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Abstract 
 
Under dynamic adiabatic conditions the plastic work is known to dissipate into heat and 
inducing thermal softening. From both theoretical and numerical viewpoints the proportion of 
effectively dissipated plastic work is commonly evaluated using the so-called TAYLOR-
QUINNEY coefficient usually assumed to be a constant empirical value. On the other hand 
experimental investigations have shown its dependence on strain, strain rate and temperature. 
A methodology combining dislocation theory in the domain of thermally activated inelastic 
deformation mechanisms and internal variable approach applied to thermo-elastic/viscoplastic 
behaviour is developed allowing for obtaining a physically based inelastic heat fraction 
expression. The latter involves explicitly the combined influence of the parameters mentioned 
above and highly evolving nature of the inelastic heat fraction. 
 
Keywords : Dislocation theory – Irreversible thermodynamics – Inelastic heat fraction – Non-linear modelling – 
Viscoplasticity - Dynamics. 
 
 
 
1. Introduction 
 
As a consequence of the inelastic deformation under adiabatic condition, the most part of the 
plastic work is dissipated into heat. The subsequent temperature rise induced in the material 
provokes a softening effect which favours potential instability as encountered notably in 
adiabatic shear banding phenomenon (see RECHT [1], BAI AND DODD [2], and LONGÈRE ET AL. 
[3,4]). For applications involving high strain rate – speed machining, crash, impact problems 
f.ex. – an accurate evaluation of the plastic work induced heating is consequently of major 
interest. The latter is usually evaluated using the inelastic heat fraction also known as TAYLOR 
AND QUINNEY coefficient in reference to their original work [5]. Starting from the definition 
of the stored energy of cold work (see WILLIAMS [6] and BEVER ET AL., [7]), the inelastic heat 
fraction is defined as the ratio of the generated heat by the plastic work. Depending on the 
authors, its value is assumed to be a constant comprised between 80 and 100%. Nevertheless 
many experimental investigations devoted to plastic deformation related temperature rise 
during dynamic loading have shown the dependence of the inelastic heat fraction on strain, 
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strain rate and temperature (see CHRYSOCHOOS ET AL. [8], MASON ET AL. [9], KAPOOR AND 
NEMAT-NASSER [10], ROSAKIS ET AL. [11], LERCH AT AL. [12] and OLIFERUK ET AL., [13]) 
thanks to the improvement of the temperature measurement devices. Thus the inelastic heat 
fraction is strongly dependent on the loading path and neglecting this feature constitutes for 
most materials a coarse simplification which may lead to an erroneous estimation of the 
temperature rate. Following a thermodynamics based approach the present study attempts to 
provide some complementary insight for a more realistic evaluation of dynamic heat 
generation in the context of strain, strain rate and temperature dependent material behaviour. 
 
The modelling methodology used herein is referred to dislocation theory at strain rate high 
enough to consider the deformation mechanisms as thermally activated but low enough to 
exclude phonon-drag phenomenon, i.e. at intermediate strain rate and temperature. The flow 
stress of the polycrystalline aggregate is assumed to be split in an athermal contribution 
characterizing the rate independent resistance to dislocation motion due to long-range 
barriers, such as grain boundary, and a viscous-thermal contribution characterizing the rate 
dependent resistance to dislocation motion due to short-range obstacles, such as forest 
dislocations (see ZERILLI AND ARMSTRONG [14], FOLLANSBEE AND KOCKS [15], KLEPACZKO 
AND RESAIG [16] and NEMAT-NASSER AND LI [17] f.ex.).The former increases with increasing 
accumulated dislocations but saturates according to the assumption of bounded dislocation 
density. The latter increases with increasing strain rate but decreases with increasing 
temperature, including different effects regarding the geometry of the crystalline pattern (fcc 
or bcc). 
The dislocation kinetics and related formalism is further integrated into internal variable 
procedure in the framework of irreversible thermodynamics (see also VOYIADJIS AND ABED 
[18] for a similar approach). Free energy and dissipative potential are proposed preserving the 
aforementioned basic concepts. The yield function involves the athermal processes of 
plasticity as described in dislocation theory while the viscous overstress is included in 
PERZYNA’s type dissipative potential [19]. Starting from the first and second principles of 
thermodynamics, the heat equation is deduced leading to a rigorous expression of the inelastic 
heat fraction. In the latter form, the combined influence of strain, strain rate and temperature 
appears clearly. From this thermodynamic viewpoint, the inelastic heat fraction rate is shown 
to be negative for a strain hardening material, and positive for a strain softening material. 
 
