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Abstract 
 

It has been demonstrated in mammals that the airway hyperresponsiveness which 

accompanies viral infections is the result of increased reflex bronchoconstriction due to 

inhibition of muscarinic prejunctional receptors, which belong to M2 subtypes. Multiple 

mechanisms account for virus-induced M2 receptor dysfunction. Viral neuraminidase may 

deglycosylate the M2 receptor, decreasing acetylcholine affinity. Equine influenza remains a 

common viral respiratory disease of horses worldwide, which results in loss to the equine 

industry, by decreasing performance, convalescence time and loss of peak performance due 

to chronic sequelae, such as airway hyperresponsiveness. The purpose of this study was to 

evaluate the effect of neuraminidase on equine isolated bronchi, assessed in equine bronchial 

smooth muscle rings, derived from five healthy equine male lungs. A pretreatment with 

vehicle did not modify contraction induced by EFS at each frequency tested. A pretreatment 

with pilocarpine (1 to 100 μM) significantly reduced, while methoctramine (1 to 100 μM) 

significantly increased contraction induced by EFS. Finally neuraminidase (0.5 Ul) 

significantly increased contraction induced by EFS. These results suggest that airway 

hyperresponsiveness that follows a viral influenza infection might be related to a dysfunction 

of muscarinic prejunctional receptors. 

 

Key words: equine bronchi, muscarinic autoreceptors, neuraminidase. 
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Introduction 

The release of acetylcholine from airway cholinergic nerves, the major bronchoconstrictor 

neural pathway in all mammals, is regulated by prejunctional muscarinici autoreceptors. 

These receptors are dysfunctional in asthmatic patients and in guinea pigs challenged by 

ovalbumin. Loss of function of inhibitory muscarinic autoreceptors is characterized by airway 

hyperresponsiveness to electrical stimulation of the vagus nerve. Furthermore, airway 

hyperresponsiveness to histamine in antigen challenged guinea pigs is due to increased 

vagally mediated reflex bronchoconstriction as a result of M2 receptor dysfunction (1-4). It has 

been demonstrated that both in humans and in experimental animals the airway 

hyperresponsiveness, observed during viral infections, is the result of increased reflex 

bronchoconstriction due to inhibition of M2 muscarinic receptors. Multiple mechanisms 

account for virus-induced M2 receptor dysfunction (5-7). Viruses and interferons, produced in 

response to viral infections, down-regulate the expression of M2 muscarinic receptors, and 

the decreased function of inhibitory M2 muscarinic receptors on the parasympathetic nerve 

endings is likely to contribute to increased acetylcholine release (6, 8). In particular, viral 

neuraminidase that is a major surface glycoprotein of the influenza viruses, deglycosylates 

M2 receptors decreasing acetylcholine affinity. This effect induces an increased release of 

acetylcholine from postganglionic prejunctional cholinergic nerves responsible of airway 

hyperresponsiveness (7-9). 

Equine influenza remains a common viral respiratory disease of horses worldwide, and is 

usually a self-limiting disease. There are reports of respiratory signs among unvaccinated 

animals. In fact, this disease causes airway hyperresponsiveness, and may be a contributing 

factor in the development of allergic pulmonary diseases and chronic obstructive pulmonary 

diseases (10, 11). 
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Although a causal relationship could not yet be determined, the clinical exacerbation of 

recurrent airway obstruction could be associated with virus influenza subtype 2 (11). Previous 

studies have demonstrated the presence of muscarinic prejunctional receptors, in horses (12, 

13). These receptors modulate cholinergic neural pathway and their activation induces a 

significant reduction in acetylcholine release in equine isolated tracheal smooth muscles (13). 

We hypothesized that neuraminidase could interfere with prejunctional muscarinic receptors 

in the equine lung and could increase airway responsiveness. Consequently, the aim of this 

study was to evaluate the functional effect of neuraminidase 8 (NA) on equine isolated 

bronchi, in respect to the effects of pilocarpine and methoctramine. 

 

Materials and Methods 

Tissue preparations. Five healthy equine male lungs (aged 2.6±0.19; weighted kg 459±56.4) 

were obtained from local abattoir; all animals showed a negative history of heaves. 

Immediately, after resection, 3rd generation bronchi were excised, cleaned and cut in rings. 

