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Strain localization in circular honeycombs  

under in-plane biaxial quasi-static and low velocity impact loading 

D. Karagiozovaa,b* and T.X. Yub

aInstitute of Mechanics, Bulgarian Academy of Sciences,  
Acad. G. Bonchev Street, Block 4, Sofia 1113, Bulgaria

bDepartment of Mechanical Engineering, The Hong Kong University of Science and Technology,  
Clear Water Bay, Kowloon, Hong Kong

Abstract 

The strain localization in a finite block of circular honeycomb is studied using a 

phenomenological approach based on the structural response of the honeycombs. The 

deformation modes characteristic for a circular honeycomb material under in-plane biaxial 

compression are identified from the experiments and described analytically for compression 

strains up to about 15%. It is concluded that the particular deformation modes depend on the 

local strain field and modes with different dominant strains can co-exist inside a finite block 

subjected to equi-biaxial remote strains. The relationships between the local strain components 

for the development of these modes are determined. Using the proposed approach to the strain 

localisation, it is shown that for equal remote strains applied to a finite block of honeycombs, 

larger remote stresses would occur when assuming homogeneous deformation inside the block 

in comparison to the calculated stress when the strain inhomogeneity takes place. A 

comparison between the theoretical and experimental results is made for a finite honeycomb 

block under quasi-static equi-biaxial compression.

Key words – Circular honeycomb; Biaxial compression; Strain localisation, Deformation 

modes; Non-linear elastic material 
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Nomenclature 

a, b        major and minor semi-axis of an ellipse
yx dd ,         initial dimensions of a representative block having 2×2 cells 

)(E         elastic modulus for a non-linear elastic material 
yx FF ,         components of the remote force applied to a representative block of 2×2 cells 

YX FF ,        force components of the applied load to the finite honeycomb block 
)(g         parameter depending on friction 

H        depth of a honeycomb block
YX LL ,         dimensions of a finite honeycomb block  

pel        perimeter of an ellipse
elr         current radius of curvature of an ellipse 

R, t        radius of a circular cell and thickness of the cell wall, respectively 
Uel, W internal and external energies defined for a 2×2 cells block per unit depth of the 

block
0V         applied constant velocity to the moving arms of the loading device 

YX VV ,         velocity components at the interface related to the finite honeycomb block 

fie WWW ,,  external, internal and frictional power, respectively, related to the finite 
honeycomb block 

yx,         coordinates with respect to a 2×2 cells block  
jiji yx ,, ,      current coordinates of rectangular blocks inside the finite block 

YX ,         global coordinates with respect to the finite block and loading device 
z        coordinate across the cell wall thickness 

yx ,         displacements of the representative block having 2×2 cells 

yx ,  dimensionless displacements (local coordinate system) of the representative block 
having 2×2 cells 

YX ,  displacements in the finite honeycomb block at the interface with the loading 
device  

ij
y

ij
x ,         displacements of the 2×2 cells blocks within the finite block 

YX ,       displacements of the moving arms of the loading device  
)(z         bending strain in a cell wall 

yx ,         remote strains of a representative block having 2×2 cells 
ij
y

ij
x ,         remote strains for a 2×2 cells block inside the finite block 

YX ,         average strains of the finite honeycomb block 
*,  density of the cell wall material and density of the honeycomb material, 

respectively 
yx ,         remote stresses for a 2×2 cells block 

YX ,        remote stresses for the finite honeycomb block 
)(w         material characteristic of the cell wall 
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1  Introduction

The experimental and theoretical analyses of the response of cellular materials to various 

types of loading are important for understanding the properties of these materials, which have a 

wide range of engineering applications [1]. The biaxial crushing of cellular materials, in 

particular, is quite complex to perform experimentally so that only a few experimental studies 

have been reported in the literature. The biaxial crushing devise, which was designed to study 

the stress-strain characteristics of hexagonal honeycombs and described by Papka and 

Kyriakides [2,3], allowed movements of all four arms, while the biaxial crushing of circular 

honeycombs reported by Chung and Waas [4-6] was performed as a constrained uniaxial 

compression (static and dynamic). In both cases various deformation patterns (modes) are 

observed and they are related to the particular ratio between the components of the applied 

displacements or forces. It is noticeable, however, that a mixture of deformation modes was 

observed, particularly when an equi-biaxial compression was applied [2], although particular 

modes were theoretically associated with this loading. One reason is that the influence of the 

boundaries of the tested block cannot be neglected. Another reason is related to the strain 

localisations, which ‘destroy’ the homogeneity of deformation.  

Materials with regular structure can exhibit structural instability effects (buckling) at the 

meso-scale (scale of the cells), which can cause material instability effects (localization) in the 

macro-scale. According to a number of studies reported recently in the literature [7-9], strain 

localization that occurs in a block of material with open cells having a regular structure, 

honeycomb [7,8] and a lattice structure (Kelvin cells) [9], is attributed to the existence of 

doubly-scaled deformation. One is related to the bifurcation independent on the number of 

cells and is associated with the deformation of 2×2 cells aggregates under compression. For 

some particular directions of loading on cellular materials with a regular structure (which carry 

axial or membrane load), the above bifurcation is the only deformation mechanism 

determining the critical load (e.g., the transverse uniaxial compression in the X-direction [9]) 

and a long-wave mode does not exists. 

The above conclusions have been made when the response of honeycombs with straight 

(plate) walls and lattice structure, which deform by buckling, were examined. Analytical 

studies have been carried out to identify localisations due to the ‘long wave’ deformation 

modes under quasi-static uniaxial compression as well as under biaxial compression on 

assumed infinite blocks [7]. The existence of a long-wave deformation mode, which depends 

on the number of cells and direction of loading, is the cause of producing various patterns of 
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strain localization in hexagonal honeycombs. Long-wave buckling modes were also observed 

in square honeycombs under biaxial compression [8]. 

Recently, full-scale numerical simulations have attracted considerable research interest due 

to the localization of deformation [10-13]. Numerical studies were carried out to identify strain 

localization under uniaxial compression mainly due to defects [13] or caused by the structural 

topology [11] or dynamic effects [10,12].  

The deformation mechanism of circular honeycombs, however, is different from buckling 

and it is difficult to describe analytically so that little is reported in the literature regarding the 

deformation of circular honeycombs. Moreover, the cells within a block of honeycomb 

experience different local strains under compression depending on the direction of loading.  

Numerical simulations were carried out to obtain the critical biaxial stress in honeycombs 

made of a visco-elastic material depending on the direction of loading [3,5] while a structural 

approach was employed to obtain the characteristic stresses of circular honeycombs made of 

perfectly plastic material [14]. To our knowledge, no theoretical studies have been published to 

analyze the deformation and strain localization in this material under biaxial compression.   