In Sect.2 of the present paper, the basic concepts are introduced. They include firstly the 
notion of flow stress according to dislocation theory in the regime of thermally controlled 
inelastic deformation mechanisms. Secondly they detail the irreversible thermodynamics 
based context applied to thermo-elastic/viscoplastic modelling. The heat equation leading to 
the expression of the inelastic heat fraction is also deduced. Finally a unified approach 
coupling both aforementioned methodologies is proposed. 
Sect.3 is devoted to numerical evaluation of the inelastic heat fraction of two very different 
materials, a Copper type one (fcc structure) and a Tantalum type one (bcc structure) under 
simple shear loading at various strain rates and initial temperatures. The tendency observed 
agrees experimental conclusions. 
 
2. Basic concepts and unified approach 
 
This part aims at reconciling both main methodologies of modelling, namely physically based 
one and phenomenological one. In a first sub section the former is briefly applied to plastic 
deformation mechanisms controlled by thermal activation in the cases of fcc and bcc 
materials. Afterwards the irreversible thermodynamics related internal variable procedure is 
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considered regarding thermo-elastic/viscoplastic materials. In the last sub section a unified 
approach is employed in which the dislocation interaction mechanisms based modelling is 
incorporated in the formalism of standard generalized materials. 
 
2.1. Dislocation mechanics based modelling 
 
The following modelling is devoted to metallic materials which deform plastically under 
dislocation motion and accumulation/annihilation mechanisms. It refers explicitly to the 
concept of thermally controlled mechanisms. In the range of strain rate and temperature 
considered, the resistance to dislocation motion is supposed to be due to two kinds of 
obstacles : long-range barriers typically formed by grain boundaries and other far-field 
influent microstructural elements relative to a rate and temperature independent stress 
(athermal stress), and short-range barriers formed by disoriented dislocations and other point 
defects relative to a rate and temperature dependent stress (thermal/viscous stress). 
According to these microstructural concepts, the flow stress τ may be decomposed into an 
athermal contribution τa and a thermal/viscous contribution τth as follows : 
 

( ) ( )T,, pp
th

p
a γγτ+γτ=τ &  (1) 

 
where pγ  represents the plastic strain, pγ&  the plastic strain rate and T absolute temperature. 
The athermal stress τa reflects the influence of the presence of solute, original dislocation 
density and grain size (the material state considered here is not the virgin one if the material 
was submitted to thermo-mechanical treatments) through a constant contribution τ0 and the 
accumulation of dislocation through a hardening contribution τ  : 
 
( ) ( )p

0
p

a γτ+τ=γτ  (2) 
 
Assuming a bounded dislocation density at large deformation, the hardening stress is 
supposed to saturate, following VOCE’s form : 
 
( ) ( )[ ]pp bexp1 γ−−τ=γτ ∞  (3) 

 
where ∞τ  represents the maximum hardening stress and b a material constant characterizing 
the hardening kinetics. 
According to OROWAN’s law in the context of thermally activated inelastic mechanisms, the 
plastic strain is assumed in the following ARRHENIUS form : 
 

⎟
⎠
⎞

⎜
⎝
⎛ ∆
−γ=γ

kT
Gexp0

p &&  (4) 

 
where the constant pre-exponential term 0γ&  is notably related to mobile dislocation density 
and obstacle overcoming frequency, k represents the BOLTZMANN constant and ∆G the 
activation energy or energetic barrier needed for dislocation to overcome. The latter is written 
in the following form : 
 

qp
th

0 ˆ
1GG

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

τ
τ

−=∆  (5) 
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with ( )0,xmaxx =  and where the total energy G0 is related to the material strain-rate 
sensitivity via the activation volume, τ̂  the maximum glide resistance, and p and q express the 
statistical shape of the obstacle profile. Injecting (5) into (4) yields : 
 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