Bronchial rings were transferred into organ bath containing Krebs-Henseleit  buffer (KH; 

composition in mM: 118.4 NaCl, 25.0 NaHCO3, 11.7 dextrose, 4.7 KCl, 2.6 CaCl2, 2H2O, 

1.19 MgSO4·7H2O and 1.16 KH2PO4 with a cyclo-oxygenase inhibitor, indomethacin 5 μM; 

pregassed with = O2/CO2 95:5% v/v; pH 7,4) at 37 °C. 

Electrical field stimulation studies (EFS). Tissues were allowed to equilibrate passively for 

90 min. Resting tone was adjusted to 0.5-1g. their responsiveness was assessed by 

acetylcholine (ACh) 100 µM; when the response reached a plateau, rings were washed three 

times and allowed to equilibrate for 30 min. After full recovery of the tissues, EFS was 

performed by placing tissues between two wire platinum electrodes, connected to a stimulator 

3165 multiplexing pulse booster (Basile Instruments, Italy). Untreated tissues were electrically 
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stimulated for 10 sec (10 V, 0.2 ms) by increasing EFS frequencies (3-10-25 Hz). Afterward, 

they were washed three times and allowed to equilibrate for 30 min. 

Our protocol included three groups of experiments: in the first group, tissues were incubated 

with an agonist of prejunctional muscarinic receptors, pilocarpine (P; 1 μM to 100 μM); in the 

second group of experiments, tissues were incubated with an antagonist of prejunctional 

muscarinic receptors, methoctramine (M; 1 μM to 100 μM); in the last group, equine bronchi 

were incubated with neuraminidase A11 (NA; 0.5 UI). In all experiments some of the tissue 

derived from each lung was not treated with pilocarpine, methoctramine nor neuraminidase, 

but was incubated with vehicle (phosphate buffer; 100 μM), and served as vehicle and time 

control (14). After 30 min incubation, tissues were electrically stimulated, as above described. 

In order to confirm that P, M and NA exclusively affected the endogenous cholinergic 

responses to EFS neurally released ACh, two additional tissues were pretreated with the 

sodium channel blocker tetrodotoxin (TTx, 3 µM) and with the muscarinic-receptor antagonist 

atropine (ATR, 3 µM), as described by Olszewski et al. (14). These latter tissues were then 

treated before EFS with pilocarpine (100 μM) methoctramine (100 μM) and neuraminidase 

(0.5 Ul). 

At the end of the experiments, the wet weight of each tissue was determined. 

 

Analysis of results. In the figures, contractile responses are expressed as a percentage of 

contraction induced by EFS at 25 Hz of untreated bronchi. All values are presented as mean 

± SEM. All n values refer to the number of the lungs. To determine drug effects, we applied a 
                                                 
1Considering that 1 U of NA8 will liberate 1.0 μmole of N-acetylneuraminic acid per min at pH 5.0 at 37 °C using 
NAN-lactose or bovine submaxillary mucin (Warren L, 1959), that the activity of NA8 is about 30-50% as active 
at pH 7.0 in phosphate buffer (Cassidy JT et al., 1965) and that the Enzymatic Assay of Neuraminidase (EC 
3.2.1.18) with N-Acetylneuramin-Lactose as Substrate employs 0.02 - 0.04 unit/ml of Neuraminidase incubated 
at 37°C for 10 minutes (Warren L, 1959; Cassidy JT et al., 1965; Schneir ML and Rafelson ME, 1966), we have 
incubated bronchus rings with NA8 0.5 U (0.05 units/ml) for 30 minutes in 10 ml isolated organ bath at 37°C in 
KH solution.  
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comparison of treated and untreated tissues. This excluded any effects of time or vehicle. 

Statistical significance was assessed by multifactorial analysis of variance (ANOVA). In 

presence of a significant overall ANOVA, Duncan's multiple range testing was used to identify 

where differences were significant. A level of probability level of P<0.05 was considered as 

significant for all tests. All data analysis was performed using computer software (GraphPad 

Prism, CA, USA). 

Drugs. The following drugs were used: acetylcholine, methoctramine, pilocarpine, 

tetrotodoxin, atropine and neuraminidase 8 (Sigma, Chem. Co. St Louis, MO). 

