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Abstract

We introduce techniques for characterizing convex shape models of asteroids with

a small number of parameters, and apply these techniques to a set of 87 models from

convex inversion. We present three different approaches for determining the overall

dimensions of an asteroid. With the first technique, we measured the dimensions of

the shapes in the direction of the rotation axis and in the equatorial plane and with

the two other techniques, we derived the best-fit ellipsoid. We also computed the

inertia matrix of the model shape to test how well it represents the target asteroid,

i.e., to find indications of possible non-convex features or albedo variegation, which

the convex shape model cannot reproduce. We used shape models for 87 asteroids

to perform statistical analyses and to study dependencies between shape and rotation

period, size, and taxonomic type. We detected correlations, but more data are required,

especially on small and large objects, as well as slow and fast rotators, to reach a

more thorough understanding about the dependencies. Results show, e.g., that convex

models of asteroids are not that far from ellipsoids in root-mean-square sense, even

though clearly irregular features are present. We also present new spin and shape

solutions for asteroids (31) Euphrosyne, (54) Alexandra, (79) Eurynome, (93) Minerva,

(130) Elektra, (376) Geometria, (471) Papagena, and (776) Berbericia. We used a so-

called semi-statistical approach to obtain a set of possible spin state solutions. The

number of solutions depends on the abundancy of the data, which for Eurynome,

Elektra, and Geometria was extensive enough for determining an unambiguous spin and

shape solution. Data of Euphrosyne, on the other hand, provided a wide distribution

of possible spin solutions, whereas the rest of the targets have two or three possible

solutions.

Key words: asteroids, shapes, spins
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1 Introduction

Traditionally, asteroid shapes have been modelled using triaxial ellipsoids, which are com-

pletely defined by only two parameters, namely, the ratios of the lengths of the principal axes.

Lately, complex shape models, such as arbitrary polyhedra and even non-convex shapes, have

become common, raising a question about how to describe the characteristic features of the

models. One of the lightcurve inversion methods developed in the 20th century is the convex

inversion method (Kaasalainen and Torppa 2001 and Kaasalainen et al. 2001, hereafter KT01

and K01, respectively), which offers an arbitrary polyhedron shape model. Also, radar and

even spacecraft-based non-convex models have become more and more common (e.g., Magri

et al. 2007 and Demura et al. 2006, respectively). Although these models are naturally

much more informative than ellipsoids, their weakness is that there is no way to express the

exact shape solution in a simple numerical form due to the large number of parameters. We

can, however, characterize the shape using various quantities, and grasp the most important

shape features with a small number of parameters, which is required, e.g., when carrying out

statistical analyses of the shape characteristics.

Previous studies considering spin states and shapes of asteroids in statistical sense have

used triaxial ellipsoid shape models. Ellipsoid dimensions of 22 main-belt asteroids were

determined by Magnusson (1990) who conclude, based on the triaxial models, that it is not

likely that centrifugal forces have affected the shapes. On the other hand, Drummond et al.

(1991) studied the axis distributions of 26 asteroids concluding that shapes of some of the

objects may be jacobi ellipsoids, i.e., the stretching of the ellipsoids is due to the rotation

of the body. Hartmann et al. (1988) compared the axis ratios of a sample of 26 Trojan and

Hilda asteroids to those of main-belt asteroids. They suggest, that Trojans and Hildas are

more elongated that main-belt asteroids of comparable size.

Shape characterization is an important part in many branches of science, e.g., in small-
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particle analysis for which commercial image analyzers have already been developed. The

image of the particle is often projected to a plane and, hence, the parameters describe the

two-dimensional projection of the shape. These parameters usually include the perimeter,

area, and maximum and minimum dimensions which are compared to those of a circle with

the same area or circumference, or to the convex hull of the particle to define its roundedness,

convexity, or dimensions. One example of small particle shape determination is the shape

analysis of lunar dust particles as described in Liu et al. (2007), who used 2-D images

of the sample particles to define their areas and perimeters, and the circular-equivalent

diameter from the measured areas. They also fit ellipses to the measured areas in the

least-squares sense. Fractal analysis for particle shape characterization has been applied

by Maria and Carey (2002) when analyzing the shapes of volcanic particles. Muinonen

(2006) presents a method to derive statistical particle shape paramters from a set of 2-D

particle silhouettes using a Gaussian shape model consisting of two parameters. A method to

characterize macroscopic objects is presented, e.g., by Torppa et al. (2006), who determined

the characteristic shape parameters of potato tubers. They used 3-D image data to find the

ellipsoid that best fits the tuber shape. They also used the residual radii of the ellipsoid

fits in a statistical sense to determine the variance of the Gaussian distribution describing

the local irregular surface features. Gaussian statistics have been applied to asteroid shape

characterization also by Muinonen and Lagerros (1998), who determined the parameters for

the Gaussian random sphere that best mimics asteroids and other small bodies.