τ
τ

−−γ=γ

qp
th0

0
p

ˆ
1

kT
G

exp&&  (6) 

 
Inverting the relation (6) above leads to following expression for the thermal/viscous stress 
contribution τth in (1) : 
 

p/1q/1

0

p

0
th ln

G
kT1ˆ

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

γ
γ

−−τ=τ
&

&  (7) 

 
In the case of bcc materials, the maximum glide resistance τ̂  is assumed to be a constant : 
 

0ˆˆ τ=τ  (8) 
 
According to (7) and (8) the thermal/viscous stress contribution τth becomes for bcc materials: 
 

p/1q/1

0

p

0
0th ln

G
kT1ˆ

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

γ
γ

−−τ=τ
&

&  (9) 

 
Injecting (3) into (2) and considering (9) the total flow stress in (1) is written as : 
 

( )[ ]
p/1q/1

0

p

0
0

p
0 ln

G
kT1ˆbexp1

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

γ
γ

−−τ+γ−−τ+τ=τ ∞ &

&  (10) 

 
This expression for the bcc material flow stress reflects experimental observations showing 
that, for isothermal processes, the apparent strain hardening pd/d γτ  is neither affected by 
strain rate at a given initial temperature nor by initial temperature at a given strain rate. This 
explains the additive decomposition of the flow stress into separated strain hardening 
contribution and thermal/viscous contribution (see ZERILLI AND ARMSTRONG [14] and 
VOYIADJIS AND ABED [18]). 
 
In the case of fcc materials, the maximum glide resistance is assumed to involve the former 
athermal stress contribution affected by temperature. This corresponds to a simplification of 
expressions available in literature (see f.ex. NEMAT-NASSER AND LI [17] for reference form). 
Let consider the following expression : 
 

( )[ ] ( )Ta.ˆ 0 γτ+τ=τ  ; ( )
2

mT
T1Ta ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=  (11) 

 



Acc
ep

te
d m

an
usc

rip
t 

- 5 - 

According to (3) and (11) the thermal/viscous stress contribution in (7) is expressed as : 
 

( )[ ]{ }
p/1q/1

0

p

0

2

m

p
0th ln

G
kT1

T
T1bexp1

⎪⎭

⎪
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⎫
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⎪
⎨
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⎥
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γ
γ

−−
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⎥
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⎢
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⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−γ−−τ+τ=τ ∞ &

&  (12) 

 
Injecting (12) into (1) yields : 
 

( )[ ]{ }
⎥
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⎥
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⎣
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−+γ−−τ+τ=τ ∞

p/1q/1

0

p

0

2

m

p
0 ln

G
kT1

T
T11bexp1

&

&  (13) 

 
Contrarily to bcc materials, the flow stress for fcc materials is known to combine 
multiplicatively the influence of both strain hardening and thermal/viscous contributions (see 
ZERILLI AND ARMSTRONG [14] and VOYIADJIS AND ABED [20]). This feature is respected in 
expression (13). 
 
2.2. Thermodynamic framework 
 
Irreversible thermodynamics framework (COLEMAN AND GURTIN [21], MEIXNER, [22] and 
BATAILLE AND KESTIN, [23]) is now applied to thermo-elastic/viscoplastic behaviour in the 
case of linear thermo-elasticity, pressure insensitive plasticity and isotropic strain hardening. 
The instantaneous state of the material is supposed to be described via the free energy 

ρψ=ψ~ . The set y of state variables includes ee  representing a measure of moderate elastic 
strain ( ee Vlne =  ; QVF ee =  where eF  proceeds from the multiplicative split of the 

deformation gradient pe FFF =  and where eV  and Q  represent the pure elastic stretching and 

the frame rotation tensor respectively) and κ representing the isotropic strain hardening 

variable ( ∫=κ t

pp dtd:d
3
2 ), such that ( )κ= ,ey e  . The rate of deformation d  is further 

decomposed into a reversible part ed  and an irreversible part pd  such that [ ] peS ddld +== , 
where [ ]Sl  represents the symmetric part of the velocity gradient l . Derivating free energy 

