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Abstract  

 

This paper is devoted to the presentation of a finite element based on a Fourier modal description of physical 

values on circumferences for a quasi-axisymmetric structure. The finite element detailed in this paper is an 

advanced version of the COMU element, developed by Combescure [1,2], in order to extend it for simulating 

penetration of  targets composed of geological materials by steel projectiles. A finite element code with COMU 

elements is coupled with analytical forcing functions based on the dynamic expansion of a spherical cavity to 

represent the target. This combined analytical and computational approach is employed to reproduce normal 

impact of ogive-nosed VAR 4340 steel projectiles striking limestone targets with small angles of pitch and yaw. 

Results obtained from the cost-effective approach with two-dimensional COMU elements are checked against 

experimental data (Frew et al., [3]) and results from an analogous combined approach using three-dimensional 

hexahedral continuum elements (Warren, [4]).  

Keywords : projectile impact, axisymmetric shell, non axisymmetric loading, multimodal Fourier analysis.  
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1. INTRODUCTION 

 

During the last two decades, analytical models for penetration mechanics have been intensively developed. 

Those application oriented tools are based on an approximation of the main physical processes implied in the 

interaction. In the case of a projectile striking a target, it is generally assumed that the projectile remains rigid 

during the penetration. The forces acting on the outer surface of the projectile during the penetration process can 

be estimated through empirical relations (Young [5]), or alternatively be derived from the resolution of a 

simplified problem. For instance, the solution of a dynamic spherical cavity expansion problem can be used as an 

input to the penetration equations, by assuming that the stress on the outer surface of projectile through 

penetration is determined by the stress on the surface cavity. This approach has been developed and adapted to 

several materials such as soil, concrete or limestone in Refs [6-9]. The dynamic cavity expansion problem is 

solved by considering appropriate constitutive laws for the target materials. Functional forms used for the target 

representation incorporate an unknown target resistance strength parameter that is obtained from penetration 

depth versus striking velocity data.   

Fully three-dimensional penetration calculations with a purely computational approach (finite element method 

for both projectile and target in Lagrangian, Eulerian or Arbitrary Lagrangian-Eulerian formulations) enable full 

structural dynamics to be reproduced, but the time required prohibits any prospect for use in an overall design 

tool.  Recently, a combined approach using finite element method for the projectile and analytical functions for 

the target has been proposed for the simulation of penetration of aluminium, limestone or concrete target by 

spherical and ogive-nosed steel projectiles as discussed in [4] and in Refs. [10-14].  In addition to the cost-

efficiency of this combined approach, this method eliminates the need for a contact algorithm between target and 

projectile, and avoids the problem due to excessive mesh distorsion for the target in Lagrangian formulation. The 

finite element used in these computation was a classical three-dimensional hexahedral continuum elements for 

the projectile modelling. In this paper, a two-dimensional quasi axisymmetric element is fitted to impact 

problems in order to enhance even more the cost efficiency of the combined analytical and computational 

approach.     

The finite element proposed in this work is an advanced version of the quasi-axisymmetric element COMU 

developed by the French Research Institute for Nuclear Energy (Commissariat à l’Energie Atomique) to predict 

buckling of thin shell structures for design. Buckling process in thin shell structures is particularly sensitive to 

the imperfections of the shells. In the COMU element formulation, the imperfections and displacements of the 
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shell structure are described by Fourier series on circumferences of the quasi-axisymmetric structure following 

an approach proposed by Wunderlich et al. ([15]). The behaviour of the structure submitted to static or dynamic 

loads is computed from a finite element analysis by selecting a series of Fourier modes, on which are 

decomposed all physical values such as displacements, velocities, accelerations and forces. Strains and stresses 

are expanded in Fourier series as well. Thanks to the modal description of physical values on circumferences of 

the structure, imperfections and non axisymmetric loads are taken into account. So, the formulation enables to 

deal with three-dimensional problems, such as projectile impacting complex targets, while keeping the advantage 

of the two-dimensional analysis with low computation costs. To summarize, the COMU element has the 

following main features: non axisymmetric imperfection, non axisymmetric load, large displacements, non linear 

behaviour, low computation costs.   

The initial formulation of this element has been improved in order to reproduce large rotations, that projectile 

may experience during the penetration into the target. To this end, the initial formulation based on an updated 

Lagrangian formulation is changed into a total Lagrangian formulation. In the following, the general formulation 

of the advanced COMU element will be presented in detail by pointing out the differences between the previous 

formulation and the new one. The COMU element developed in a total Lagrangian formulation is employed to 

reproduce penetration experiments reported by Frew et al. [3] involving limestone targets and ogive-nosed VAR 

4340 steel projectiles. The target model is based on Forrestal’s semi-empirical closed-form expression for the 

final depth of penetration. Values of limestone target resistance obtained by fitting the depth of penetration 

versus striking velocity data curve, are given by the authors. For the reproduction of the loss of confinement due 

to the entrance cratering effects, the methodology of successive layers proposed by Warren [4] is adopted.  

Results from non linear dynamic analyses with advanced COMU elements in terms of depth of penetration and 

projectile deformation through penetration are compared with experimental data and numerical results obtained 

by Warren using a three-dimensional finite element for the projectile.  

 

 

2. GENERAL FORMULATION OF STRAINS FOR A SHELL 

  

2.1 General formulation of strains for a geometrically perfect shell  

In this first section, a geometrically perfect shell is considered. In other words, the initial imperfections of the 

shell structure are neglected.  
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Let us introduce a cylindrical coordinate system ),,( zr eee GGG
θ  where each point has three coordinates ),,( zr θ , 

referring to the radius, the circumferential angle and the vertical coordinate, respectively. At a point M, the local 

reference is denoted by ),,( tsn
GGG

, where  is the inward normal of the shell, nG sG  is the tangent vector along the 

meridian direction and t
G

 is the tangent vector along the circumference of the structure. We consider a conical 

shell, that is the curvature radius in the meridian plane ),( sn GG , is assumed as infinite. In the meridian plane, the 

orientation of the conical shell is given by the angle ( )sez
GG ,−=ϕ .  