The present study is restricted to the analysis of an in-plane biaxial compression of circular 

honeycombs performed with the biaxial loading device designed and installed in the Hong 

Kong University of Science and Technology when considering a quasi-static and low velocity 

impact loading. The description of this devise is presented in [15]. The strain localisation is the 

focus of the analysis when using a structural approach. The deformation mechanism, which is 

based on the deformation of elastic rings within representative blocks, is analysed when using 

the concept of a representative block. It is not possible to define a long-wave deformation mode 

in circular honeycombs, so that the strain localization as observed from the experiments is 

analysed from the phenomenological viewpoint.  The strain localisation is studied when 

considering a finite block under an equi-biaxial displacement-controlled loading. The velocity 

field along the boundary is prescribed by assuming a Coulomb friction existed on the interface 

between the loading device and the honeycomb specimen. A comparison between the 

analytical model and quasi-static test results is presented.  
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2 Solution methodology 

A finite block of circular honeycombs is subjected to a prescribed velocity field at the 

boundaries. The applied velocities are defined in a way to represent the loading conditions of 

experimental device used in the bi-axial tests.  The phenomenological approach, which is 

adopted in our analysis on the strain localization in a honeycomb material, is based on the 

upper bound theorem with respect to the power balance. The latter is used to obtain the remote 

biaxial stresses applied to a 2×2 cells block and to a finite honeycomb block.  

The deformation energy inside the finite block is determined for kinematically admissible 

deformation modes, which can develop under bi-axial loading. These modes are defined with 

rectangular boundaries, so they are used to model the deformation of a finite honeycomb block. 

Due to the geometric constrains for some deformation modes, not all remote strains defined for 

the 2×2 cells blocks are admissible, so that an optimization of the boundaries of these blocks 

inside the deformed finite block is carried out to minimise the error in satisfying the geometric 

constraints. The remote stresses for the finite block are obtained assuming a non-uniform strain 

field inside the finite block and a possible uniform field in order to analyse the effect of the 

strain localisation.  

 The typical deformation modes are identified from the experimental observations and 

described analytically. It is shown that the selected 2×2 cells block can be used to model 

homogeneous deformation patterns when using a single deformation mode for an infinite block 

of circular honeycombs. The stress-strain characteristics of the deformation modes are 

analysed and the maximum bending strains for each mode are calculated in order to estimate 

the accuracy and the validity of the proposed model. 

The following simplifying assumptions are used in the analysis: 

(i) The cell wall material is approximated as a non-linear elastic material but no viscous 

effects are taken into account. The solution methodology assumes continuous compression of 

the 2×2 cells blocks when no unloading across the cell wall occurs. Therefore, the material 

loading path follows the analytical stress-strain curve for a continuous loading. No residual 

strain in the cells is taken into account. 

(ii) It is assumed that the velocities at the interface between the loading device and the 

honeycomb block are characterised by two components in order to represent the loading 

conditions for the specific loading device. The velocity component, which is perpendicular to 

the boundary of the material block, is uniform and equal to the velocity of the loading device, 
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while the other velocity component, which is tangential to the boundary of the material block, 

is non-uniform due to the existence of friction. 

(iii) The finite block under study is divided into rectangular blocks of 2×2 cells whilst each 

of these small blocks is characterised by their in-plane strains in the X- and Y- directions. 

Consequently, the strain field in the finite block is considered as a piecewise constant. 

3 Deformation modes

3.1 Experimental observations 

The honeycomb used in the experiments had circular cells in a hexagonal close packed 

arrangement (Fig. 1(a)) and it is made from polycarbonate extruded tubes with radius, R = 3.4 

mm and an average wall thickness t = 0.151 mm forming a block with a depth of 2.54mm. The 

density of the polycarbonate is  = 1191 kg/m3.

The loading device manufactured at HKUST and used for biaxial compression is shown in 

Fig. 1(a). The four arms have equal lengths, LX = LY = L. Two lower arms remained stationary 

while the upper two arms, which were rigidly connected, could move downwards to compress 

the honeycombs. One can see that the resulting loading is a special case of biaxial loading 

when equal remote in-plane strains are assigned to the honeycomb block since the 

displacements in both in-plane directions are equal. Nevertheless, the deformation inside the 

block was not homogeneous and different patterns of the cells deformation could be 

distinguished. The cells attached to or close to the corners where the stationary and the moving 

arms meet in the loading devise experienced larger deformation in comparison to the cells, 

which are close to the other two corners, as shown in Fig. 1(b).

From the experimental results on quasi-static in-plane compression, several different 

deformation modes can be identified and they are shown in Fig. 2 (a-d); the names Cx, Sh, F

and Cy, respectively are used in the further analysis. Note that modes Cx and Sh develop at 

relatively small displacements of the moving arms of the loading device while mode F is 

observed at relatively large displacements. Mode Cy is observed initially at the places with 

strain localizations while it occurs in a larger area inside the tested honeycomb block when the 

remote displacements increase. 

It is known that different directions of loading on materials with periodic structure initiate 

and eventually support different stress-strain fields, which allow for different arrangements of 

the cells into characteristic repetitive groups [2,3,16]. Characteristic deformation modes, which 

develop for a particular direction of loading, are more clearly observed for uniaxial 

compression while a mixture of different deformation modes appears in the experiments under 
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an in-plane biaxial loading, particularly when a finite block of honeycombs is considered [2]. 

Presumably, different compressive strains, x and y, occur locally and the local ratio x/ y

determines the observed mode types.  

3.2 Description of the deformation modes 

To simplify the analytical description of the deformation of circular honeycombs, it is 

assumed that only a point connection exists between neighbouring circular cells, although 

finite bonding is a characteristic of the actual material. The evolution of a circular ring into an 

ellipse is the only geometric transformation used to describe the deformations in a honeycomb 

material with circular cells. It is assumed that the cells are not extensible and therefore the 

perimeter of the cells remains constant while the ellipse curvature varies continuously during 

deformation. With respect to the ellipse perimeter, 

Rbapel 22/2 22         (1)

(2a and 2b are the major and minor axis of the ellipse, respectively) under some simplifying 

conditions, the variation of 2a can serve as a single variable to describe the evolution of the cell 

shapes within the representative block with a sufficient accuracy. It should be noted that the 

condition of the constant arc lengths between the connecting points of the cells cannot be 

expressed analytically but can be obtained by an iteration procedure.  

The deformation patterns are found in an ad hoc manner from the experimental results. The 

characteristic deformation modes are defined assuming an infinite block of honeycombs when 

considering representative blocks of 2×2 cells and assuming periodicity conditions at the 

rectangular boundaries of the block (see Figs. A1(a,b) and A2(a,b) in the Appendix).  

Modes with equal strains in the X- and Y- directions can exist under equi-biaxial 

compression. One such mode is the F mode (Fig. 3(a)), which is characterized by one 

undeformed cell surrounded by six deformed cells. This mode has been defined also for 

hexagonal honeycombs [16,17]. In a way of contrast with the hexagonal honeycombs, Sh mode 

in circular honeycombs (Fig. 3(b)) is also characterized by yx  but consists of equally 

deformed cells, whose deformation can be described as ‘rotation’ of the cells against each other 

along with compression. The variation of the major semi-axis, )( xa , of the characteristic cells 

of modes Sh and F is obtained numerically when satisfying the condition of equal arc length 

between the cell connections. 