( )κψ ,e;T~ e  yields : 
 

κ+σ+−=κ
κ∂
ψ∂

+
∂
ψ∂

+
∂
ψ∂

=ψ &&&&& Rd:Ts~
~

d:
e

~
T

T

~~ ee
e

 ; 
T

~
s~

∂
ψ∂

−= ; 
ee

~

∂
ψ∂

=σ  ; 
κ∂
ψ∂

=
~

R  (14) 

 
where s~  represents entropy, σ  the thermo-elastic CAUCHY stress tensor, R the isotropic 

hardening conjugate force and ω+ω−==
∇

eeeee eeeed & , ∇  representing the objective 
JAUMANN derivative of a 2nd order tensor (according to the assumption of small elastic strain 
as stated here) and [ ]ASl=ω  the spin defined as the antisymmetric part of the velocity gradient. 
According to the second principle of thermodynamics intrinsic mechanical dissipation is 
written as : 
 

0Rd:D p
mech ≥κ−σ= &  (15) 
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where pd:σ  represents the plastic part of the mechanical work rate and κ&R  the stored energy 
rate. Assuming normality rule, evolution laws are deduced from: 
 

σ∂
∂

Λ=
Fd p  ; 

R
F

∂
∂

Λ=κ− &  (16) 

 
where 0≥Λ  represents here the viscous multiplier and F  designates the yield function. 
 
Combining (14) with the first law of thermodynamics and assuming that R is independent on 
temperature (see (20) below) lead to the following form for the heat equation : 
 

κ−σ+
∂

σ∂
=−+ && Rd:d:

T
TrqdivTc~ pe

y  (17) 

 

where yc~  represents the heat capacity per unit mass at fixed y 
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

∂
ψ∂

−=
y

2

2

y T

~
Tc~ , q  heat flux 

vector per unit surface and r heat supply per unit volume. The context considered herein 
concerns loading at high strain rate excluding heat supply and for which conditions can be 
assumed as adiabatic. The relation (17) above is thus reduced to : 
 

e
mech

pe
y d:

T
TDRd:d:

T
TTc~

∂

σ∂
+=κ−σ+

∂

σ∂
= &&  (18) 

 

where ed:
T

T
∂

σ∂
 represents the thermo-elastic coupling contribution. Considering that 

0Dmech ≥  and 0d:
T

T e ≤
∂

σ∂
 for tensile loading (implying cooling) or 0d:

T
T e ≥
∂

σ∂
 for 

compressive loading (implying heating), thermo-elastic and thermo-viscoplastic mechanisms 
act inversely or together regarding temperature rise. 
According to the aforementioned assumptions, the free energy ( )κψ ,e;T~ e  is now expressed in 
the following form: 
 

( ) ( ) ( ) ( )0hh
T
TlnTc~eKTre:eeTr

2
,e;T~

0
0

eee2ee −κ+
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
ϑ−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−ϑα−µ+

λ
=κψ  (19) 

 
where λ and µ represent LAMÉ elasticity constants, µ+λ=

3
2K  the bulk modulus, α the 

thermal dilatation coefficient, 0c~  heat capacity which is supposed to have a constant value 
(i.e. 0y c~c~ = ), 0TT −=ϑ  the temperature rise, ( )κh  the stored energy of cold work as a 
function of strain hardening variable. After partial derivation of (19) with respect to state 
variables, the thermodynamic forces are detailed as follows : 
 

( ) ee e2KeTr µ+δϑα−λ=σ  ; ( )κ= 'hR  ; ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+α=

0
0

e

T
Tlnc~eKTrs~  (20) 
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The dissipative potential is assumed of the PERZYNA’s type [19] ( ) ( )( )R,FR, σφ=σφ . The 
viscoplastic multiplier and the yield function in (16) are defined as : 
 