The displacement field in the local coordinates is :  

{ βvwuq t= }          (1) 

where  is the axial tangential displacement,  is the normal displacement to the shell,  is the 

circumferential tangential displacement, and 

u w v

β  is the rotation of the shell around the tangential vector t
G

.  

In the cylindrical system ( ),, θeee zr
GGG

, the displacement field is denoted by :  

{ βvwuq t
= }          (2) 

with    











=

=
−=
+=

ββ

ϕϕ
ϕϕ

vv
wuu
wuw

cossin
sincos

         (3) 

The rotations of the shell around the tangent vector  sG  and normal vector nG  are not taken into account. 

The strain tensor is given by :  

( ) ( qqqqq tt ∇∇+∇+∇= .
2
1

2
1)(ε )          (4) 

where the gradient operator is expressed on the perfect configuration.  

The tensor can be decomposed into two parts, as follows :  

)()()( qqq QL εεε +=           (5) 

where  is the linear part of strains, and   is the quadratic part of strains involved in buckling and 

large displacement analysis.  

)(qLε )(qQε

Let us write the linear strains in the following vector form :   
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            (6) 

{ }Lmε  being the linear membrane strains and { }Lχ   the linear changes of curvature.  

For a flat shell with a infinite curvature radius in the meridian plane, the expressions of linear membrane 

deformations are :  
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and the linear changes of curvature variations are given by :  
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      (8) 

The shear strain in the thickness of the shell is expressed as :  





 +
∂
∂

= βεξ s
wL

s 2
1           (9) 

The Kirchoff-Love relation, classically assumed for thin shells, states that linear shear strain sξε  can be 

neglected. Consequently, the component β   of the displacement field is linked to the longitudinal derivative of 

the normal displacement. We have :  

 
s
w
∂
∂

−=β            (10) 

Thus, the first curvature term in (8) becomes :  

sss ∂
∂

=
βχ            (11) 

For the quadratic part of the strain tensor, only membrane strains are taken into account, as classically assumed 

for thin shells. The non linear membrane strains are given by :  
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At a point M located in the thickness of the shell from a distanceξ  to the neutral fibre, the total strain is given 

by :  

{ } { } { } { }QmLLm

T
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T

T
ss

T εχξε
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θθ ++=
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with  
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2.2 General formulation of strains for a geometrically imperfect shell 

The previous section provided analytical expressions for linear and non linear strains as a function of the 

displacement field  from a perfect axisymmetric structure. Let us now introduce an initial imperfection field. 

The imperfect shell with geometrical imperfections, denoted by I, is related to a virtual perfect shell, denoted by 

P, through a displacement field, denoted by . When a load F is applied to the actual structure, the structure 

experiences a displacement field, denoted by .  

q

D

q

The purpose is to express the strain tensor induced by the imperfection field  and the incremental 

displacement  on the perfect configuration P. The methodology, which has been first proposed by Marguerre 

for a general tridimensional problem, is applied here to the case of an axisymmetric structure with non-

axisymmetric imperfections of any size. On the imperfect configuration I, the strain tensor induced by the 

incremental displacement follows the previous expression (4). 

D

q

The strain tensor associated with the displacement field  can be obtained on the perfect configuration P by 

introducing the initial displacement field  : 

q

D

)()(),( DqDqD εεε −+=          (15) 

After expanding the terms of the above expression, we obtain the following expression for the strain tensor 

expressed on the perfect configuration :  

),(),(),()(),( qqqDDqqqD QQQLNL εεεεε +++=       (16) 
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where quadratic terms of the strain tensor are defined by the quadratic operator : 

[ 2121 .
2
1),( qqqq tQ ∇∇=ε ]

]

          (17) 

the gradient operator of the displacement fields  and  being defined on the perfect configuration P. 1q 2q

It is worth noting that, at this point, no assumption on the size of initial imperfections and displacements is made. 

The original version of the quasi-axymmetric COMU element assumes that the incremental displacement  is 

small with respect to the initial imperfection , so that  the quadratic term of displacement  could be 

neglected.  

q

D ),( qqQε

When considering an initial perfect axisymmetric structure, the linear and non linear strains coming from the 

displacements of the shell are given in Equations (7) to (12) in local coordinates. In a classical finite element 

formulation, these strains can be linked to the displacements of the nodes of the shell element through 

divergence operators. After expanding the imperfection displacements in Fourier series, it will be shown in the 

following that the divergence operators for strains can be also expanded in Fourier series. 

Expressions of the linear strains  and non linear strains  for the perfect shell will be further 

employed to derive the total strains  for an imperfect shell. The general outline of the formulation is 

to express strain and stress Fourier coefficients for a given COMU element as a function of Fourier coefficients 

of the nodal displacements in cylindrical coordinates.   

)(qLε

(NLε

),( qqQε

), qD

 

 

3. FOURIER DECOMPOSITION OF STRAINS AND STRESSES FOR A GEOMETRICALLY 

IMPERFECT SHELL  

 

3.1 Decomposition of the displacement field into Fourier series   

By referring to the perfect configuration in local coordinates, the displacement field can be expanded in a Fourier 

series: 

[∑
=

++=
N

n

AS nqnqqq
1

0 )()(          (18) 
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where  is a vector composed of four Fourier coefficients on the axisymmetric mode,  is associated 

with the  symmetric harmonic (symmetric with respect to the circumferential angle 

0q

n

)(nqS

0=θ ), and,  is 

associated with the  antisymmetric harmonic (symmetric with respect to the circumferential angle 

)(nq A

n
2
πθ = ).  

So, in local coordinates, the four modal displacement vectors are : 
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
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
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In the following, for the sake of clarity, only symmetric harmonics will be considered. Formula for 

antisymmetric harmonics are deduced from those for symmetric harmonics by swapping θncos  factors with 

θnsin factors.  

