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Abstract 

This review focuses on the transient receptor potential vanilloid 1 (TRPV1). TRPV1 

is a non-selective cation channel predominantly expressed in the cell membranes of 

sensory afferent fibers, which are activated multi-modally. In the mammalian 

respiratory system, immunohistochemical and electrophysiological studies have 

revealed heterogeneous localizations of TRPV1 channels in the airways and their 

presence in pleural afferents. TRPV1 channels in afferents are not only involved with 

sensory inputs, but also release several neuropeptides upon stimulation. These 

processes trigger pathophysiological effects (e.g. reflex bronchoconstriction, 

hypersecretion, cough, etc.) that cause various symptoms of airway diseases. 

Recent studies have identified several endogenous and exogenous substances that 

can activate TRPV1 in the lung. Because of its key role in initiating inflammatory 

processes, TRPV1 receptor antagonists have been proposed as therapeutic 

candidates. Therefore, a critical update of recent therapeutic results is also given in 

this review.  

 Key words: Neurogenic inflammation, bronchoconstriction, mucus secretion, cough, 

apoptosis, therapy 
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Introduction 

Non-myelinated (C-) fibers represent the majority of vagal afferents that innervate 

the airways and lungs [1]. The afferent activity arising from C-fiber endings plays an 

important role in regulating respiratory functions under both normal and 

pathophysiologic conditions. Capsaicin, a pungent ingredient of chili peppers, is 

known to activate airway C-fibers, and this activation has long been associated with 

the initiation of several central reflexes, including increases in respiratory rate, 

parasympathetic bronchoconstriction, mucus hypersecretion, vasodilation, as well as 

urge to cough sensations and sensations of dyspnea [2, 3].  

Recent immunohistochemical studies have revealed the presence of nerve 

endings, presumably C fibers, that contain tachykinins, such as substance P (SP) 

and neurokinin A (NKA), and calcitonin gene-related peptide (CGRP) in the airway 

mucosa [4, 5]. In many species, including humans, these neuropeptides are 

synthesized in the cell bodies of airway neurons of the trigeminal, jugular and 

nodose ganglia, and are then transported to and stored in the peripheral endings. 

The neuropeptides that are released locally from C-fiber endings upon stimulation 

play important roles in the human respiratory system. They have potent effects on 

the tone of airway smooth muscle, airway secretions, edema of airway mucosa and 

on inflammatory and immune cells that mediate neurogenic inflammation via binding 

tachykinin ligands (NK1, NK2 and NK3) or CGRP receptors [6-14]. Thus, responses 

evoked by activating C-fiber afferents are mediated both by central reflex pathways 

and by local or axon reflexes involving the release of tachykinins from sensory 

endings.  

Transient receptor potential vanilloid (TRPV) 1 is a multi-modal, non-selective 
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cation channel with a high permeability to Ca2+ [15, 16]. In the respiratory system, 

TRPV1 is predominantly found in afferent sensory neurons. It has been 

hypothesized that TRPV1, together with tachykinin, is responsible for the release of 

neuropeptides from the sensory terminals, thereby initiating local neurogenic 

inflammation [14]. To clarify the roles of TRPV1, experiments using selective receptor 

antagonists and targeted gene deletions in mice have demonstrated the important 

roles of TRPV channels, particularly TRPV1 in the regulation of airway function [17, 

18]. This review will outline our current knowledge of TRPV1 and its potential roles 

for respiratory medicine.  

 

TRPVs: A brief overview 

Studies with Drosophila opened the door to understanding the roles of transient 

receptor potential (TRP) channels. The term TRP derives from a transient, rapid 

decline of electrical potential in photoreceptor cells of mutant Drosophila following 

prolonged stimulation with light [19, 20]. To date, 28 ion channels have been 

identified for the TRP family, which are classified in six subfamilies based on their 

homologies and activation characteristics. All TRP channels are comprised of six 

transmembrane domains that assemble as tetramers to form cation-permeable pores. 

Upon adequate stimulation, the channel opens and allows ions to pass through. Only 

a small conformational change in the TRP channel protein is required for pore 

opening, which allows > 106 ions per second to flow through each channel and 

initiate a nerve impulse [15, 16] (Fig 1 Ref [16]).  