Under a stress controlled loading, deformation modes having different strains in the X- and 

Y- direction can form (Fig. 3(c,d)). Mode Cx is characterized by yx  while yx  is the 
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characteristic of mode Cy. These modes consist of two equally deformed cells (marked as 3) 

and two others (marked as 1 and 2) with deformations different from the previous ones and also 

between themselves. This feature is a specific characteristic of the circular honeycombs and is 

not observed in hexagonal honeycombs (at least has not been reported as a particular feature).  

It should be noted that Mode Cy1 and Cy2 can be described as mode Cx, which has been rotated 

at angle – /3 or /3 with respect to the X- axis as shown in Fig. 3(d). Note that for equal remote 

strains x and y , the cells, which form modes Cx and Cy, experience different bending 

deformations due to the different characteristic remote displacements x  and y . The 

geometric relationships for the deformation modes are presented in the Appendix. 

It should be noted that in order to satisfy the condition of equal arc lengths between the 

connecting points, a certain relationship between the displacements in the x- and y-directions 

for Cx and Cy modes must be satisfied when referred to the local coordinate system ( yx , ).  

The displacement constraint, as a ratio between the displacements x  and y , has been 

obtained numerically and approximated by two polynomial functions using a standard curve-fit 

procedure as 

Rqq

Rss

x
k

k

xk

x
k

k

xk

y

x

08.0,

08.0,

4

1
0

4

1
0

  ,  Rxx 2 .             (2a,b) 

The local coordinate system of mode Cx coincides with the global coordinate system (X,Y) , 

while rotation at 3/  applies to obtain mode Cy. The polynomial coefficients, ks  and 

4,...,0, kqk , in Eq. (2) are given in the Appendix (Table 1). As a result, the variations of the 

three characteristic axes, 2ai, (i = 1,2,3) of the cells of modes Cx and Cy are not independent. 

The variations of the major semi-axis, ai, of each circular cell are different and can be 

approximated as 
4

1
,0

k

k

xkiii ppRa , Rxx 2        (3) 

where the polynomial coefficients are given in the Appendix  (Table 2). (See also Fig. A2(d), 

which shows the variation of the three axes).

3.3 Comparative properties of the deformation modes  

The stress-strain dependence for the actual non-linear elastic material (polycarbonate) and 

its approximation used in the calculations are presented in Fig. 4 where the initial elastic 
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modulus, E = 1.14 GPa is also shown. Due to the different deformation of the cells within each 

representative block, equal remote compression strains cause different bending strains of the 

cells. The simplified expression for the perimeter of the ellipse dictates that the analytical 

model is accurate for the variations of the ellipse axes up to a = 1.31R, b = 0.54R. For these 

particular values, the maximum bending strain in a cell is marked as 1 in Fig. 4(a). The 

maximum bending strains for the modes F and Sh associated with the largest curvature of the 

ellipse are shown in Fig 4(a) for equal remote strains, 1.0yx  and are denoted as 2 and 3, 

respectively. It is evident, that for the same remote compressive strains, larger bending strains 

develop in the cells of the F mode. The maximum strains in the cells of modes Cx and Cy have 

three different values, which are shown in Fig. 4(b) and (c).  A careful comparison between the 

last two figures shows that larger strains develop in mode Cy, particularly in the most deformed 

cell marked as 1.   

Characteristic deformation modes depending on the direction of loading have been defined 

for hexagonal honeycombs [1,16]. Since the same hexagonal arrangement exists in the 

honeycomb with circular cells, it is worth comparing the deformation modes in both 

honeycomb materials.   From geometric viewpoint, similarities exist between the deformation 

modes in hexagonal and circular honeycombs due to the similar specific structural symmetry in 

both materials as shown in Fig. 5. One can see that the F mode develops in both materials for 

equi-biaxial compression under a strain controlled loading. Mode Cx ( yx ) in the circular 

honeycomb is similar to the corresponding mode in hexagonal honeycomb [16,17]. On the 

other hand, significant differences between the deformation modes in the two materials exist. 

An equal strain mode, Sh, exists in the circular honeycomb while there is no corresponding 

mode in the hexagonal honeycomb. The deformation modes with yx  in both materials are 

different. Equally deformed cells characterise the deformation mode, which has larger y

strain in hexagonal honeycombs and this mode is quite similar to the deformation mode 

developed due to a uniaxial compression in the Y- direction. Mode Cy ( yx ) comprises 

non-equally deformed cells in the circular honeycomb and it has no similarity with the 

compression mode in the Y- direction.  

It should be noted that the deformation modes in elastic circular honeycombs can 

‘transform’ during a continuous biaxial compression due to the ‘rotation’ of the cells and the 

global deformation pattern in a particular direction can consist of modes characterised by 

yx , yx  and yx  (Fig. 6). 
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4 Stress-strain relationships for the different deformation modes

The remote stresses for the 2×2 cells block are obtained in order to select the deformation 

modes, which can appear under a bi-axial compression. If two modes are defined for the same 

remote strain, then the one, which possesses a lower stress, is selected to participate in the 

deformation pattern of a finite block. 

The definition for the stresses and strains in a honeycomb is based on the response of 

representative blocks for each deformation mode in biaxial compression. According to the 

upper bound theorem, the power balance can be expressed as  

elUW ,            (4) 

where elU  is the deformation energy per unit depth of the 2×2 cells block. The external power 

per unit depth of the block is   

)( yyxxyxyyxx ddFFW        (5) 

where Rd x 4 and 32Rd y are the initial dimensions of the representative block and the 

dot denotes differentiation with respect to time. The stresses and strains are defined per unit 

depth of the honeycomb as   

xyyyxx dFdF /,/ ,        (6) 

yyyxxx dd /,/ ,        (7) 

where xF  and yF  are the remote force components while x and y denote the displacements 

in the X- and Y-directions, respectively. The deformation energy per unit depth of the block is 

expressed as 

i
i

t

el
el ddzzzE

rR

R
U

4

1

2

0

2/

0

2
2

,
)(

112
2

     (8) 

where the coordinate z is through the wall thickness and )(1 elr  is the current curvature of 

each ellipse ( 4,...,1i ) forming the 2×2 cells block. The maximum bending strain is defined at 

2/tz  as 

el
el

r

R

R

t
tr 1

2
)2/,(          (9) 

for the current curvature of the ellipse, elr1 .

The formulation of strain controlled loading is used for the modes Sh and F characterised by 

xy  and the stress is obtained as 
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x

yxel

yx
yx

d

dU

dd

),(1 .        (10) 

The characteristic strains x , y  of modes Cx and Cy are related through the ratio between 

the admissible displacements x   and y , so that the stresses associated with these modes can 

be expressed as 

x

yxel

yx
yx d

dU

dd

),(1         (11) 

when using Eqs (4) – (7) together with Eq. (2). In Eq. (11), 32 xy , 10  for 

mode Cx and 32 yx , 34  for mode Cy. Eqs (10) and (11) do not take into account 

the reduction of the initial size, yx dd , of the representative block during deformation. 