 

3.2 Geometry of the finite element and vector notations  

The COMU element is a flat shell element, with two nodes i and j . The geometry of the shell element is defined 

by the longitudinal length  , the radius at the middle of the element , the thickness , and the orientation 

angle 

L mR e

),( sez
GG

−=ϕ . The shape functions are linear. In local coordinates, we have :  

ji fxfxf )1(
2
1)1(

2
1

++−=          (20) 

where  and  refer to one of  degrees of freedom, that is the displacements ( ,  , v ) or the rotation (if jf u w β ), 

at nodes i and j  in local coordinates, respectively ; x  is the finite element parametric variable along the 

longitudinal local direction s , equal to -1 at node i , 0 at the middle the element and +1 at node 
G j . 

The partial derivative along the longitudinal direction is given by :  

x
f

Ls
f

∂
∂

=
∂
∂ 2            (21) 

where  can be replaced with the displacements ( u , , v ) or the rotation (f w β ).  

The displacement field in local coordinates can be expressed in cylindrical coordinates according to (3).  

In the cylindrical reference, let us write the displacement vector for the shell element on the n  symmetric 

harmonic ;  this one is composed of two parts associated with the two nodes i and j of the element under 

consideration :  
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{ } { }
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where displacement vectors of nodes i and j on the n symmetric harmonic are written as :  

{ } [ ]
{ } [ ])()()()()(
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=         (23) 

The axisymmetric { })0( =nq   follow an analogous expression.  

Note that these vectors are composed of Fourier coefficients. In the cylindrical reference, the total displacement 

of the node i is obtained by recomposing the Fourier series : 


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         (24) 

In the following, we will express the linear and non linear strains in the (i,j) element as a function of the modal 

displacements  { })0( =nq  and { })(nq S  in the cylindrical reference, by considering an element without 

geometric imperfection. The case of the geometrically imperfect element with an initial imperfection field  

will be later deduced from these expressions.   

D

 

3.3 Fourier decomposition of linear strains for a geometrically perfect element  

We seek to express the linear strains  , in terms of modal displacement vectors )(qLε { })0( =nq  and 

{ })(nq S  in cylindrical coordinates.   

Firstly, let us consider the local displacements on the axisymmetric mode : )0( == nuu , )0( == nww , 

, )0( == nvv )0( == nββ . The expressions of linear strains, given in Equations (7) to (11), are developed 

by using the shape functions of the element (20), the relations between cylindrical coordinates and local 

coordinates (3), and the relation on the longitudinal derivative (21), in order to express linear strains as a 

function of the axisymmetric displacement { })0( =nq  in cylindrical coordinates. Finally, the linear strains 

associated with the axisymmetric mode of displacement can be written as : 

{ } [ ] [ ] { )0(22)( 0 === nqBq L
s

LL
ss

Lm
s

LmLm
ss

tL
θθθθθθ χχχεεεε }    (25) 
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where the 6-by-8 matrix [ ]0B  corresponds to the divergence operator associated with the axisymmetric mode. 

The same methodology is applied to the local displacements on the n symmetric. The n symmetric local 

displacement is defined by : θnnu cos)(=u , θnnww cos)(= , θnnvv sin)(= , θββ nn cos)(= , 

θ  being the circumferential angle.  By introducing two 6-by-8 matrices [ ])(nBS
c  and [ ])(nBs

S  associated with 

a cosine factor and a sine factor, respectively, we can express the linear strains in the element in terms of the n 

symmetric displacement :  

{ } [ ] { } [ ] { } θθε nnqnBnnqnBq SS
s

SS
c

L sin)()(cos)()()( +=      (26) 

All the matrices [  introduced in the above expressions can be found in [2].   ]B

By adding the contributions of all the harmonics of the displacement and grouping the cosine and sine terms, the 

complete expression of the linear strains in the (i,j) element is expressed as : 

{ } { } { }
{ } [ ]{ } [ ]{ }( ) [ ]{ }( ) θθ
χ
ε

ε nnqnBnnqnBnqBqq SS
s

N

n

SS
cL

Lm
L sin)()(cos)()()0()()(

1
0 ++==








=Β= ∑

=

 (27) 

 

3.4 Fourier decomposition of non linear strains for a geometrically perfect element  

As previously carried out for the linear strains, the purpose is to link the non linear strains   to the modal 

displacement vectors of the two-nodes element.  

)(qQε

Let us rewrite the non linear strain vector, given in (12), in the following product form :  

{ } [ ]{ )()(
2
1

2
),( qqHqq

Qm
s

Qm

Qm
ss

Q Θ=
















=

θ

θθ

ε
ε
ε

ε }        (28) 

where the 6 components vector and 3-by-6 components matrix are given by : 

{ } { }
{ } [ ]

{ } [
[ ] { }
{ } { 










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
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Θ

Θ
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


Θ
Θ
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






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


















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




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∂
∂







 −
∂
∂







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∂
∂

∂
∂
∂
∂
∂
∂
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1

2
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q

q
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q
q

uwv
r
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r

vw
r

s
v
s
u
s
w

q
tt

t

t

ϕϕ
θ

ϕ
θ

ϕ
θ

]

}

   (29) 
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In order to derive the Fourier series of the non linear strains, we consider successively each modal 

displacements, following an analogous methodology as previously described.  

Let us consider the axisymmetric local displacement. Using the relations (20), (3) and (21) (shape functions, 

transfer matrix and relation on the longitudinal derivative, respectively), the vector { })(qΘ  can be written as a 

product of a new 6-by-8 matrix [   and the axisymmetric displacement, as follows : ]0G

{ } { } { }[ ] [ ] { })0()()()( 021 ==ΘΘ=Θ nqGqqq tt       (30) 

From the above relation, the expression of the matrix [ ])(qΗ  on the axisymmetric mode is easily derived and is 

written as :   

[ ] [ 0)( Aq =Η ]           (31) 

If we consider the n symmetric mode, matrices [ ])(nG S
c , [ ])(nG S

s  relate the vector {  to the modal 

displacements :  

})(qΘ

{ } [ ]{ } [ ]{ } θθ nnqnGnnqnGq SS
s

SS
c sin)()(cos)()()( +=Θ      (32) 

From the above expressions,   matrices for the n symmetric displacement is given by : [ )(qΗ ]

[ ] [ ] [ ]( )θθ nnAnnAq S
s

S
c sin)(cos)()( +=Η        (33) 

Complete expressions of the matrices [   and ]G [ ]A  can be found in the [2].  