 

Results 

 

Baseline characteristics of the bronchial rings. There was no significant difference 

(p>0.05) between each group in wet weight (C, 283±23 mg; P, 284±13 mg; M 286±19 mg; 

Na, 187±23 mg) or contraction induced by ACh 100 µM (C, 6.6±0.65 g; P, 4.30±2.81 g; M 

5.11±3.53 g; Na, 6.56±0.45 g). 

EFS responses of equine isolated bronchi. EFS induced a contraction, frequency 

dependent, in each treatment group. The responses obtained in the untreated control tissues 

were similar (always P>0.05) to those obtained in the control bronchi treated with vehicle (3 

Hz before 2.16 ± 0.64 gr, after 2.02 ± 0.50 gr.; 10 Hz before 3.22 ± 0.74 gr. After 3.14 ± 0.72; 

25 Hz before 4.54 ± 1.04 gr, after 4.46 ± 0.92 gr.). The time (30 min before the second EFS) 

did not modify the EFS induced contraction which was not statistically different at each 

frequency used. 

Responses of prejunctional muscarinic receptors to EFS. In the first and in the second 

group of experiments, EFS induced a frequency dependent contraction of untreated bronchi 
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(figures 1 and 2);  30 min of incubation with pilocarpine and methoctramine did not modify the 

baseline tone of isolated tissues. Pilocarpine reduced, in a concentration dependent manner, 

the contraction evoked by EFS in respect to untreated tissues at each frequency tested in 

respect to untreated bronchi (table 1). The effect was significant at concentrations of 10 and 

100 µM (P<0.05) (figure 1a). On the other hand, the increased concentration of 

methoctramine (1 to 100 µM) significantly (P<0.05) enhanced the contraction induced by EFS 

at each frequency tested (table 1; figure 2a) when compared with the results obtained in 

untreated bronchi. Both TTx and ATR abolished the responses of pilocarpine and 

methoctramine (figures 1b-2b). 

Effects of neuraminidase on EFS. In equine isolated bronchial rings a pretreatment with 

NA, at the concentration of 0.5Ul, significantly (P<0.05) increased contraction at all 

frequencies tested in respect to untreated tissues, as well as observed with methoctramine 

(table 1; figures 3 and 4). Neuraminidase did not shown any effect on baseline tension (figure 

3). Both TTx and ATR completely blocked responses to EFS in the presence of 

neuraminidase (figure 4). 

 

Discussion 

Muscarinic receptors are considered to be of comparable clinical importance in chronic 

obstructive pulmonary disease (COPD) in equines and in humans (15,16). Particularly, equine 

COPD is characterized by increased basal tone and by increased bronchoconstriction to a 

variety of irritants, including inflammatory mediators, mediated through the cholinergic nerves 

(16). 

The observation that a non selective muscarinic receptor antagonist, atropine, dramatically 

enhanced acetylcholine release from airway cholinergic nerves, has allowed to hypothesise 
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that muscarinic autoreceptors could be involved in the control of cholinergic tone in horses 

(17). In fact, rather than being caused by some chronic changes in nerve terminals or smooth 

muscle itself, e.g., by upregulation of M3 muscarinic receptors on airway smooth muscle or 

decreased acetylcholinesterase activity, the increase in cholinergic airway tone of horses is 

most likely induced by factors, such as inflammatory mediators that, when present in the 

airways, facilitate either local release or the response of smooth muscle to acetylcholine 

released by the nerves (14, 18, 19). 

Although, at the present time, data on the expression and distribution of probable subtypes of 

these receptors in the airway of the equine lung are scarce, recent findings indicate the 

presence of at least three muscarinic receptor subtypes M2, M3 and M1 distributed in 

trachea, bronchi, lung parenchyma and epithelium (20, 21). Furthermore, previous studies 

have demonstrated that the release of acetylcholine from equine airway cholinergic nerves is 

inhibited prejunctionally by inhibitory muscarinic receptors, by examining the effects of 

muscarinic receptor antagonists on EFS-induced acetylcholine release in trachealis 

preparations. These receptors, when activated, reduce the release of acetylcholine from 

postganglionic cholinergic efferents (12,13). 