The characteristic stresses for the analysed deformation modes are shown in Fig. 7. It 

appears that the F mode defined for the circular honeycombs has higher deformation energy 

and higher stress, respectively, than mode Sh, which explains why F mode does never develop 

for small strains in circular honeycombs. It is observed from the experiments that a well 

developed F mode (such as the one shown in Fig. 2(c)) occurs inside the finite block for 

relatively large remote strains when the initially formed Sh or Cy mode transform into a F-like 

mode. The hugely deformed surrounding cells cause an unloading of the central cell, which 

becomes a circle again. However, the proposed analytical model of deformation is not capable 

of describing these large deformations. In the further analysis of strain localization the F mode 

is excluded and only modes Sh, Cx and Cy are used. 
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5 Strain localisation – phenomenological approach 

The strain inhomogeneity within a finite block is modelled by assuming that the 2×2 cells 

blocks forming the large block of honeycombs have a piecewise constant strains, which can be 

accommodated by the different deformation modes. This assumption leads to a model, where 

the 2D blocks remain rectangular and no shear occurs at the boundaries of the 2×2 cells blocks. 

All previously described biaxial modes have x  and y  components, which vary during the 

deformation process, so that they are capable of describing an inhomogeneous compression in 

the manner shown in Fig. 8. If the deformation in the X- direction is considered within a finite 

block of honeycomb under biaxial compression, a possible scenario of inhomogeneous 

compression could be the one shown in Fig. 8(a). The nearest 2×2 block experiences large 

deformation in the X-direction having yx , which could gradually decrease transforming 

into the strain state yx  and eventually forming further a field with yx . The total 

compression in the X-direction is equal to the sum of the compression of each 2×2 blocks, 

when each of these blocks has a particular y  defined for the corresponding mode. Similar 

situation can be described when analysing compression, which develops in the Y-direction as 

shown in Fig. 8(b). In this case, the total compression in the Y-direction is equal to the sum of 

the compression of each 2×2 blocks, when each of these blocks has a particular x  defined for 

the corresponding mode. A combination of such ‘rows’ and ‘columns’ within a finite block of 

honeycombs can model an inhomogeneous biaxial compression.   

5.1 Prescribed velocity field at the boundaries 

The proposed approach is used to analyse the strain localization when it is caused by 

inhomogeneous conditions at the boundaries of the finite block. For a quasi-static or low 

velocity compression produced by the biaxial compression devise shown in Fig. 1(a), the 

friction between the specimen and the device arms can be a source of the observed 

inhomogeneous deformation of the finite block. The numerical simulations of in-plane 

equi-biaxial compression with different friction coefficients at the boundaries of the 

honeycomb block reported in [15] show that a larger friction causes a more expressed 

inhomogeneity of deformation insight the block.   

The global coordinate system (X,Y) is shown in Fig. 1(a).  The boundary conditions at the 

interfaces between the device and the specimen ( LLL YX ) can be defined as particular 
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velocity fields with components ),( YXVX and ),( YXVY  at the loading interface 

]),0[,( LYLX , ]),0[,( LXLY  and stationary interface ]),0[,0( LYX ,

]),0[,0( LXY . Using these velocity fields, the corresponding displacements at the 

interfaces can be obtained for any given time, t* as 
** ),(),,( tLXVtLX XX  , ** ),(),,( tYLVtYL YY .           (12a,b) 

The 2×2 cell blocks at the boundaries of the finite block can be considered as ‘boundary layers’ 

having ‘thickness’ of 4R along the Y- axis and 32R along the X- axis and the global 

displacements defined by Eqs (12a,b) can be used as prescribed conditions at these ‘boundary 

layers’. There is no separation between the specimen and loading arms, so that their 

displacements at the corner (X=L, Y=L) are equal, namely ),,()( ** tLLt XX  and 

),,()( ** tLLt YY , where  X  and Y  are the prescribed displacements of the loading 

device.  

The velocity fields induced by the loading device at the boundary interfaces of the specimen 

are characterised by two components (VX, VY). Constant velocity is applied in the direction 

normal to the specimen boundaries, namely   

0VVX  at ],0[, LYLX          (13a) 

and

0VVY  at ],0[, LXLY  ,                   (13b) 

while  

0XV  at ],0[,0 LYX                 (14a) 

and

0YV  at ],0[,0 LXY .                          (14b) 

For zero friction between the device and the specimen, the other two corresponding velocity 

components, which occur in the specimen, vary between 0 and 0V  linearly due to the material 

compressibility. Therefore,  

)(YVV YY   at ],0[, LYLX  ,  ],0[,0 LYX       (15a) 

while  

)(XVV XX  at ],0[, LXLY ,   ],0[,0 LXY .                (15b) 

In this case, a uniform displacement and strain fields are determined at the specimen 

boundaries.
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The friction opposes the relative motion of the surfaces trying to bring the two surfaces in 

one velocity. Therefore, it is expected that velocities components )(** XVV XX  and 

)(** YVV YY  will deviate from linear distribution in a way that  

XX VV *  on ],0[, LXLY          (16a) 

and

XX VV *  on ],0[,0 LXY                    (16b) 

except for the points (X=L, Y=L), (X=L, Y=0), (X=0, Y=0) and (X=0, Y=L) where the velocities 

are fixed. The same relationship holds for velocity *
YV , namely  

YY VV *  on ],0[, LYLX          (17a) 

and

YY VV * on ],0[,0 LYX  ,                   (17b) 

 where XV and YV are the velocity components for zero friction.  

The above velocity fields are well described by the following dependence 

00
* ,//1)(1)( VVLLXgXVXV YX       (18a) 

at the moving boundary ],0[, LXLY  and

00
* ,//1)(1)( VVLLYgYVYV XY                 (18b) 

at the moving boundary ],0[, LYLX . The velocity components at the specimen interface 

with the stationary boundaries are 

0,//1)(1)( 0
*

YX VLLXgXVXV       (19a) 

at ],0[,0 LXY  and 

0,//1)(1)( 0
*

XY VLLYgYVYV                 (19b) 

at the boundary ],0[,0 LYX . In Eqs (18) and (19), )(g  is a constant depending on the 

friction coefficient ; it is anticipated that )(g  is larger for larger friction. The variations of 

the velocity components along the specimen boundaries are schematically shown in Fig. 9(a) 

for two values of )(g . Larger velocity deviation from the linear dependence is described by 

Eqs. (18) and (19) for the larger friction. When the displacements of the moving arms are 

prescribed as tVtX 0)( , the strain distribution at the moving boundary at any *tt  is 

defined as 

LXg
L

t

dX

d
tLX XX

x /21)(1)()(),,(
*

* ,      (20a) 
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at ],0[, LXLY  and

LYg
L

t

dY

d
tYL YY

y /21)(1)()(),,(
*

*                (20b) 

at ],0[, LYLX . The strain variations along the moving and stationary boundaries are 

presented in Fig. 9(b) for equal average strains LXX /  and LYY / , which show that 

the prescribed boundary conditions determine increasing strain non-uniformity along both 

boundaries for non-zero friction. This type of deformation can be modelled by the modes Cx

and Cy, respectively, which have rectangular boundaries.  