( )( )R,FH
F

σ=
∂
φ∂

=Λ  ; ( ) ( ) ( )RgJR,F 2 −σ=σ  ; ( ) s:s
2
3J2 =σ  ; δ

σ
−σ=

3
Tr

s  (21) 

 
where H is a function of the yield surface F. The strain hardening function g(R) in (21) 
represents the VON MISES surface radius. It is assumed in the form : 
 
( ) ( )κ+= RRRg 0  (22) 

 
It includes the first term R0 independent of strain hardening and the isotropic hardening force 
R as the second term. The quantity R0 accounts for residual stresses potentially induced by the 
previous thermo-mechanical history of the material. Evolution laws (16) are thus detailed as : 
 

( )σΛ=
2

p

J
s

2
3d  ; Λ=κ&  (23) 

 
Inverting (21)1 and using (21)2 and (22) yield : 
 

( ) ( )T,,RRJ 02 κκΦ+κ+= &  ; 1H−=Φ  (24) 
 
According to (23)1 and (23)2, the rate of plastic work pd:σ  in (15) is thus given by : 
 

( ) ( )[ ]κκκΦ+κ+=κ=σ &&& T,,RRJd: 02
p  (26) 

 
Finally injecting (26) into (15) yields : 
 

[ ] 0RD 0mech ≥κΦ+= &  (27) 
 
One can note that all terms in the above equation are positive. 
 
2.3. Dislocation mechanics-irreversible thermodynamics unified approach 
 
The concepts of thermally activated processes developed previously are now incorporated in 
the internal variable procedure formalism (see also VOYIADJIS AND ABED [18]). The first step 
consists in unifying the notations. The corresponding terms are reported in Table 1. 
 
The following yield function describing athermal processes is also assumed (see (1)(2) and 
(21)2(22)) : 
 
( ) ( ) ( ) ( ) ( )RRJR,F,F 020 +−σ=σ=τ+τ−τ=ττ  (28) 

 
Noting that ( ) ( ) ( ) 0,FT,, ath ≥ττ=γτ−τ=γγτ &  stands for viscoplastic yielding, expression (6) is 
converted into : 



Acc
ep

te
d m

an
usc

rip
t 

- 8 - 

 

( ) ( )R,FH
ˆ

R,F
1

kT
G

exp

qp

0
0 σ=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

τ

σ
−−κ=κ &&  (29) 

 
Table 1. Corresponding terms for dislocation mechanics-irreversible thermodynamics unified 
 approach 
 

Dislocation mechanics Internal variable procedure 
γp κ  

pγ&  κ&  
τ J2 

( ) ( )p
0

p
a γτ+τ=γτ  ( ) ( )κ+=κ RRg 0  

τ0 R0 
( ) ( )[ ]pp bexp1 γ−−τ=γτ ∞ ( ) ( )[ ]κ−−=κ ∞ bexp1RR  

( )T,,th γγτ &  ( )T,,κκΦ &  

∞τ  ∞R  
 
Inverting (29) yields : 
 

Φ== −1HF  (30) 
 
Using (28) and (30) leads to the following form for the flow stress : 
 

( ) ( ) ( )T,,RRJ 02 κκΦ+κ+=σ &  (31) 
 
The expression (31) above has to be compared to the following one obtained from (1) and (2): 
 

( ) ( )T,, pp
th

p
0 γγτ+γτ+τ=τ &  (32) 

 
 
3. Evaluation of the inelastic heat fraction for fcc and bcc materials 
 
According to the dislocation mechanics-irreversible thermodynamics unified viscoplasticity 
approach developed previously, this section aims at showing the influence of the modelling 
regarding the evolution of the inelastic heat fraction and related temperature rise. Actually it is 
shown that, from the thermodynamic viewpoint, the inelastic heat fraction rate is strongly 
dependent on the strain hardening/softening rate. Fcc and bcc materials are modelled and the 
inelastic heat fraction is deduced in both cases. Its evolution is analysed considering a simple 
shear loading. 
 