In agreement with the literature, our results have confirmed the presence of muscarinic 

autoreceptors in equine bronchi that modulate functionally the acetylcholine release from the 

cholinergic nerve. We demonstrated that pilocarpine, an agonist of muscarinic prejunctional 

receptors, inhibited EFS-induced contraction, whereas methoctramine, an antagonist of these 

receptors, significantly enhanced contraction induced by EFS. The effects of pilocarpine and 

methoctramine on the EFS responses were due to modulation of the cholinergic endogenous 

tone. In fact, ATR and TTx abolished the responses to EFS in the presence of both drugs, in 

accordance with the data obtained by Olszewski et al. (14) who showed that peripheral 
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airways from horse, in vitro, produce entirely cholinergic contractions in response to nerve 

stimulation by EFS. 

Regardless of the muscarinic receptor subtype(s) involved, we can not exclude the possibility 

that muscarinic autoreceptors in equine bronchi could be different from the classical M2 

receptors, but could belong to M2-like receptor, since the greatest effect of the two drugs was 

observed at a concentration higher than their pA2, as it has been demonstrated in equine 

isolated trachea (12). Moreover, also in other species, including humans, the comparison of 

the pre- and postjunctional potencies of the M1-, M2- and M3-selective antagonists has 

suggested that autoinhibition of acetylcholine release is mediated via an 'M2-like' receptors 

(22-25). In any case, even thought the muscarinic autoreceptors may be a different receptor 

subtype to the classical M2, the results that we obtained with pilocarpine and methoctramine 

were not unexpected because these drugs are receptor selective rather the receptor specific 

(12). 

It has been shown that prejunctional muscarinic receptors appear to be completely 

dysfunctional in several experimental models of asthma, and also in human asthmatic 

patients, infected with influenza and parainfluenza virus (1-7). 

The effects of viral infection on acetylcholine release and M2 receptor function may be 

important in explaining the effects of viral infection on airway function. It has long been 

recognized that viral infection are associated with exacerbation of airway diseases and that 

they can lead to increase vagally mediated reflex bronchoconstriction (5-9). The function of 

the M2 muscarinic receptor on the airway nerves is lost after viral infections in different animal 

models (6,7). In humans, airway hyperreactivity is clearly associated with loss of neuronal M2 

muscarinic receptor function (5,6,8). Viral infections and their enzymes, such as 

neuraminidase, modify the function of muscarinic prejunctional autoreceptors (9). Particularly, 
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virus and interferons produced in response to viral infection down-regulate M2 muscarinic 

receptor genes and viral neuraminidase cleaves sialic acid residues from muscarinic 

prejunctional receptors, decreasing the affinity to the receptors by 10-fold (9). 

Equine influenza remains a common viral respiratory disease of horses worldwide, which 

results in loss losses to the equine industry, by decreasing performance, convalescence time 

and loss of peak performance due to chronic sequelae (10,11). Influenza viruses interfere 

with mucociliary clearance and may explain the common secondary bacterial complication 

(10,11). Airway hyperresponsiveness, which also accompanies viral infection, may be a 

contributing factor in the development of allergic pulmonary diseases and chronic obstructive 

pulmonary diseases (10,11,16). Acute exacerbation of recurrent airway obstruction of horses 

is characterized by bronchospasm, inflammation of the tracheobronchial tree, and nonspecific 

airway hyperresponsiveness. The rapid decrease in pulmonary resistance and increase in 

dynamic compliance after muscarinic blockade with atropine indicates that a large part of the 

bronchospasm is mediated through cholinergic mechanisms (16). 

Our results here provided for the first time the experimental evidence that neuraminidase 

modifies muscarinic autoreceptors in horses. In fact, neuraminidase significantly enhanced 

bronchoconstriction induced by EFS, as well as methoctramine and influence the magnitude 

of endogenous cholinergic tone. Particularly the augmentation of contraction was also 

observed at the lower frequency tested which is the physiological frequency at which 

postganglionic parasympathetic nerves are thought to periodically fire in the equine airways 

(14). 