5.2 Deformation of a finite block 

A finite block of honeycombs consisting of 14×16 cells is modelled. This particular 

dimension, resulting in LX = 95.2 mm and LY = 94.22 mm, is selected to be comparable as close 

as possible to the experimental setup of a 100 mm×100 mm block. It is assumed that the 

characteristic strains of the modes inside the block are characterized by piecewise constant 

values determined by the compression of the Cx, Cy or Sh modes. In order to accommodate the 

described inhomogeneity, ‘boundary layers’ are formed where deformation modes Cx having 

yx  are placed in the X-direction along the boundary XY LXLY 0,  but modes Cy

model the non-uniform compression in the Y-direction along the boundary 

YX LYLX 0, . It is assumed that yx  for the 2×2 cells block placed at the corner 

( XLX , YLY ) according to Eq. (20), in which strain state is represented by mode Sh. When 

one of the in-plane strains for the particular modes participating in the ‘boundary layer’ along 

the moving boundaries is prescribed, the other strain is calculated according to the mode type. 

The strains defined by Eqs (20a,b) should be considered as prescribed boundary conditions. 

The following assumptions are used to construct the displacement and strain field inside the 

finite block: (i) the displacements, ij
x  and ij

y , i = 1,...,7; j = 1,…,8, are continuous and 

determine the boundaries of the 2×2 cells blocks; (ii) the strains are assumed piecewise 

constant and are defined as 

32,4 RR ij
y

ij
y

ij
x

ij
x ,  8,...,1;7,...,1 ji ,              (21a) 

where  

8,...,1;7,...,1,32,4 1,,,1, jiyyRxxR jiji
ij
yjiji

ij
x .           (21b) 

It is seen from the above definitions that the deformation inside the finite block is modelled 

by generalized rectangular 2×2 cells blocks characterized only by compression similarly to the 



Acc
ep

te
d m

an
usc

rip
t 

16

‘boundary layer’. In other words, it is anticipated that a combination of modes Cx, Cy and Sh

can represent the deformation of the macro block. It has been already discussed that modes Cx

and Cy are only defined for those displacements ij
x and ij

y , which satisfy the geometric 

compatibility condition )( ''' xyx f  (Eq. (2) in the corresponding local coordinate system 

( yx , ). 

The above methodology follows somehow the classical idea that strain localization can be 

defined for larger honeycomb blocks [7,8] when analysing the deformation of the 2×2 cells 

blocks. However, due to the particular deformation of the circular honeycombs, the resulting 

deformation field cannot be called long-wave ‘buckling modes’. Moreover, the deformation of 

a cell is not due to the buckling of the ligament (‘Type II’ structure [18]) but involves 

ovalization of a circle (‘Type I’ structure [18]). To authors’ knowledge, no theoretical study 

reported in the literature has considered the mechanism of strain localization in materials with 

open cells and a regular structure, where the dominant deformation mechanism possesses 

characteristics of ‘Type I’ structures. 

An example for a piecewise constant strain distribution in a finite block is considered for a 

biaxial deformation under remote displacement control for the case of equal remote strains 

YX , where

YYYXXX LL /,/ ,              (22a,b) 

)(tX  and )(tY  are the controlled displacements in the corresponding direction. The 

following equalities take place for the ‘j’-th row and the ‘i’-th column in the block 
7

17
111

i

ij
xXXX LL  , 

8

18
111

j

ij
yYYY LL           (23a,b) 

when satisfying Eq. (2) for modes Cx and Cy. Since the different deformation modes are 

defined depending on the relative strain variation, their appearance inside the finite block can 

be an indication for the particular dominant local strain.  

According to Eqs (21a,b), the strain distribution inside the finite block is defined by the 

relative displacements, ( ij
y

ij
x , ), of the boundaries of the 2×2 cells blocks, which are 

determined by the co-ordinate points 1,,1,,1,,1,, ,,,,,,, jijijijijijijiji yxyxyxyx ,

7,...1,6,...,1 ji . These co-ordinate points are varied iteratively to obtain the admissible 

ratios ij
y

ij
x /  for any global displacement of the boundaries of the finite block X , Y . The 

global displacements are increased incrementally according to Eqs (12), ttt* . The 



Acc
ep

te
d m

an
usc

rip
t 

17

displacements ( ij
y

ij
x , ) are obtained by minimization of the difference, ,  between the 

displacement ratios ij   obtained at the current iteration step and the analytical dependence 

anij

7

2

8

2
min

i j
Sh

an

ij
y

ij
x

ij
y

ij
x

Cy

an

ij
y

ij
x

ij
y

ij
x

Cx

an

ij
y

ij
x

ij
y

ij
x

yx

  (24) 

In Eq. (24), anij
y

ij
x  and anij

y
ij
x  are defined by Eq. (2) for modes Cx and Cy,

respectively, while anij
y

ij
x = 3/2  for mode Sh.

6 Comparison with the experimental results 

 The variations of the ratios yx  in the local coordinate systems of the Cx and Cy modes 

are shown in Fig. 10(a) for 025.0YX . The solid dots correspond to the Cx modes while 

the open symbols represent the Cy modes. It can be noticed from this figure that a large number 

of macro blocks are characterized by displacements approaching 3/2yx , which 

characterizes the equal strain mode Sh. Therefore, it is concluded that a mixture of modes Cx,

Cy and Sh can occur in the finite block under the assumed boundary conditions. Another way to 

measure the strain inhomogeneity is to analyze the variation of the local strain ratios ij
y

ij
x  or

ij
x

ij
y . For this particular example, the largest values of these ratios are obtained as   ij

y
ij
x  = 

1.83, which is characteristic of mode Cx, at the corner X = 0, Y = LY and ij
x

ij
y = 2.44 

characterizing mode Cy at the corner X = LX, Y = 0.

The strain distributions in a finite block under the same boundary conditions but at an 

increased strain, 0625.0YX  are discussed next. Figure 10(b) shows that similar to the 

previous case, a mixture of modes exist in the block, however, the inhomogeneity is larger 

characterized by ij
y

ij
x = 2.24 at the corner X = 0, Y = LY for the mode Cx, while ij

x
ij
y = 2.86 

is obtained for strains at corner X = LX, Y = 0, thus determining mode Cy. The strain 

distributions in the honeycomb block, shown as ratios between the local strain components and 

their average values, are schematically presented in Figs. 11(a) and (b). It is evident that the 

smallest strains are observed near to the corners (X = LX, Y = LY) and (X = 0, Y = 0) while the 

largest strains are observed at the other two corners. The variation of the ratio ij
y

ij
x  within the 

finite block is shown in Fig. 11(c). A large area inside the block is characterized by strain ratios 
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around one and slightly smaller than one, which shows that modes Sh and Cy are developed. 

The largest strain localization is captured by modes Cx and Cy, near the corners with material 

velocity either (VX = 0, VY  0) or (VY = 0, VX  0).

The experimentally observed deformation pattern for 06.0YX  is shown in Fig. 11(d) 

together with three characteristic modes obtained from the analytical model. A more visible 

tendency for deformation modes Sh is evident, while the strain localization occurs with the Cx

and Cy modes. 