In mammals, TRP channels are ancient sensory receptors that are ubiquitously 

expressed in tissues and organs. Not only are they involved in the classical sensory 
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transduction processes of multicellular organisms, such as vision, olfaction, taste, 

thermosensation and other stimuli, but they are also engaged at the single cell level 

[15]. One TRP subfamily, the transient receptor potential vanilloid subtype (TRPV), 

consists of six non-specific cation channel receptors [21-23]. The best known 

member of this family is TRPV1, initially called vanilloid receptor (VR)1. Caterina 

and co-workers cloned TRPV1 from a rat sensory neuron cDNA library and showed 

that the receptor is expressed in both the dorsal root (DRG) and trigeminal ganglia 

(TG) [24]. TRPV1 has also been cloned from humans [25], guinea pigs [26], rabbits 

[27], mouse mice [28] and dogs [29]. 

 Expression of TRPV-1 in the respiratory system 

Several immunohistochemical studies have described the distributions of TRPV1 

within the central nervous system [30], skin [31], gastrointestinal tract [32] and nasal 

mucosa [33]. Much is known about the mapping of TRPV1 receptors in the animal 

lung. Recently, an investigation using immunofluorescence and confocal microscopy 

found a unique distribution and co-localization of TRPV1 and two neuropeptides 

(CGRP, substance P) in the extra- and intrapulmonary airways of guinea pigs.  

TRPV1 positive axons represented only a small fraction of the total number of 

PGP9.5 staining nerves within the tracheal epithelium of the guinea pig, and only half 

of the TRPV1 positive axons also stained positive for substance P. In the 

intrapulmonary airways, most TRPV1 positive neurons co-localized with substance P 

and CGRP within and beneath the epithelium, around blood vessels, within airway 

smooth muscles and alveoli. TRPV1 is predominantly found in sensory nerves that 

contain neuropeptides, and it is heterogeneously expressed in the airways of guinea 

pigs [34, 35]. 

TRPV1 expression in the lung is not confined to sensory nerves, as this receptor is 
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also present in immortalized human bronchial epithelial cells [36-38], airway smooth 

muscle cells [35] and mast cells [39]. Recently, parietal pleura afferents were found 

in the intercostal nerves of rabbits, and these myelinated and unmyelinated fibers 

had multi-modal properties [40]. In addition, a very recent study demonstrated the 

presence of acid-sensitive channels, TRPV1 and acid sensing ion channel-3 (ASIC3) 

in rat DRG neurons projecting to the pleura.  

Groth et al. investigated to what extent they were expressed by rat DRG neurons 

projecting to the lung and pleura using retrograde labelling with antisera against 

TRPV1, ASIC3 and neurofilament 68 (marker for myelinated neurons) injected into 

the lung or applied to the costal pleura. It was found that 22% of pulmonary spinal 

afferents expressed neither TRPV1 nor ASCI3 channel-immunoreactivity. In contrast, 

only 3% of pleural afferents expressed neither TRPV1 nor ASCI3. TRPV1+/ASIC3- 

neurons with slow conduction velocity (small soma, neurofilament 68-negative) were 

significantly more frequent among pleural (35%) than pulmonary afferents (20%). 

TRPV1-/ASIC3+ neurons were found in between 44% (lung) and 48% (pleura) of the 

neurons, and half of these presumably conducted in the A-fibre range (large soma, 

neurofilament 68-positive) [41].  

In contrast to animal tissue or cultured cells, much less is known about the 

mapping of TRPV1 receptors in the human lung. One study showed specific staining 

of nerve profiles for TRPV1 in the subepithelial and epithelial layers in human 

bronchial tissue obtained by fiberoptic bronchoscopy, but there was little evidence of 

TRPV1 expression in non-sensory nerve sites [42]. 

 

Activation of TRPV1 in the lung 

TRPV1 in the lung may be experimentally activated by a variety of stimuli, such as 
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electrical stimulation of the vagus nerve, mechanical stimuli or chemical irritants. 

Capsaicin is a potent, selective stimulus for the TRPV1 channel. TRPV1 is also 

activated by acid [43-45], heat [24], arachidoynlethanolamide (AFA and anandamide) 

[46, 47]and the lipoxygenase metabolites of arachidonic acid, including leukotriene 

B4 (LTB4), 12- and 15-(S)-hydroperoxyeicosatetraenoic acid  [12-(S)-HPETE), 15-

(S)-HPETE] and 5- and 15-(S)-hydroxyeicosatetraenoic acids [5-(S)-HETE), 15-(S)-

HETE] [48]. 