Regardless of the mechanism by which neuraminidase exerted its’ effect on EFS responses, 

we have shown that this enzyme influences the magnitude of cholinergic responses in equine 

bronchi. In fact, its effects were completely abolished by a pre-treatment with ATR and TTx 
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performed to confirm their prejunctional and cholinergic nature. As well as demonstrated in 

other species (5-9), they might be related to a modified muscarinic autoreceptor function that 

increased acetylcholine release from airway cholinergic nerves. It is possible that this 

dysfunction might contribute to the exacerbation of COPD in the horse, but it might also 

provide potential drug targets for the therapeutic use in these species (26). It has been 

considered a suitable target for designing agents against influenza viruses. Rational drug 

design of NA inhibitors is now on the market and available to patients. These drugs might 

prevent airway complications that follow viral infection. 

In conclusion, our results suggest that airway hyperresponsiveness due to a viral influenza 

infection in equine might be related to dysfunctional muscarinic prejunctional receptors. 
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Table 1.  

Effects of pilocarpine (P; 1 to 100 μM), methoctramine (M; 1 to 100 μM), and neuraminidase 
(NA; 0.5 UI) on the contraction induced by EFS in equine isolated bronchi. Responses are 
presented as grams of contraction. Each value is the mean ±SD of five samples. *P<0.05 vs 
untreated tissues. 
  

3 Hz 
 

10Hz 
 

25Hz 
 U T U T U T 
       
 
P 1μM 

 
1.20±0.38 

 
1.27±0.28 

 
2.09±0.66

 
1.62±0.29 

 
2.85±0.67

 
1.65±0.29* 

P 10 μM 
 

1.29±0.35 
 

0.69±0.23* 
 

2.30±0.35
 

0.89±0.18* 
 

3.56±0.84
 

1.35±0.30* 
 
P 100 μM 

 
2.41±1.11 

 
0.88±0.58* 

 
4.36±1.91

 
0.90±0.60* 

 
5.61±2.13

 
1..33±0.97* 

       
 
M 1μM 

 
1.44±0.39 

 
1.60±0.37* 

 
2.18±0.76

 
2.82±0.79* 

 
3.09±0.83

 
3.35±0.91* 

 
M 10 μM 

 
1.35±0.54 

 
1.84±0.42* 

 
2.42±0.27

 
3.23±1.23* 

 
3.34±0.87

 
3.86±1.05 

 
M 100 μM 

 
2.06±0.56 

 
2.61±0.91* 

 
2.60±0.52

 
3.64±1.14* 

 
3.47±0.68

 
4.75±1.49* 

       
 
NA 0.5UI  

 
1.28±0.48 

 
2.23±0.64* 

 
1.87±0.61

 
3.25±0.67* 

 
3.06±0.72

 
4.90±0.69* 
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Figure 1. Effects of pilocarpine (1, 10 and 100 μM; black labels) on cholinergic responses, 
compared with untreated bronchi (open labels). EFS after pilocarpine 100 μM was carried out 
in the absence (A; n=5) or presence (B; n=5) of atropine (ATR; +labels) or tetrodotoxin (TTx; 
xlabels). Responses are expressed as the percentage of  tissue contraction induced by EFS 
25 Hz on untreated bronchi. *Significantly different from the results obtained with untreated 
tissues.  
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Figure 2. Effects of methoctramine (1, 10 and 100 μM; black labels) on cholinergic 
responses, compared with untreated bronchi (open labels). EFS after methoctramine 100 μM 
was carried out in the absence (A; n=5;) or presence (B; n=5) of atropine (ATR; +labels) or 
tetrodotoxin (TTx; xlabels). Responses are expressed as the percentage of  tissue contraction 
induced by EFS 25 Hz on untreated bronchi. *Significantly different from the results obtained 
with untreated tissues. 
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Figure 3. Effects of 30 min neuraminidase (0.5 Ul) incubation on EFS-induced contraction at 
three different frequencies (3-10-25 Hz). A pretreatment with NA significantly enhanced EFS 
induced contraction at all frequencies tested and showed no effect on baseline tension. 
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Figure 4. Effects of neuraminidase (0.5 Ul; black labels) on cholinergic responses, compared 
with untreated bronchi. EFS was carried out in the absence (n=5) or presence (n=5) of 
atropine (ATR; +labels) or tetrodotoxin (TTx; xlabels). Responses are expressed as the 
percentage of tissue contraction induced by EFS 25 Hz on untreated bronchi. *Significantly 
different from the results obtained with untreated tissues. 
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