Finally, by taking into account all the harmonics of the local displacement in the (i,j) element, we derive the 

complete expression of the non linear strains :  

{ } [ ] [ ] [ ]( ) [ ]{ } [ ] [ ]( ) { 







++








++= ∑∑

==

N

p

SS
s

S
c

N

n

S
s

S
c

Q pqppGppGqGnnAnnAAqq
1

00
1

0 )(sin)(cos)(sin)(cos)(
2
1),( θθθθε }  (34) 

Products of two sine or cosine functions appear in the above expression. As a result, the Fourier series of non 

linear strains is truncated at an order corresponding to twice the order N  of displacements.  

 

3.5 Fourier decomposition of linear and non linear strains for a geometrically imperfect shell 

The formulation of strains associated with a geometrically perfect shell enables the strains in the case of a 

geometrically imperfect shell to be expressed by substituting into the non linear part of the strain the 

imperfection field  for the displacement  . D q

 As with the displacement field , let us expand the imperfection field  into a Fourier series: q D
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[∑
=

+=
N

n

S nDDD
1

0 )( ]          (35) 

Note that, unlike the original formulation of the quasi axisymmetric COMU element, the imperfection field 

incorporates here the axisymmetric harmonic. As a consequence, when non linear analysis is performed, the 

geometry of the perfect structure, on which the formulation is based, is not updated any more at each time step 

according to the incremental displacement associated with the mode axisymmetric. In this new formulation, all 

the geometry changes are taken into account in the imperfection field. Thus, the integration strategy of dynamic 

equations proposed in this paper uses a total Lagrangian formulation instead of an original updated Lagrangian 

formulation.   

After changing  with  in the Equation (28), the linear and non linear strains (given in (16)) become :  q D

{ } { }

{ } [ ]{ } [ ]{ } [ ]{ })()(
2
1)()(

2
1)()(

2
1),(

)()(

DqqDqqqD

qq

NL

L

ΘΗ+ΘΗ+ΘΗ=

Β=

ε

ε
     (36) 

where  corresponds to the Fourier series of the linear part of the strains, whose complete expression can 

be decomposed in Fourier series in terms of 

{ )(qΒ }

[ ]B  matrices, as expressed in (27).  

From (28), it is easily shown that we have : [ ]{ } [ ]{ })()()()( DqqD ΘΗ=ΘΗ    (37) 

So, we obtain the reduced expression of the non linear strains : 

 { } { )()
2
1(),( qqDqDNL Θ



 +Η=ε }

}

         (38) 

{ )(qΘ  is expressed in terms of products of matrices [ ]G   by the displacement .  q





 +Η )

2
1( qD  is expressed in terms of matrices [ ]A , which can be obtained from (29) holding for a perfect 

shell, by replacing  the field displacement  with the field q qD
2
1

+  , that is, the sum of the imperfection field 

with the half of the displacement field. 

 

3.6 Total Lagangian formulation 

The computation follows the classical explicit scheme in a total Lagrangian formulation. The imperfection field 

 is equal to the displacement from the initial configuration at the impact time to the actual configuration at the D
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beginning of the time step under consideration. At a time step of the explicit scheme, the incremental 

displacement is .  q∆

]B

{ }

(

)( q


Η

∆

The matrices [ , and  are expressed here on the perfect initial configuration and are computed only at the 

beginning of the non linear analysis.  The operators 

[G]

[ ]A  depend on the field qD ∆+
2
1

, that is the 

displacement at the beginning of the time step added to the half of the incremental displacement. So, operators 

 must be computed at each time step of the explicit scheme.  [ ]A

At a given time step, the incremental displacement q∆  is deduced from the results on the previous time step 

defined by q , velocity  and acceleration . The incremental linear and non linear strains are derived from the 

incremental displacement as follows : 

q� q��

{ }
{ } { })()

2
1),(

)(

qqDqD

q

NL

L

∆Θ
∆+=∆∆

Β=∆∆

ε

ε
        (39) 

The vectors and matrices involved in the above formula have been developed on a modal Fourier basis in 

Equations (27) and (38), by introducing the matrices [ ]B , [ ]A  and [ ]G . 

As discussed previously, it is important to note that the axisymmetric mode is incorporated into the imperfection 

field . This point is different from the original version of the quasi axisymmetric element, in which only non 

axisymmetric displacements are considered as imperfections. The original version based on an updated 

Lagrangian method is replaced by a total Lagrangian method.  

D

Moreover, it is worth noting that the strain term [ ] ( ){ qq ∆Θ∆Η )(
2
1 } in the full expression of strains (39) is 

taken into account in this new formulation at contrast to the original version of COMU element, in which the 

incremental displacement q∆  was assumed to be small with respect to the imperfection field .  D

 

3.7 Linear elastic stress-strain law 

In large displacement analysis, we assume in this study that the Hooke’s law is the same if expressed on the 

imperfect configuration or on the perfect one.  

Under a plane stress assumption, the stresses are easily obtained from the strains. At a point located in the 

thickness of the shell from a distance ξ  to the neutral fibre, the linear stress vector, composed of membrane and 

bending components, is :  
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{ } [ ] [ ]
[ ] { )(

0
0

)( q
H

H
q LLb

s
LbLb

ss
Lm
s

LmLm
ss

tL ε
ξ

σσσσσσσ θθθθθθ 







== }

]

   (40) 

where the [  is the law matrix for an homogeneous, isotropic material under the plane stress assumption,  

defined by :  

H

[ ]


















−−
=

2
100

01
01

1 2 ν
ν

ν

ν
EH          (41) 

E being the Young’s Modulus and ν  the Poisson’s ratio.  