In addition to exogenous stimuli, TRPV1 is sensitized by a number of endogenous 

inflammatory mediators. TRPV1 has several consensus phosphorylation sites where 

phosphorylation by protein kinases A, C and G (PKA,C and G) or tyrosine kinase 

might take place [49-51]. Also, adenosine 5-triphosphate (ATP) and bradykinin 

enhance TRPV1 activity through a PKC-dependent pathway (See ref. [52] for details 

on each TRPV1 activator and modulator).  

Role of TRPV1 in the respiratory tract under pathophysiological conditions 

1. Thermal sensing 

The body temperatures of mammalian species are usually maintained within 

relatively narrow physiological ranges. However, hyperthermia can occur under 

various conditions. For example, body core temperature can exceed 41℃ during 

strenuous exercise, such as marathon running, or in some pathological cases with 

severe fever [53, 54]. TRPV channel subtypes play important roles in thermal 

sensing. In mammals, six thermosensitive ion channels have been reported, all of 

which belong to the TRP subfamily. The TRPV1, TRPV2, TRPV3 and TRPV4 

channel subtypes are the primary thermal sensors, and each TRPV subtype is 

activated in a different temperature range [22]. TRPV1 exhibits general sensitivity to 
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extreme temperatures over 43 ℃, which are painful to humans [24, 55].  However, 

TRPV1 may be activated at even lower temperatures within the normal physiological 

range.  

The temperature threshold for TRPV1 stimulation is lowered by anandamide or 

ATP through a PKC-dependent pathway [50, 51]. A recent study by Ni et al. showed 

that isolated rat vagal pulmonary sensory neurons can be directly activated by 

increases in temperature (35 ℃ to 41 ℃) as demonstrated by the evoked inward 

currents. Stimulation was only partially attenuated by pre-treatment with capsazepine 

or AMG9810, which are selective TRPV1 antagonists. In contrast, after treatment 

with ruthenium red, a blocker of TRPV1-4 channels, activity was almost completely 

abolished. In addition, TRPV1-4 channel mRNA and protein expression was evident 

in these neurons. This indicates that TRPV1, as well as other thermo- sensitive 

TRPV channel subtypes, are activated within the normal physiological range and 

play a primary role in regulating the response of pulmonary sensory neurons to 

hyperthermia [56]. However, the relative contributions of these different TRPV 

channel subtypes to the thermal sensitivity of these neurons remain to be 

determined, and the effects of these neurons’ activation under normal or 

pathophysiological condition await future studies. 

2. Acid sensing 

Acidification of pulmonary tissue can commonly occur due to excessive CO2 

production (e.g., exercise), impaired CO2 clearance from the lungs (e.g., COPD) [57, 

58] or excessive lactic acid production caused by tissue ischemia or hypoxia [59]. In 

asthmatic patients with acute exacerbations, the pH of exhaled breath condensates 

is reduced to 5.23, as compared to 7.65 in healthy subjects [60]. Low pH in the 
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exhaled breath condensate, which reflects the lining fluid pH of the lower airways, 

has been found in various respiratory diseases, such as obstructive sleep apnea [61], 

chronic cough [62], cystic fibrosis [63], a acute lung injury [64].   

Airway acidification induces the release of neuropeptides from bronchopulmonary 

C fibers [65, 66]. Two well-established mechanisms for activation of sensory nerves 

by acid are TRPV1 and ASICs. The airway C-fiber response to acid has both 

transient and sustained components. Electrophysiological and pharmacological 

studies show that the TRPV1-mediated response to acid is sustained, while most of 

the ASIC-type receptors mediate brief transient responses [45, 67].  

The transient component is inhibited in a dose-dependent manner by the ASIC 

blocker amiloride, whereas the sustained component is attenuated, but not abolished 

by selective TRPV1 antagonism. In addition, there appear to be no interactions 

between these two chemicals when simultaneously applied to neurons [65, 68]. In an 

experiment using TRPV1 knock-out mice, the fact that sustained activation of C-

fibers was evoked by acid suggested that ion channels other than TRPV1 can also 

generate potentials in C-fibers in response to decreases in tissue pH. Little is known 

regarding the mechanism for the TRPV1-independent response to acid in pulmonary 

C-fibers. But, numerous acid-sensitive ion channels may contribute to this response, 

such as TRPV4 [69] and certain types of voltage-gated potassium channels [70].  

There is little available information regarding acid-sensing channels in the pleura. 