According to the upper bound theorem, the power balance can be expressed as  

fie WWW .          (25) 

The external power is   

YYXXe FFW          (26) 

which can be calculated under a strain (displacement) controlled loading, YX

YXYXXe LHLW          (27) 

where H is the depth of the specimen. The internal power dissipated due to the deformation of 

the specimen is 

Volume

wi dvW )( ,          (28) 

where )(w  is the non-linear elastic characteristic of the honeycomb wall material and  are  

the bending deformations in each cell. The remote stresses are equal, YX , for the 

loading device in Fig 1(a) so that the friction power loss is  

Surface

f

Surface

fSf dSVdSVW ,       (29) 

where fV  stands for the velocity jumps )(*
0 XVV X and )(*

0 YVV Y along the moving 

boundaries and for )(* XVX  and )(* YVY at the stationary boundaries. Obviously, for small 

friction, fW  can be neglected in comparison with the internal energy.  

The following equation can be used to obtain the remote stresses for the LX × LY finite

honeycomb block when assuming an equi-biaxial strain control YX

Volume

w
XYXVolume

w
XYX

XYXX dv
LHL

dv
LHL

)(1)(1)()( .           (30a) 

However, the diminutions of the modelled finite honeycomb block in the X- and Y- directions 

differ only by 1%, so that it can be anticipated that )()( XYXX , so that the expression  
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Volume

w
XYX

X dv
LHL

)(
2

1)(                 (30b) 

is used to compare the experimental results with the predictions from the theoretical model.   

The stress-strain variation for the analysed finite block of circular honeycombs is shown in 

Fig. 12 in comparison with the experimental stress-strain curve for a quasi-static loading at 

speed 120 mm/min. A reasonable agreement is observed, although the predicted stress is higher 

and the stress-strain curve diverges from the experimental test results for average strains larger 

then 0.15, approximately.  This discrepancy is related to the accuracy of the analytical 

description of the deformation modes rather than to the approximation of the cell wall material. 

The solution methodology assumes continuous compression of the 2×2 cells blocks when no 

unloading across the cell wall occurs. Therefore, the material loading path follows the 

analytical stress-strain curve for a continuous loading when almost a constant stress is assumed 

for the large strains.   

Due to the approximate expression for the ellipse perimeter given by Eq. (1), an increase of 

the large semi-axis more than 1.35R involves errors larger than 5% when calculating pel. As it 

was already discussed, the cells, which form the deformation modes, experience different 

bending deformations (except for the mode Sh) and the largest deformations occur in one of the 

cells of modes Cx and Cy.  For the particular example considered above, an average remote 

compression strain of 12% causes maximum local strains x 0.25 (with a1 > 1.35R for modes 

Cx and Cy) which, on the other hand, produce maximum tensile/compression strains of the cell 

walls of about 16%. Obviously, these large values of a1 contribute to the poor model accuracy 

at increased compression. However, these characteristics are not common for the entire finite 

honeycomb block where many cells experience strains, which are smaller than the average 

ones, so that the accuracy of the model is reasonably high for these cells. The increase of the 

average strains causes larger strain localization, which requites larger local deformations of 

certain cells thereby reducing the accuracy of the model due to the assumed approximation 

given by Eq. (1).   

A biaxial compression with equal strains can be also modelled assuming only uniform 

compression inside the block described by mode Sh (no friction at the boundaries exists).  It is 

shown in Fig. 12 that the analytically obtained stress for equal strains inside the block (without 

localisation) is higher than the calculated stress when the strain localisation is considered. This 

observation implies that the inhomogeneous stress within a finite block of honeycombs occurs 

at lower deformation energy.  
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A comparison between the deformation patterns observed at a quasi-static compression at a 

loading speed of 120 mm/min and a low velocity impact at 4.04 m/s is shown in Fig. 13 for 

several compressive displacements. The impact loading was performed in Dynatup, a 

computerized drop weight impact test machine, which accelerated a drop weight to a specified 

velocity to hit the top of the bi-axial loading device shown in Fig. 1(a). It is evident that there is 

only a marginal difference in the observed strain localization, which cannot be attributed to 

dynamic effects. The density of the tested honeycomb is given by Rt 232*  when 

assuming a perfect geometry, therefore * = 96.1 kg/m3. Evidently, the material density is too 

low in order to cause significant inertia effects at a low velocity impact, which would affect the 

deformation patterns in the tested honeycomb block. Similar to the quasi-static case, the strain 

localization is caused by the friction between the specimen and the loading device and more 

precisely, by the particular velocity fields at the interfaces of the devise. Another design of the 

loading devise, for example having all four arms moving, similar to the device described in [2] 

will cause different strain localization under equi-biaxial compression and low velocity impact. 

7 Conclusions 

The strain localization in a finite block of a honeycomb material under a quasi-static and 

low velocity impact loading is studied using a structural approach based on the deformation 

mechanism of circular cells made of non-linear elastic material. The deformation modes 

characteristic for a honeycomb material under biaxial in-plane compression are identified and 

described analytically for remote compression strains up to about 15%. The local strain 

conditions to observe these modes are determined. Some similarities with the hexagonal 

honeycombs under biaxial compression as well as differences between the deformation modes 

in the two materials are discussed. It is concluded that the particular deformation modes depend 

on the local strain field and modes with different dominant strains can co-exist inside a finite 

block subject to equi-biaxial remote strains. Using the proposed phenomenological approach to 

the strain localisation, it is shown that for equal remote strains, larger remote stresses would 

occur for the finite block when assuming homogeneous deformation in comparison to the stress 

when the strain inhomogeneity is taken into account. Comparison between the theoretical and 

experimental results is made for a quasi-static equi-biaxial compression. 
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Figure captions 

Figure 1 Experimental setup for in-plane biaxial compression. (a) Initial arrangement and 
the specimen orientation; (b) A deformed stage; (c) The finite connections between 
the cells in the honeycomb material; (d) A typical nominal stress-strain curve for an 
equi-biaxial stress loading at 120 mm/min. 

Figure 2  Deformation modes from the experimental tests. (a-d) Modes Cx, Sh, F and Cy,
respectively. 

Figure 3  Analytically described deformation modes. (a) Equal strain modes – F, (a) and Sh,
(b); Non-equal strain modes – Cx, (c) and Cy, (d) (Cy1 and Cy2, respectively). 

Figure 4  A nominal tensile stress-strain curve for the polycarbonate material and the 
material approximation; Maximum bending strains in the cells of the deformation 
modes at 2/tz . (a) 1 – maximum strain for the model, 2 – mode F:

1.0yx , 3 – mode Sh: 1.0yx ; (b)  Mode Cx: 079.02/)( yx ,

x = 0.108, y = 0.0505, 1, 2, 3 – bending strains in cells 1, 2, and 3, respectively; 
(c) Mode Cx: 079.02/)( yx , y = 0.116, x = 0.042. 

Figure 5  Comparison between the deformation modes developed under in-plane biaxial 
compression in materials with regular circular honeycombs, (a) and regular 
hexagonal honeycombs [16], (b). 