The non linear stress contains only membrane components and is written as :  

{ } [ ] [ ]{ }),(2),( qDHqD NLQm
s

QmQm
ss

tNL εσσσσ θθθ ==       (42) 

 

 

4. ANALYTICAL MODEL AND NUMERICAL SIMULATION 

 

The approach adopted in this work lied in coupling analytical expressions representing the target resistance with 

a finite element method using COMU elements in a classical explicit scheme. First, we summarize the target 

resistance model based on Forrestal’s semi-empirical closed-form expression for the final depth of penetration. 

Then, the target resistance model is incorporated into an explicit scheme involving COMU elements. The 

coupling technique between analytical forcing functions representing the target and the two-dimensional COMU 

modelling for the projectile is presented. Finally, the constitutive model used for the projectile is briefly 

described.    

 

4.1 Target resistance model 

The target resistance functions are implemented into the CalPen3D code (Sibeaud et al. [16], Buzaud et al. [17]) 

designed to provide an accurate determination of the curvilinear trajectory of a weapon while travelling through 

a three-dimensional target composed of concrete, rock, soil and air blocks. It has been extensively validated 

against a large experimental database in terms of depth of penetration, trajectory and time-history deceleration. 

CalPen3D has been developed in Java language, hence, it can be run on any operating system without 

compilation, provided the installation of the Java Virtual Machine. 
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The algorithm of CalPen3D is essentially based on the computation and summation of forces generated at the 

centre of each elementary four nodes flat surfaces on the outer surface of the projectile. Normal stresses 

generated at the projectile-target interface are obtained by using the spherical cavity-expansion solution (Refs [6-

9]).  

At each time step, the position of the centre of each element is checked to determine if a target element has been 

penetrated. In this case, local forces are applied at this position to resist the penetration of the projectile. Those 

forces are approximated assuming the expansion of a spherical cavity solution with the corresponding local 

normal velocity V . This results in a polynomial relation between the normal stress n nσ  and the normal velocity 

 at the centre of the element:  nV

2
0 nn VR ρσ +=          (43) 

where 0ρ  is the target density  and R  is the target strength resistance.  

For limestone targets, Frew et al. [3] deduced from impact experiments involving ogive-nosed rod projectiles the 

following relation between the target resistance and projectile diameter:  

 





+=

a
akKR

2
2 0          (44) 

in which K  and  are constants obtained from data fits, is the reference projectile diameter, and  is the 

projectile diameter under consideration. Three sets of experiments had been carried out with 7.1, 12.7 and 25.4 

mm projectile diameters. The constant values found by the authors are: 

k 02a a2

MPaK 607= ,   and 

. The density of limestone target is equal to 2130 kg/m

MPak 86=

mma2 0 = 4.25 3. 

In this work, the three sets of penetration experiments published by Frew et al. are reproduced using a combined 

analytical and finite element method with COMU elements. All the VAR 4340 Rc 45 steel projectiles have a 

total length-to-diameter ratio of 10 and 3.0 caliber-radius-head (CRH) node shapes. The shank diameters and 

masses  for each of the three sets of experiments are 25.4 mm, 0.931 kg (reference projectile); 12.7 mm, 0.117 

kg; and 7.1 mm, 0.020 kg. So the target resistance parameters given by the relation (44) are 693 MPa, 779 MPa 

and 914 MPa with 25.4 mm, 12.7 mm and 7.1 mm projectile diameters, respectively.  With this method 

accounting for the target resistance, all the constitutive behaviour of the target along with any frictional 

resistance is lumped into the previous expression (43).   

Post-test observations [3] have exhibited a conical cratering region that is approximately two diameters in depth. 

This cratering region is followed by a tunneling region that is approximately one projectile diameter. Therefore, 
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the first region needs a special treatment to take into account the less resistance due to the crater formation. We 

use the same methodology as proposed by Warren [4]. The two diameters in depth cratering region is subdivided 

into a suite of uniformly spaced layers with increasing strength. The normal stress acting on the projectile outer 

surface  is given by :  

nii σψσ =           (45) 

with nσ  is the unreduced normal stress obtained from (43), and ii 1.0=ψ  , i  being the layer index.  

In this region, normal stresses are only allowed to act on the nose of the projectile and not the shank. In the 

tunneling region where the target material is confined and cannot be ejected out, unreduced normal stresses are 

applied to the whole outer surface of the projectile.  

 

4.2 Non linear dynamic analyses  

The analytical and numerical combined method as employed by Warren [4] is adopted in this work in order to 

simulate ogive-nosed steel rod projectiles impacting limestone targets. An explicit dynamic scheme with COMU 

elements has been implemented in the CalPend3D code in order to couple finite element method for the 

projectile with the analytical forcing functions representing the target.    

The equation of equilibrium governing the dynamic response of the shell structure modelled with COMU 

elements is :  

intFFUM ext −=��          (46) 

where M  is the mass matrix decomposed in Fourier series, U  contains the Fourier coefficients of the nodal 

accelerations,  

��

extF and  contain the Fourier coefficients of the external and internal forces, which will be explained in the 

following.  

intF

Non linear computations are here carried out using an explicit dynamic scheme. This method allows to use a 

diagonal mass matrix M  (Belytschko et al. [18]) , which components are associated with the Fourier harmonics 

taken into account in the computations. 

All the vectors involved in the momentum conservation are decomposed into Fourier series. Thus, for a given i 

node, Fourier coefficients of the acceleration are organised as follows : axisymmetric mode (p=0), p symmetric 

mode followed by p antisymmetric mode, with Np …1= , N  being the chosen truncature order for the 

displacement expansion in Fourier series. So, each node of the modelled axisymmetric structure has N×+ 84  
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degrees of freedom. Note that a complete Fourier base truncated at the order N  is used in this formulation, that 

is, all the harmonics of  an order less than  N  are taken into account into the Fourier series.  

P

In this work, the complete description of the projectile is provided by the Fourier coefficients displacement and 

velocity, contained in the global vectors U  and U  involved in the equilibrium equation. For each COMU node, �

P  points regularly distributed along the circumference associated with the COMU node are taken into account. 

The displacement and velocity at each point along the circumference are obtained by recomposing Fourier series. 