Rat pleural afferents express at least two different acid-sensitive channels, TRPV1 

and ASIC3, with a higher prevalence of TRPV1+/ASIC3- neurons among pleural 

afferents compared to pulmonary afferents. Different expression patterns of these 

acid sensing channels may make them suitable to monitor tissue acidification. A 

higher incidence of the TRPV1+/ASIC3- pattern might reflect the high sensitivity of 



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

10 

the parietal pleura to sustained, painful stimuli. However, direct experiments 

regarding the specific function of this neuron subclass remain to be done [41]. 

3. Airway smooth muscle constriction 

Bronchoconstriction is a clinically important feature resulting from neurogenic 

inflammation. Atropine-resistant bronchoconstriction has been shown in guinea pig 

airways. It is completely blocked by the simultaneous administration of NK1 and NK2 

receptor antagonists both in vitro [71, 72] and in vivo [73]. Tachykinins cause 

bronchoconstriction through NK2 receptors, and to a lesser extent NK1 receptors, in 

the guinea pig [74]. In allergic animal models, pre-treatment with capsaicin, which 

degenerates the airway TRPV1-expressing afferents and depletes sensory 

neuropeptides, inhibits allergen-induced bronchoconstriction in sensitized guinea 

pigs [75]. These effects are ascribable to non-cholinergic bronchoconstriction via 

activation of TRPV1. An analogous non-cholinergic bronchoconstriction has not been 

consistently demonstrated in humans.  

Tachykinergic innervation is absent, or very sparse, around human airway muscle 

[76]. Electrical field stimulation of human isolated bronchi leads to cholinergic 

contractions, but not to tachykinergic contractions [77]. A few studies found a small 

contraction of human bronchi to capsaicin, but a direct role for tachykinins was not 

investigated [78, 79]. Other studies have shown that capsaicin either does not 

contract human bronchial tissue or only causes contractions at non-selective 

concentrations by mechanisms that do not involve neurokinin receptors [80, 81].  

Recently, functional TRPV4 channels in human airway smooth muscle cells have 

been reported. Jia and co-workers showed a hypotonicity-induced airway contraction 

that was independent of tachykinin-containing sensory nerves in isolated intact 

human and guinea pig airways [82]. From their work, a direct action on airway 
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smooth muscle via TRPV4 excitation followed by Ca2+ influx may be suggested. 

TRPV1 channels were unlikely to have been involved in the Ca2+ response in 

cultured human smooth muscle cells, as TRPV1 mRNA was not expressed and a 

TRPV1 agonist and an antagonist had no effects on Ca2+ influx. However, a recent 

study showed that TRPV1 is up-regulated in airway smooth muscle in patients with 

chronic cough [83]. Whether or not the direct action via TRPV1 excitation on airway 

smooth muscle applies to pathological conditions in human airways, such as asthma 

or COPD, remains to be determined.  

4. Cough 

Several studies support a linkage between TRPV1 and cough.  Inhalation of the 

well-known TRPV1 agonist capsaicin consistently and reproducibly elicits cough in 

animals and humans [84-86]. TRPV1 receptors are found on sensory airway nerves 

that play important roles in the cough reflex [13, 42, 52, 87]. Groneberg et al. found a 

significant correlation between the capsaicin tussive response and the numbers of 

TRPV1 positive nerves in patients with chronic cough of diverse causes, suggesting 

that TRPV1 receptors contributed to the enhanced cough reflex [42].  

In some studies, TRPV1 antagonists inhibited coughs elicited by capsaicin and 

citric acid in guinea pigs [88, 89] and by aerosol exposure to ovalbumin in sensitised 

guinea pigs [90]. More direct evidence linking TRPV1 channel activity to airway 

sensory neurons innervating inflammatory airways was recently provided by McLeod 

et al. who demonstrated the effects of airway inflammation induced by sulfur dioxide 

(SO2) exposure on TRPV1 receptor activity in vagal sensory neurons and cough. 

Using a subacute SO2 exposure model in guinea pigs, intracellular Ca2+ responses in 

nodose ganglia cells evoked by capsaicin were significantly augmented in SO2 

exposed animals compared to nodose ganglia from control guinea pigs. This 
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response was blocked by the TRPV1 antagonist capsazepine (1μM). In addition, 

cough responses elicited by aerosolised capsaicin and the numbers of BAL 

neutrophils were significantly increased in SO2 -exposed guinea pigs compared to 

controls [91]. This study suggests that up-regulated TRPV1 may play an important 

role in cough under inflammatory conditions.  