Figure 6 ‘Transformation’ of the deformation modes. 

Figure 7 Stress-strain histories for the deformation modes. (a) Equal strains modes; (b) 
)( yx  refers to mode Sh, Eq. (10) and )( yx  refers to modes Cx, Cy, Eq. 

(11).
Figure 8   Possible mode evolutions during deformation in presence of strain localization to 

accommodate biaxial compression. (a) Deformation in the X-direction; (b) 
Deformation in the Y-direction. 

Figure 9  (a) Velocity components at the boundaries of the finite block of honeycombs, 
)()( 21 gg ; (b) Ratio between the compressive strains and the average strains 

along the boundaries. 
Figure 10  Results from the minimization procedure for the mode arrangement inside the 

finite block, g = 0.1 (The solid dots correspond to the Cx modes, the open symbols 
represent the Cy modes). (a) 025.0YX ; (b) 0625.0YX .

Figure 11  Strain non-uniformity in the finite block for X = Y = 0.0625, g = 0.1 calculated 
according to Eq, 21(a). (a) X

ij
x / ; (b) Y

ij
y / ; (c) ij

y
ij
x / ; (d) Experimentally 

observed deformation for YX  0.06. 
Figure 12  Comparison between the model predictions (g = 0.1) and the experimental results 

for biaxial in-plane compression at 120 mm/min. 
Figure 13  Comparison between the strain localisation patterns for a qusi-static compression 

and a low velocity impact. (a-c) Compression at 120 mm/min, (a) X = Y  6 mm, 
(b) X = Y  9 mm, (c) X = Y  15 mm; (d-f) Impact with V0 = 4.04 m/s, (d) X = 

Y = 5.1 mm, (e) X = Y = 9.24 mm, (f) X = Y = 15.27 mm. 

Figure A1 Geometry of the equal strain modes. (a) Mode F; (b) Mode Sh.
Figure A2 Modes with different remote strains. (a) Modes Cx; (b) Mode Cy; (c) Relationship 

between the remote displacements x  and y  for modes Cx and Cy in local 
coordinate system ( yx , ); (d) Variation of the major semi-axes, ai, i = 1,2,3 of the 
ellipses representing the characteristic cells of modes Cx and Cy. 
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Figure A3 Repeatability of the representative block for the characteristic modes. (a) Mode F;
(b) Mode Sh; (c) Mode Cx; (d) Mode Cy.



Acc
ep

te
d m

an
usc

rip
t 

25

Table  1 Coefficients for the approximation of the  
displacement ratio, yx / , for modes Cx and Cy, Eq. (A6) 

s0 s1 s2 s3 s4

1.1524 -7.412 417.27 -2315.657 -1847.83 
q0 q1 q2 q3 q4

-1.4357 94.606 -938.454 4220.27 -7021.97 
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Table 2 Coefficients for the approximation of the semi-axes  
of the ellipses describing modes Cx and Cy, Eq. (A7) 

 pi,0 pi,1 pi,2 pi,3 pi,4

a1 1.0665 3.2956 -30.4256 165.9847 -339.3664 
a2 1.0678 3.19078 -35.74 204.735 -426.989 
a3 1.0268 2.2699 -23.922 133.348 -274.898 
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Appendix: Geometric characteristics of the deformation modes  

1 Modes with equal remote strains 

1.1 F – mode 

A block of 2×2 cells is selected to accommodate the deformation patterns, which can occur 

under a displacement-controlled compression. In the particular case the equal strain is 

)3(Ryx , where  is the displacement in the Y-direction as shown in Fig. A1(a). 

It is assumed that the central cell remains undeformed, has no translation motion in the x-y

plane but rotates clockwise at angle . The particular value of  can be obtained when 

satisfying the tangential condition between the circle (centre O) and the ellipse (centre A) at 

point B. However, this procedure involves highly non-linear relationships between the 

characteristics of the deformed ellipse (the ratio ab /  and rotational angles  and ), so that it 

is anticipated that during deformation of the cells surrounding the central one the distance 

RAB , therefore  

31cosa R .         (A1) 

The positions of the points B and E determine angles  and , which define the rotation of the 

ellipse and the ratio ab / . During deformation 

3/21 REOAE          (A2) 

where  

22222

222

sincos2
2

aaR

aRa
AE ,         (A3) 

3/2sin3/2cos2
2

22222

222
1

aaR

aRa
EO ,    (A4) 

1
21cos5.0 2

22

a

aa
a         (A5) 

satisfy the ellipse equation. 

The deformation of the model representing the F- mode is ruled by the rotation of the central 

cell while the bifurcation occurs with 450 with respect to the horizontal axis (see the ellipse 

with centre at A). This angle varies only slightly in the local coordinate system under increased 

compression, e.g., the large axis is inclined at about 500 at = 300, = 0.25R.
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1.2 Sh – mode 

This mode is constructed in a way that the centres of the cells are aligned in both in-plane 

directions but all cells compress and ‘rotate’ in order to accommodate the biaxial compression 

as shown in Fig. A1(b). All cells comprising this mode deform identically and experience equal 

bending deformations. The connection point C moves along the line AD connecting the centres 

of the neighbouring cells while satisfying the condition for equal arc lengths CEESSC  = 

6elp . Point S is a common point for the ellipses with centres A and B, at which these ellipses 

have a common tangent. The equi-biaxial strain compression is described by the variations of 

the ratio ab /  and angles A , B , which are defined for the two characteristic cells of mode 

Sh as angles between the large ellipse axis and the x-axis of the model. These angles 

characterise the ‘rotation’ of the neighbouring cells in opposite directions.   

2 Modes with different remote strains – mode Cx and mode Cy

These modes can develop in a way that yx  for mode Cx and yx  for mode Cy only 

when the cells deform by different amounts as shown in Figs A2(a) and (b). The largest 

bending deformations occur in the cells, which experience only compression in the x-direction 

(Fig. A2(a)) while the smallest bending deformations occur in the cells, which experience 

bi-axial compression. Angle 3  characterises the ‘rotation’ of the latter cells. The condition 

for equal arc lengths, 133221 AAAAAA  = 6elp  between the connecting points (Fig. A2(a)) 

can be satisfied only  for certain ratios of the displacements x  and y . The following 

relationship must hold in the local coordinate system ),( yx  of the modes  

Rqq

Rss

x
k

k

xk

x
k

k

xk

y

x

08.0,

08.0,

4

1
0

4

1
0

  ,  Rxx 2      (A6) 

where the polynomial coefficients  ks  and kq  are given in Table 1. The relationship yx /  is 

shown in Fig. A2(c); it must hold regardless the angle of rotation of the mode. Therefore, 

prescribing the displacement in one direction, the displacement in the perpendicular direction 

can be calculated accordingly. This means that the linear distribution (and any other 

distribution) of the displacements in one direction allows also combination of modes as long as 

the above geometric relationship is satisfied. The above constraint (Eq.(A6)) determines the 

variations of the ellipses’ characteristics, which can be approximated by polynomial functions 
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The values of the polynomial coefficients  4,...,0;3,2,1,, kip ki  are listed in the Table 2. 