So the position and velocity of each point are computed at each time step with respect to the initial referential, 

associated with the initial configuration of the structure at the impact time. The coordinates and velocities of 

these points in the target referential are then easily obtained by using a transfer matrix from the initial referential 

(at impact) to the target referential. After determining the Fourier coefficients of forces  and , the 

Fourier coefficients of the acceleration contained in the global vector U  are easily obtained by resolving the 

equation of motion with the diagonal mass matrix 

extF intF

��

M .  

 

4.3 COMU element coupling with then target resistance model 

The two-dimensional finite element mesh with quasi-axisymmetric COMU elements to model the ogive-nosed 

projectiles in all of the simulations is illustrated in Fig. 1. The projectile is modelled with 10 elements for the 

nose and 20 elements in the shank part. The mesh is defined from a two-dimensional profile of 30 COMU nodes, 

located at the neutral fibre of the rod projectile.  The forcing function due to the target resistance through the 

penetration process acts on the outer surface of the projectile. As discussed previously, displacements and 

velocities at a set of points regularly distributed along the circumference are known by recomposing Fourier 

series. As theses points are located at the neutral fibre, a technique is set up to reconstruct at each time step of the 

explicit scheme the actual configuration of the projectile outer surface.  This is explained in the following.  

For each circumference, we can deduce the point at the axis from the set of  points along the circumference. 

For a given circumference corresponding to a COMU node, we denote this point located at the axis Q . From 

each point Q  located along the circumference at the neutral fibre, we can obtain an associated point '  located 

on the outer surface of the projectile from: 

A

Q

2
' e

u
uuu G
GGG

+=            (47) 
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where  is the vector from the point at the axis Q  to Q at the neutral fibre and  'uG A uG  is the vector from  to 

'  located at the outer surface, and e is equal to the thickness associated with the considered circumference. In 

the general case, this corresponds to the shell thickness. Here, the thickness corresponds to the shank radius of 

the projectile rod.   

AQ

Q

With this method, the actual configuration of the outer surface of the projectile can be constructed at each time 

step. Fig. 2 illustrates the reconstruction technique of the outer surface from a deformed configuration at a given 

time during the penetration process: this configuration selected for illustration has been obtained in the initial 

impact referential at 260 µs for a 12.7 mm diameter projectile with a striking velocity of 457 m/s. This 

simulation will be presented in the section devoted to the numerical results. As it can be seen, the outer surface is 

finally composed of quadrilateral elementary flat surfaces.   

On a given elementary quadrilateral side defined by 4 points composing the outer flat surface, the force acting on 

this side is given by :  

( )[ ]danVRdf I
2

0 . G
G

ρψ +=          (48) 

 where IV
G

 is equal to the mean velocity of the 4 points at the neutral fibre deduced by recomposing Fourier 

series of velocity,  is the outward unit vector normal to the diagonals of the outer quadrilateral side, nG ψ  

accounts for the cratering region, and da  is the surface of the quadrilateral side. This force is then distributed to 

the 4 points at the medium fiber. The forces are then computed for the whole outer surface and are expanded 

along each circumference in Fourier series. Finally, we obtain the applied load vector  involved in the 

equation of motion (46) whose components are Fourier coefficients of the external force decomposed on the 

projectile circumferences.   

extF

 

4.4 Constitutive model for VAR 4340 steel projectile 

The constitutive model adopted is a simplified Johnson-Cook type model (assuming the material elastic-plastic 

without temperature influence), with a yield criterion for plasticity defined by : 

( )n
e pBpf +−= σσσ ),(          (49) 

where σ is the Von Mises stress, eσ  is the initial value of the yield surface, p is the effective plastic strain, B  

and  are the coefficients of the plastic law.  n
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 The model parameters are chosen so as to fit in a best way the constitutive model used by Warren [4]. As the 

model adopted in this work is a simple elastic-plastic model, we chose to fit the parameters against the elastic-

viscoplastic model used by Warren at a nominal strain rate of 0.001.  Fig. 3 compares the constitutive model of 

Warren with the elastic plastic model. Model parameters obtained from curve fits are: GPae 04.1=σ , 

, and GPaB 99.0= 08.0=n . The density, Young’s modulus, and Poisson’s ratio of the VAR 4340 Rc=45 

steel are taken to be , 3/ mkgρ0 7830= GPaE 206=  and 
3
1

=ν , respectively. 

At a time step of the dynamic explicit scheme, the plasticity is obtained for the set of points along each 

circumference of the projectile. By using a very classical initial stress method, the increment of plastic stress is 

numerically obtained. The plastic stresses around the circumference are then expanded in Fourier series with an 

order equal to . It is important to underline that the order of the truncated stress Fourier series  must be 

sufficiently high so as to correctly reproduce the new distribution of plastic stresses. Otherwise, important bias 

could be engendered in the modal description of the physical plastic stresses.   

σN σN

These new Fourier coefficients of stresses are then used to calculate the internal force . Due to the modal 

formulation of the element, the integration strategy employed here is particularly effective. The nodal forces are 

computed by integrating analytically the stresses on the circumference. Integration along the meridional 

direction is numerical and uses one Gauss point at the middle of the COMU element. Integration procedure can 

be found in Refs. [1-2]. As discussed previously, the external force is computed at each time step as well. A 

stabilisation force is added to avoid spurious vibrations. Indeed, Hourglass control is required because COMU 

element uses one integration point and under-integrates the element resulting in a rank deficiency which 

manifests itself into spurious zero energy modes that must be constrained. The stabilisation procedure used in 

this work is based on the transverse shear energy, which acts as a penalty that enforces the Kirchoff-Love 

constraint, given in (10). Transverse shears are assumed to be small, and the material response to such 

deformation is assumed to be linear elastic. Details about this classic method can be found in Hughes et al. [19] 

and Zienkiewicz et al. [20] works. Finally, the Fourier coefficients of forces are incorporated into the equation of 

motion (46). 

intF

extF

 

 

5. RESULTS 
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In the following, results from non linear dynamic analyses with two-dimensional COMU elements are compared 

with experimental data obtained by Frew et al. [3] and numerical results published by Warren [4] using the same 

target model and three-dimensional constant strain hexahedral continuum elements. The purpose is to validate 

the low-cost numerical approach using the two-dimensional modal element COMU proposed in this paper.  