5. Mucus secretion 

Chronic mucus hypersecretion is indicative of poor asthma control and is an 

important characteristic of chronic obstructive pulmonary disease (COPD) [92, 93]. 

Up-regulation of the lung sensory neural pathways has been implicated in asthma 

and COPD.  Tachykinins released from sensory nerves act mainly through NK1 

receptors in sensory glands, and mediate mucus hypersecretion, edema, 

vasodilatation and the release of pro-inflammatory cytokines [94, 95]. Pre-

protachykinin (PPT)-A, a precursor of SP, NKA and NK1, is expressed at high levels 

in human COPD airway extracts. NK1 protein, PPT-A mRNA and SP protein are even 

more abundantly expressed in human COPD airway tissue [96].  

A recent in vivo study found evidence of a role for TRPV1 in mucus secretion in 

capsaicin-evoked airway inflammation of rats. Karmouty-Quintana et al. showed that 

the TRPV1 antagonist capsazepine completely inhibited the fluid signals detected by 

magnetic resonance imaging and reduced mucin levels in BAL fluid induced by 

capsaicin. Furthermore, pre-treatment with a dual NK1/NK2 receptor antagonist 

completely inhibited the mucus release induced by capsaicin [97]. Taken together, 

these results suggest that the activation of TRPV1 may promote the release of 

tachykinins, SP and NKA, resulting in mucus secretion through NK1 and/or NK2 

receptors. 

6. Apoptosis and TRPV1 
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In vitro studies using human bronchial epithelial cells have demonstrated 

increased production of pro-inflammatory cytokines, such as interleukin-6 and 

interleukin-8, and oncotic cell death associated with TRPV1 activation [37, 98]. Other 

studies have also demonstrated that particulate matter increases intracellular Ca2+ 

and induces apoptosis of cultured lung epithelial cells via activation of TRPV1 [38, 

99]. These results indicate that TRPV1 is a mediator of lung injury and inflammation. 

However, the detailed molecular mechanisms associated with cell death have not 

been established.  

A very recent study addressed the effects of TRPV1 on the endoplasmic reticulum 

(ER) regarding stress and cell death in human bronchial epithelium and alveolar cells 

[100]. TRPV1 agonist (nonivamide) treatment induced calcium release from the ER 

and changed the transcription of growth arrest- and DNA damage-inducible transcript 

3 (GADD153, GADD45alpha, GRP78/BiP, ATF3, CCND1 and CCNG2) in a manner 

similar to prototypical ER stress-inducing agents. Also, the TRPV1 antagonist N-(4-

tert-butylbenzyl)-N'-(1-[3-fluoro-4-(methylsulfonylamino)-phenyl]ethyl) thiourea (LJO-

328) inhibited mRNA responses and cytotoxicity. These results indicated that TRPV1 

activation caused cell death and tissue damage via the ER stress pathway, and 

provided novel insights into the mechanisms of how exogenous and/or endogenous 

TRPV1 agonists may affect lung cell pathophysiology. 

7. Protective role of TRPV1 

Several studies support the notion that activated TRPV1 elicits inflammation and 

cell injury in lung epithelial cells. Accordingly, inhibition of TRPV1 receptors has 

potential benefits to prevent certain pathological actions and toxicity [101]. However, 

more recently, counter-regulatory functions of TRPV1 have been described in an 

endotoxin-induced sepsis model in the TRPV1 knock-out mouse. In TRPV1 knock-
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out mice after intraperitoneal injection of lipopolysaccharide (LPS), Clark et al. 

demonstrated enhanced hypotension, hypothermia and mediator levels in peritoneal 

exudates, which indicated a loss of protective effects [99]. Helyes et al. also 

investigated the role of TRPV1 in endotoxin-induced airway inflammation and 

subsequent bronchial hyperreactivity in TRPV1 knock-out mice using intranasal LPS 

administration. They showed that bronchial hyperreactivity, inflammatory indices 

(edema, inflammatory cell infiltration, goblet cell hyperplasia in airway) and 

myeloperoxidase activity were significantly greater in TRPV1 knock-out mice 

compared to wild type mice. Furthermore, these results were attenuated by the 

exogenous administration of somatostatin in TRPV1 knock-out mice [102]. Several 

studies have shown that somatostatin released from capsaicin-sensitive sensory 

nerve terminals reaches the circulation and elicits systemic anti-inflammatory effects 

[103-105].  

