based speech recognition. Computer Speech and Language 12, 75–98.

Gerosa, M., Giuliani, D., Brugnara, F., Sep. 2005. Speaker Adaptive Acous-
tic Modeling with Mixture of Adult and Children’s Speech. In: Proc. of
INTERSPEECH/EUROSPEECH. Lisboa, Portugal, pp. 2193–2196.

Gillick, L., Cox, S. J., May 1989. Some Statistical Issues in the Comparison of
Speech Recognition Algorithms. In: Proc. of ICASSP. Glasgow, pp. I–532–
535.

Giuliani, D., Gerosa, M., Apr. 2003. Investigating Recognition of Children
Speech. In: Proc. of ICASSP. Vol. 2. Hong Kong, pp. 137–140.

Giuliani, D., Gerosa, M., Brugnara, F., Jan. 2006. Improved automatic speech
recognition through speaker normalization. Computer Speech and Language
20 (1), 107–123.
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