The variations of the dimensionless semi-axes of the three ellipses characterising modes Cx

and Cy are shown in Fig. A2(d). 

3 Repeatability of the representative block for the characteristic modes 

The analysed deformation modes, which can exist in an infinite block of circular 

honeycombs under bi-axial in-plane compression, are defined for rectangular representative 

2×2 cells blocks in global co-ordinate system (X,Y). The rectangular boundaries of each mode 

are shown in Figs A3(a) – A3(d). Constraints are imposed on the model in order to resemble the 

periodic conditions in a honeycomb material. These constrains require certain relationships 

between the displacement components xu  and yu  of the points marked at the boundaries of the 

rectangular 2 x 2 cells blocks. Assume that the centre of the coordinate system is placed at the 

centre of the bounding rectangle of each mode as shown in Figs A3(a) – A3(d). Then, the

displacements, xu and yu , at the points, ii,  marked on the vertical boundaries are constrained 

to

)()( iuiu xx  and )()( iuiu yy ,           (A8a,b) 

3,2,1i  for mode F (Fig. A3(a)), 4,...,1i  for mode Sh (Fig. A3(b)), 2,1i  for mode Cx (Fig.

A3(c)) and 3,2,1i  for mode Cy (Fig. A3(d)). The displacements, xu and yu , at the points, 

ii, , at the horizontal boundaries satisfy 

)()( iuiu xx  and )()( iuiu yy ,                (A9a,b) 

7,...,4i  for mode F, 8,...,5i  for mode Sh, 6,...,3i  for mode Cx and 6,5,4i  for mode 

Cy (see Fig. A3).                   



Acc
ep

te
d m

an
usc

rip
t 

(a)

X Y

 (b)

(c)   (d)

-10

0

10

20

30

40

50

60

70

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Nominal strain

S
tr

es
s,

 K
P

a

Figure 1 

Figure



Acc
ep

te
d m

an
usc

rip
t 

x

y

(a)         (b)       (c)       (d) 

Figure 2 

Figure



Acc
ep

te
d m

an
usc

rip
t 

x

y

 (a)   (b) 

x

y

(c)

1 2

3

 (d) 

- /3

/3

2 3

1

x

y y x'

x'

y'

y'

Figure 3 

Figure



Acc
ep

te
d m

an
usc

rip
t 

(a)

0

20

40

60

80

0 0.05 0.1 0.15 0.2 0.25

Strain

S
tr

es
s 

(M
P

a) 2

3

1   Non-linear elastic
  approximation 

Polycarbonate 
material

(b)

0

20

40

60

80

0 0.05 0.1 0.15 0.2 0.25

Strain

S
tr

es
s 

(M
P

a)

2

3

1

Cx

(c)

0

20

40

60

80

0 0.05 0.1 0.15 0.2 0.25

Strain

S
tr

es
s 

(M
P

a)

2

3

1

Cy

Figure 4 

Figure



Acc
ep

te
d m

an
usc

rip
t 0

0.01

0.02

0.03

0.04

0.05

0 0.01 0.02 0.03 0.04 0.05

x

y

Cy

Cx

Sh

   

   

(a)       (b) 

Figure 5 

Figure



Acc
ep

te
d m

an
usc

rip
t 

   

11
1

2 2
2

3 3
3

yx yx        yx

Figure 6 

Figure



Acc
ep

te
d m

an
usc

rip
t 

(a)

0

0.2

0.4

0.6

0.8

0 0.02 0.04 0.06 0.08 0.1

x

(
x +

y )
/(

2E
t3 /R

3 )

Sh

F

0.3

0.6 

0.9 

1.2 

(
x+

y)
/(

2E
t3 /R

3 )

(b)

                    

Sh

F

0

0.3

0.6

0.9

1.2

0 0.02 0.04 0.06 0.08
x

(
x+

y)
/(
2E

t3 /R
3 )

(
x+

y)
/(
2E

t3 /R
3 )

Cy

CxSh

Figure 7 

Figure



Acc
ep

te
d m

an
usc

rip
t 

(a)

X

                                   yx yx yx          yx              yx

(b)

Y

   

                                      yx yx yx          yx              yx

Figure 8 

Figure



Acc
ep

te
d m

an
usc

rip
t 

(a)

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1
X/L X, Y/L Y

V
X
*
/V

0
,

V
Y
*/

V
0 Moving boundary

Stationary boundary

g1( ) - - - -

g2( ) ______

.2

X/LX, Y/LY

V
X

* /V
0,

  V
Y

* /V
0

(b)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.2 0.4 0.6 0.8 1 1.2
X /L X , Y /L Y

x
/

X
,

y/
Y

g1( )

g2( ) ______

Moving boundary

Stationary boundary

X/LX, Y/LY

xij /
X
,

yij /
Y

Figure 9 

Figure



Acc
ep

te
d m

an
usc

rip
t (a)

0.5

1

1.5

2

2.5

3

0 0.05 0.1 0.15 0.2 0.25 0.3

x/R

x/
y

x / y = f( x )

x /R

x
/

y

(b)

0.5

1

1.5

2

2.5

3

0 0.05 0.1 0.15 0.2 0.25 0.3

x/R

x/
y

x / y = f( x )

x /R

x
/

y

Figure 10 

Figure



Acc
ep

te
d m

an
usc

rip
t 

(a)
X

Y

(b)        
X

Y

(c)

    
X

Y

(d)        

X

Y

Figure 11 

Figure



Acc
ep

te
d m

an
usc

rip
t 

Figure 12 

Figure



Acc
ep

te
d m

an
usc

rip
t 

(a)  (b)  (c)

  (d)      (e)        (f) 

Figure 13 

Figure



Acc
ep

te
d m

an
usc

rip
t 

A

B

C

B

/3
A

a

b O
A

D

E

O1

B

2 3/

A
B

C

C

S

A

D

B

2 3

E

/

(a)           (b) 

Figure A1 

Figure



Acc
ep

te
d m

an
usc

rip
t 

   
x

y

3

a3

a2

a1

OA1

A2

A3

x

y

O a1

a2

a3
A1

A2

A3

/3

(a)          (b) 

1

1.4

1.8

2.2

2.6

0 0.05 0.1 0.15 0.2

x/R

x
/

y

x /R 

x
/

y

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

0 0.05 0.1 0.15 0.2

dx/R

a
i/

R
a 1

a 2

a 3

x /R

a i
/R

1 2

3

   (c)           (d) 

Figure A2 

Figure



Acc
ep

te
d m

an
usc

rip
t  (a)

1’

2’

3’
4’ 5’ 6’7’

1

2

3

4 5 6 7

X

Y

x

y

(b)

1’

3’
4’

1

3
4

5’8’ 6’

5 6 7

2’2

8

7’

Y

X

y

x

(c)
X

1’

2’

1

2

3 4 5 6

3’ 4’5’ 6’

Y

x

y

 (d) 

1’

2’

3’

1
2

3
4’

4 5 6

5’6’

X

Y

y

x

5’ 4’

Figure A3 

Figure