Targeting TRPV 1 in the treatment of airway disease 

Based on evidence suggesting that TRPV1 is a mediator for many lung 

pathologies caused by toxicants and endogenous agonists, and due to its central 

role in neurogenic inflammation, TRPV1 might be a good target for pharmacological 

intervention for pain, inflammation and preventing lung disorders [106, 107]. TRPV1 

antagonists are under intense investigation in several animal models. Some pre-

clinical studies suggest that TRPV1 antagonists may be useful as novel analgesic 

drugs, and may also be effective for bladder hyperactivity [106].  

Chizh et al. reported the potential analgesic utility of the TRPV1 antagonist SB-

705498 in men. They showed that orally administrated SB-705498 significantly 

reduced the area of capsaicin-evoked flare and elevated the heat pain threshold 

without any serious adverse events [104]. However, a more recent study revealed 
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that systemic use of the TRPV1 blockade AMG 517 elicited undesirable 

hyperthermia in susceptible individuals, which may limit its therapeutic use [108]. 

Also, AMG 517 has a long half-life in humans (13–23 days) [109]. Although the body 

temperature effects of TRPV1 blockade with a short half-life remain to be determined 

in humans, a short half-life compound may be more suited for clinical use. Or, there 

might be a place for anatomically-restricted administration of TRPV1 antagonists, 

either topically or by injection, that would prevent access to thermoregulatory visceral 

afferents [109, 110]. 

In respiratory medicine, pulmonologists have developed an interest in the possible 

role of the TRPV1 channel in respiratory diseases [111]. TRPV1 antagonists have 

potential indications for respiratory conditions, such as asthma, COPD and chronic 

cough [52]. However, a recent study showed the potential negative effects for 

therapeutic uses of TRPV1 antagonists in the lung. Johansen et al. found that 

prolonged treatment of BEAS-2B human bronchial epithelial cells with TRPV1 

antagonists (LJO-328, SC0030 or capsazepine) for 24 hours significantly increased 

Ca2+ flux and cytokine gene expression (IL-6, IL-8), and cells exhibited greater 

cytotoxicity in response to the TRPV1 agonist nonivamide compared to cells that 

were not pre-treated with antagonists. However, TRPV1 mRNA levels in pre-treated 

cells showed no increase, and sensitisation was attenuated by brefeldin A (a Golgi 

transport inhibitor), but not by cycloheximide (a protein synthesis inhibitor) or by 

actinomycin D (a transcription inhibitor). These results suggest that the observed 

sensitisation of TRPV1 receptors by pre-treatment with a TRPV1 antagonist was 

probably due to an increased number of expressed receptors, which resulted from 

the translocation of existing receptors from the endoplasmic reticulum to the cell 

surface [112]. These results may add to our understanding of TRPV1 sensitization. 
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However, a previous study showed that expression of TRPV1 on epithelial cells was 

rare (< 1% of epithelial cells) in patients with cough [42], and there is no evidence 

that such a sensitization occurs for sensory nerves. Whether this phenomenon 

applies to other tissues or under in vivo conditions is unclear, but it warrants 

examination [113].  

Conclusion 

TRPs are ubiquitously expressed in tissues and organs, and they sense a diverse 

range of stimuli. TRPs are thought to play roles as intrinsic sensors of the cellular 

environment under normal and pathophysiological conditions. The cloning of TRPV1 

in the last decade engendered a large amount of evidence that neurogenic 

inflammation may play an important role in the pathophysiology of pulmonary 

disease. Furthermore, it has stimulated studies revealing the roles for TRPV1 in 

respiratory medicine. Experiments that used selective receptor antagonists and 

targeted gene inactivation in mice have begun to reveal the essential mechanisms of 

TRPV channels. Still, however, only little is known regarding the precise role for 

TRPV1, especially in human airway diseases such as asthma or COPD. Ultimately, a 

better understanding of the mechanisms underlying TRPV1 activation and 

sensitisation will lead to the development of novel therapeutic strategies in the 

treatment of inflammatory diseases of  the lung. 
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Figure legend 

 

Fig. 1  (A) Proposed tetrameric structure of transient receptor potential vanilloid 1 

(TRPV1) in the plasma membrane. (B) Single-channel recordings after TRPV1 

activation by capsaicin (cap, 100nM), heat (44℃) or protons (pH 5.4) at +40mV for 

the  inside/out (protons) configuration. Broken lines indicate closed channel levels. 
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Figure 1: 

 