The three dimensional outer surface reconstructed from the two-dimensional COMU profile is illustrated in Fig. 

4. The same mesh is used in all of the simulations for the 25.4-mm-Diameter, 12.7-mm-Diameter and 7.1-mm-

Diameter projectiles.  

Table 1 summarizes penetration experiments and numerical results. There was no angle of obliquity with these 

experiments, so pitch and yaw angles are incorporated into a single angle of inclination.  All of the COMU 

simulations are carried out with a modal basis containing 5 Fourier harmonics to represent displacements, 

velocities and accelerations. Thus the modal basis contains the axisymmetric mode, mode 1 symmetric and 

antisymmetric, and mode 2 symmetric and antisymmetric. That corresponds to 2=N  in (18). Along each 

circumference, 20 points regularly spaced are taken into account for the plasticity control.  As explained in 

section 4.4, stress Fourier series must be sufficiently high so as to correctly reproduce the distribution of plastic 

stresses along circumferences. So we take an order of stress Fourier series equal to 10 that is 21 harmonics. All 

the simulations were run on a Pentium 4 (2.8 Ghz) computer with Windows system and the release 1.4 of the 

Sun Java 2 Platform, Standard Edition (J2SE) environment. Computation times were between 500 and 1200 

CPUs depending on striking velocity. The computations times are approximately an order lower than that is 

reported with hexahedral elements (Warren [4], Warren et al. [10]). This is essentially due to the use of a two-

dimensional mesh, the analytical stress integration along circumferences, and the fact that only one element 

COMU is required in the thickness of the rod projectile. It is also important to note that computations times 

given here are related to the interpreted Java language which has not the performance of a compiled language 

like Fortran. Authors believe that a more rigorous benchmark would be more clearly in favour of COMU 

approach.   

 

5.1 The 12.7-mm-Diameter projectiles  

In Table 1, it can be seen that numerical results in terms of depth of penetration using COMU element are 

consistent with experimental data. The analytical functions representing the target resistance applied to the outer 

surface of the projectile through penetration are derived from depth of penetration versus striking velocity data. 
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Therefore results validate the combined approach coupling finite element method and analytical functions to 

represent the target resistance.   

Results obtained with COMU elements are also compared with numerical results using constant strain 

hexahedral continuum elements obtained by Warren. It is observed that depths of penetration are in good 

agreement with a maximum relative difference of 6 %. The same simulations as selected by Warren are chosen 

to compare the projectile deformations through penetration process. In Fig. 5, images at three specific times are 

shown for an impact with a velocity of 459 m/s and 3.55° of angle of inclination.  The projectile deformations 

predicted by COMU elements are in very good agreement with those from three dimensional simulations. It is 

shown that the tail bends noticeably to the right, then reverses to the left. When travelling through the tunneling 

region, the projectile seems to be straightened out until it comes to rest at approximately 550 µs.    

With a higher velocity of 1134 m/s and a 2.15° angle of inclination, the travel of the projectile through the target 

is illustrated in Fig. 6. Projectile configurations at three specific times are compared with those from Warren’s 

computations. The bending of the projectile trough penetration is significantly higher than the previous 

simulation. The final configuration, which is consistent with the final configuration obtained by Warren and the 

experimental configuration after extracting the projectile from the target (photograph published by Frew et al. 

[3]), shows that the projectile is straightened out in the tunneling region. As it is has been underlined by Warren, 

COMU computations confirmed that projectile experiences strong bending at intermediate states although the 

recovered projectiles didn’t show high levels of deformation. Note that depth of penetration predicted by COMU 

approach is higher than the 3D element approach (0.645 m and 0.608 m, respectively), but the projectile 

configurations at 90 µs and 150 µs with both 2D modal and 3D approaches are consistent. 

  

5.2 The 25.4-mm-Diameter projectiles  

Results in terms of depths of penetration are summarized in Table 1. The discrepancy between the simulations 

using COMU elements or 3D elements is very low with a relative difference less of 1 %. Inclination angles are 

low in all of these simulations so the trajectories through the limestone target are nearly straight. As the bending 

is also very reduced, projectile deformations are not shown for these simulations.  

 

5.2 The 7.1-mm-Diameter projectiles  

In Table 1 it is shown that discrepancy in terms of depth of penetration between the COMU simulation and 3D 

element simulation is less than 8 %, obtained with the lowest striking velocity. Otherwise the discrepancy 
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remains of an order of 3 %.  The simulation of a 7.1-mm-Diameter projectile striking the limestone target with a 

velocity of 787 m/s and 1.25° angle of inclination is illustrated in Fig. 7 at three specific times. The bending of 

the tail to the left and to the right is well reproduced by the proposed COMU approach. With a higher velocity 

equal to 1340 m/s and a 2.01° angle of inclination, the tails whips back and forth into the tunneling region as 

shown in Fig. 8. Nonetheless it is observed that the projectile final configuration is slightly more tilted with 

COMU elements than 3D elements.  

A final representation of the projectile travel through the limestone target is presented in Fig. 9 for a striking 

velocity of 1365 m/s and a 2.56° angle of inclination. Projectile trajectory through the target is obtained by 

plotting in the same figure different configurations at 125 different times (step time of 5 µs). A zoom on the 

tunneling region permits to exhibit the strong whipping of the tail. As Warren’s computations, COMU 

simulations underpredict to a less extent depths of penetration for impact velocities of 1340 m/s and 1365 m/s 

with high angles of inclination. The reason conjectured by the authors lies in the fact that current expansion 

algorithm applies a load on the shank whenever there is a component of velocity in the outward normal direction 

and does not account for moved materials in the tunneling region.  