3.1. General expression for the inelastic heat fraction 
 
In the following the effects of strain hardening, thermal softening and viscosity on 
stress/strain behaviour, temperature rise and inelastic heat fraction are studied. Thermo-elastic 
coupling contribution to temperature rise is actually particularly significant in problems 
involving very high velocity impact and/or high pressure shock loading. In the context of this 



Acc
ep

te
d m

an
usc

rip
t 

- 9 - 

work, velocity and pressure are considered moderately high and thermo-elastic coupling is 
neglected. Heat equation in (18) is thus reduced to : 
 

mech0 DTc~ =&  (33) 
 

Starting from the definition of the inelastic heat fraction β as 
p

0

d:
Tc~

σ
=β

&
, the following 

expression is deduced : 
 

pd:
R1
σ

κ
−=β

&  (34) 

 
Accounting for (26), relations (33) and (34) are thus reduced to: 
 

[ ]κ−= && RJ
c~
1T 2

0

 ; 
2J

R1−=β  (35) 

 
Injecting the expression (26) of the stress invariant J2 yields: 
 

( )
κ

κκΦ+
= &

&&

0

0

c~
T,,R

T  ; ( )
( ) ( )T,,'hR

'h1
0 κκΦ+κ+

κ
−=β

&
 (36) 

 
Consequently, the inelastic heat fraction β appears explicitly as a function of thermal/athermal 
hardening/softening and viscosity mechanisms via ( )T,,κκΦ &  and ( )κ'h  and of the prior plastic 
deformation history via R0. The form (36)2 highlights the evolving nature of β with 
temperature, strain and strain rate evolution. On this basis further remarks can be made as 
follows. 
 
Remark 1 
 
Under the modelling assumption, for plastic strain κ2>κ1 close enough to consider that 

TTT 21 ≈≈ , one can write from (36) : 
 

( ) ( ) ( ) ( )[ ] ( ) ( )T,,'hR
1'h'hT,,T,,

0
1212 κκΦ+κ+

κ−κ−≈κκβ−κκβ
&

&&  (37) 

 
Using the notation 
 

( ) ( )T,,'hR
1

0 κκΦ+κ+
=χ

&
 ; 0≥χ  (38) 

 
relation (37) is reduced to: 
 

( )κχ−≈
κ∂
β∂ ''h  (39) 
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According to (39), it is possible to conclude that for material exhibiting strain hardening 
( ( ) 0''h >κ ), the inelastic heat fraction is decreasing with increasing strain, i.e. 0<

κ∂
β∂ . On the 

contrary, for material exhibiting strain softening ( ( ) 0''h <κ ), the inelastic heat fraction is 

increasing with increasing strain, i.e. 0>
κ∂
β∂ . 

 
Remark 2 
 
According to (36)2, ( )T,,κκβ &  is equal to unity when ( ) 0'h =κ  which is satisfied for a perfectly 
plastic material (no strain hardening). 
 
3.2. Application to fcc and bcc materials 
 
The unified approach is now applied to fcc and bcc materials in the case of simple shearing 
such that 0x/vl jiij =∂∂=  except 0x/vl 2112 ≠Γ=∂∂= & . Material constants used for 
numerical simulations have been identified to reproduced Copper type material (see 
VOYIADJIS AND ABED [20] for experimental results) and Tantalum type material (see 
VOYIADJIS AND ABED [18] for experimental results) and are reported in Table 2. 
 
Table 2. Material constants for simple shearing simulation 
 

Copper (fcc) Tantalum (bcc) 
E (GPa) 120 170 

ν 0.33 0.34 
ρ0 (kg/m3) 8930 16600 
c0 (J/kg.K) 380 140 

Tm (K) 1350 3300 
p 1/2 1/2 
q 3/2 3/2 

k/G0 (K-1) 4.9E-5 8E-5 
0p&  (s-1) 1E10 1E9 

R0 (MPa) 100 100 
∞R  (MPa) 300 100 

b 10 5 
0τ̂  (MPa) X 1700 

 
Numerical evolution of stress invariant J2, temperature T and inelastic heat fraction β is given 
versus shear strain e12=γ12/2 (the strain tensor e  is obtained by time integration of the non 
objective strain rate tensor e& , with ω−ω+= eede& ) for various strain rates and initial 
temperatures considering Copper behaviour model in Fig.1 and Tantalum behaviour model in 
Fig.2. Adiabatic conditions are assumed for strain rates higher than 100 s-1. 
 