 

 

7. CONCLUSION 

 

The purpose of this work is to set up an effective two-dimensional modal finite element approach for simulating 

the dynamic structural behaviour of the projectile during a three-dimensional interaction with an infrastructure 

target. To this end, a modified formulation of the quasi-axisymmetric element COMU, based on the expansion of 

all the physical quantities into Fourier series, is proposed. This new formulation of 2D modal element COMU 

developed according to a total Lagrangian formulation has been detailed.   

As regards penetration problems, the explicit scheme using new COMU elements has been implemented into the 

CalPen3D code. This simulation software uses an analytical approach, based on a spherical cavity-expansion 

approximation. The time integration in accordance with an explicit scheme using modified COMU elements 

allows to couple the two approaches, that is the finite element method to represent the deformation of the 

projectile and analytical method to represent the target.  

Two-dimensional modal analyses have been performed to simulate ogive-nosed rod projectiles impacting 

limestone targets. Comparisons between experimental data and numerical results obtained with hexahedral 
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continuum elements to represent the projectile and the same target modelling enable to check the accuracy of the 

two-dimensional modal approach. Moreover, thanks to the two-dimensional modelling and the efficiency of the 

stress integration decomposed in Fourier series, the two-dimensional modal approach proposed in this paper is 

able to reduce significantly the computation time in comparison to a classical three-dimensional analysis. On 

account of its cost-efficiency, the quasi axisymmetric modal approach may be well suited for parametric studies 

in order to provide useful insight into the effects of several variables such as impact angles, velocity, material 

and geometric characteristics of the projectile and target. 

Although the formulation of the COMU elements has been established for thin shell structures, we showed that 

COMU elements still provide accurate predictions for penetration problems involving steel rod projectiles. 

However, a limitation of the approach lies in the modal description of localisation process like damage or 

cracking: if a local damage appears (generated, for example, by a contact with a reinforced steel) the Fourier 

description with a few harmonics fails to reproduce the damage pattern. Use of higher order harmonics is still 

possible, but at a computational cost that makes COMU less attractive.  
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List of legends  

Figure 1. 2D modelling of the projectile with COMU elements  

 

Figure 2. Reconstruction of the outer surface of the projectile from modal displacements in the target reference: 

(a) points at neutral fibre; (b)  points at projectile axis; (c) points on the outer surface; (d) outer surface of the 

projectile 

 

Figure 3. Comparison of constitutive models for VAR 4340 Rc=45 steel at nominal strain rate of 

s/1001.0=ε�   

 

Figure 4. 3D geometry of the projectile reconstructed from the 2D COMU profile. 

 

Figure 5. Simulation of a 12.7mm-Diameter projectile penetrating a limestone target at 459 m/s and 3.55° angle 

of inclination; left side Warren’s results with 3D elements [4] and right side results with COMU elements 

 

Figure 6. Simulation of a 12.7mm-Diameter projectile penetrating a limestone target at 1134 m/s and 2.15° angle 

of inclination; left side Warren’s results with 3D elements [4] and right side results with COMU elements 

 

Figure 7. Simulation of a 7.1 mm-Diameter projectile penetrating a limestone target at 787 m/s and 1.25° angle 

of inclination; left side Warren’s results with 3D elements [4] and right side results with COMU elements 

 

Figure 8. Simulation of a 7.1 mm-Diameter projectile penetrating a limestone target at 1340 m/s and 2.01° angle 

of inclination; left side Warren’s results with 3D elements [4] and right side results with COMU elements 

 

Figure 9. Penetration trajectory of a 7.1 mm-Diameter projectile penetrating a limestone target at 1365 m/s and 

2.56° angle of inclination; zoom on the tail whipping back and forth 
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Table 1. Penetration results : depth of penetration P experimental data, numerical results with 3D element 

(Warren [4]) and with COMU elements; Relative difference between the numerical results.   

Velocity (m/s) Inclination 

(degree) 

Experimental P SCE/PRONTOD 

3D P (m) 

COMU 2D P Relative 

difference 

Diameter projectiles (12.7 mm) 

459 3.55 0.141 0.137 0.137 0 % 

608 1.41 0.232 0.230 0.229 -0.5 % 

853 0.00 0.362 0.418 0.417 -0.2 % 

956 0.30 0.523 0.508 0.506 -0.4 % 

1134 2.15 0.562 0.608 0.645 +6 % 

1269 0.00 0.812 0.812 0.808 -0.5 % 

1404 0.70 0.924 0.931 0.945 +1.5 % 

1502 0.70 1.017 1.035 1.048 +1.2 % 

Diameter projectiles (25.4 mm) 

407 0.64 0.260 0.261 0.261 0 % 

566 0.60 0.390 0.454 0.452 -0.4 % 

800 0.61 0.790 0.826 0.820 -0.7 % 

917 0.30 1.020 1.045 1.036 -0.9 % 

1177 0.30 1.500 1.579 1.563 -1 % 

Diameter projectiles (7.1 mm) 

497 0.75 0.067 0.086 0.079 -8 % 

597 0.50 0.105 0.110 0.107 -2.7 % 

787 1.25 0.165 0.174 0.170 -2.3 % 

795 0.50 0.178 0.180 0.176 -2.2 % 

1037 0.90 0.271 0.280 0.274 -2.1 % 

1060 0.56 0.294 0.295 0.287 -2.7 % 

1230 0.25 0.392 0.379 0.368 -2.9 % 

1340 2.01 0.437 0.389 0.400 +2.8 % 

1365 2.56 0.430 0.369 0.383 +3.8 % 

1516 1.42 0.516 0.516 0.500 -3.1 % 
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Figure 1.  
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Figure 2.  
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Figure 4.  
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t = 144 µs      t = 140 µs 

  

 t = 256 µs      t = 260 µs  

      

 t = 560 µs      t = 550 µs 

 

Figure 5.  
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Figure 6.  
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 t = 448 µs      t = 450 µs 
 
 
Figure 7.  
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 t = 48 µs      t = 50 µs 
 

  
 
 t = 96 µs      t = 95 µs 
 

  
 
 t = 624 µs      t = 625 µs 
 
Figure 8.  
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Figure 9.  
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