Figs.1a-2a show the increase of the flow stress with the increase of the strain rate whereas 
Figs.1d-2d show the increase of the flow stress with the decrease of the initial temperature. 
Fig.2a shows also the thermal softening induced in the flow stress of Tantalum while thermal 
softening is not significant in Fig.1a concerning Copper. 
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Values of numerical temperature in Fig.2b are very similar to those measured by (KAPOOR 
AND NEMAT-NASSER [10]) on Ta-2.5%W alloy under dynamic compression. 
According to Figs.1c-1f and 2c-2f initial value of β is equal to 1 whatever the strain rate and 
the initial temperature. At large strain β converges to a value which depends on strain rate and 
initial temperature with a rate (negative according to remark 1) whose absolute value 
increases with decreasing strain rate and increasing initial temperature. The value for β at 
convergence is much smaller for Copper than for Tantalum. 
Recent experimental investigations using fast response infrared optical device devoted to the 
measurement of heating during dynamic loading on Aluminium alloy (fcc) and steel (bcc) 
have shown that the inelastic heat fraction decreases with increasing strain (see respectively 
LERCH AT AL. [12] and JOVIC ET AL. [24]). Unfortunately, time resolved data obtaining with 
this type of reliable device are missing concerning Copper and Tantalum. 
 
3. Concluding remarks 
 
A unified approach combining both concepts of dislocation mechanisms controlled by thermal 
activation and internal variable viscoplasticity for macroscopic modelling is introduced in the 
present paper. It is applied to strain, strain rate and temperature dependent metallic materials 
behaviour in a range covering low velocity to moderately dynamic loading. Following the 
internal variable procedure and assuming the existence of thermodynamic potentials (free 
energy and dissipation potential), a consistent expression for the inelastic heat fraction has 
been obtained. The latter form involves explicitly the influence of strain, strain rate and 
temperature as observed experimentally and allows for concluding that for a strain hardening 
model the inelastic heat fraction is decreasing for increasing strain. 
These theoretical results show the influence of the modelling in terms of strain 
hardening/softening, thermal softening and strain rate dependence on the inelastic heat 
fraction and its highly evolving nature, notably for larger strain. Some models are actually 
intrinsically able to reproduce observed phenomena, notably the temperature rise induced by 
plastic deformation under adiabatic conditions, while others are not. 
The interest of satisfactory quantification of temperature rise in dynamic plasticity is evident. 
As shown f.ex. by KLEPACZKO AND RESAIG [16] for adiabatic shear banding involving strain 
rates of about 105 s-1 the increase of temperature for a class of bcc metals is close to the 
melting point. 
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a) Stress invariant J2 vs. strain e12 - T0=300 K 
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d) Stress invariant J2 vs. strain e12 - Γ& =1000 s-1 
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b) Temperature T vs. strain e12 - T0=300 K 
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e) Temperature T vs. strain e12 - Γ& =1000 s-1 
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c) Inelastic heat fraction β vs. strain e12 - T0=300 K 
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f) Inelastic heat fraction β vs. strain e12 - Γ& =1000 s-1 

  
Fig. 1 : Influence of shear strain rate and initial temperature on stress invariant and inelastic heat fraction. 

Adiabatic conditions are assumed for strain rates higher than 100 s-1. 
Copper (fcc material) 
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a) Stress invariant J2 vs. strain e12 - T0=300 K 
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d) Stress invariant J2 vs. strain e12 - Γ& =1000 s-1 
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b) Temperature T vs. strain e12 - T0=300 K 
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e) Temperature T vs. strain e12 - Γ& =1000 s-1 
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c) Inelastic heat fraction β vs. strain e12 - T0=300 K 
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f) Inelastic heat fraction β vs. strain e12 - Γ& =1000 s-1 

  
Fig. 2 : Influence of shear strain rate and initial temperature on stress invariant and inelastic heat fraction. 

Adiabatic conditions are assumed for strain rates higher than 100 s-1. 
Tantalum (bcc material) 

 