In this study, we introduce and compare techniques to express the overall dimensions and

irregularity of an arbitrary convex polyhedron and apply the techniques to a set of 87 shape

models for studying the statistics of basic shape features of asteroids. We also present new

spin and shape results for eight asteroids of which new lightcurve observations have been

carried out.

In Secs. 2 and 3, we describe the methods used in lightcurve inversion and characteri-
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zation of arbitrary shapes. Section 4 is dedicated to results and Sec. 5 to conclusions and

future prospects.

2 Convex inversion for spins and shapes

Spin and shape analysis for selected targets with new photometric observations was carried

out using the convex inversion method. Theory of the method is described in detail in

KT01 and K01, and is not repeated here. In the following, however, we consider a few

developments.

One fact that has not been discussed in the earlier papers is the number of parameters

(i.e., facets) in the Minkowski minimization, which is used for determining the polyhedron

vertices from the set of facet normals. It has been mentioned in previous papers (e.g., KT01)

that, when searching for the best-fit facet areas, the number of facets in the polyhedron shape

model has to be of order 800 to guarantee that the shape solution does not depend on the

choice of the facet normal directions. In the next step of finding the vertices of the shape

from the facet information, however, the number of facets can be significantly reduced.

Without affecting the final shape, this recombination significantly speeds up the Minkowski

minimization which previously was the most time consuming part of the procedure. We found

it most convenient to combine the facets around each vertex determined from the standard

triangulation. Normal directions of the combined facets are calculated by taking a weighted

mean of the original normal directions. Due to the way of discretization and combination,

some facets remain uncombined, but this does not affect the final shape solution.

Another change to the inversion procedure was that, from the beginning, we aimed at a

distribution of spin solutions, not at a single unambiguous solution, since the data sets were

not as extensive as in the previous analyses (e.g., Torppa et al., 2003; hereafter T03). We

call this technique semi-statistical, since we obtain the distribution of possible solutions, but
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not the probability density. As before, we carried out the initial spin state determination by

scanning through a set of spin axis directions and rotation periods, while fitting a low-order

functional series shape model. The time step of the period scanning was ΔP/4, where

ΔP =
P 2

2T
, (1)

P being the period, and T the total time span of the observations. This equation is based

on the fact that, if P is changed by ΔP , the lightcurve is phase-shifted by π during T .

Thus, if we have model and data lightcurves with two equal maxima and minima (typical

for an ellipsoid) of which the first and the last coincide for period P , then they coincide also

for period P + ΔP . Although the data lightcurves usually differ significantly from those

produced by an ellipsoid, this equation gives a rough estimate about how densely the χ2

minima are located in the χ2, P -space, and how densely P should be sampled. Spin axis

was sampled in eight uniformly distributed directions. From the initial spin state search, we

accepted all the solutions with rms < min(rms) × 1.5, which is an empirical criterion for

finding the final solution or solutions from the set of initial ones. Starting from the set of

initial solutions, we refined each by adding more shape parameters (a higher-order functional

series) and setting the spin axis direction and rotation period as free parameters. For the

improved solutions, we finally applied the standard Gaussian distribution empirical rule for

3-sigma deviation as the criterion of acceptance. Due to the effects of the uncertainties in

the shape and scattering models, an error of 5◦ should be added to each spin longitude and

15◦ to each latitude. This uncertainty is an empirical value, based on this study and earlier

applications (e.g., T03).

The last aspect to consider was the sampling density of the data. Since some of the

lightcurves are over-densely sampled, while others are sparse, the weight of each data point

could be set inversely proportional to the lightcurve sampling density in order to prevent
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dense lightcurves from dominating in the χ2 computation. The function to be minimized

would then be

χ2 =
∑

i

(Ld,i − Lm,i)
2

σ2
i

, (2)

where Ld,i and Lm,i are the corresponding data and model brightnesses. σ2
i is proportional

to the number of data points in and inversely proportional to the overall duration of the ith

lightcurve.

3 Shape characterization

The definition of dimensions of convex inversion models is not straightforward, since they

are irregular, and not necessarily in the principal-axis rotation state. In the previous papers,

where convex inversion has beed applied to asteroid lightcurve data (e.g., Kaasalainen et

al., 2002a and T03), descriptive axis ratios for the model shapes are given as the mean of

two measures: the axis ratios computed from the largest dimensions in the rotation axis

direction and in the equatorial plane (hereafter the OD technique, section 3.1 of this paper),

and the axis ratios of the best-fit ellipsoid as defined in section 3.2 of this paper (hereafter

the E1 technique). There are, however, also many other ways to define the dimensions. In

this paper, we compare four approaches to characterize the shape of an arbitrary convex

polyhedron. Before presenting the techniques, we discuss the rotational state of the shape

models, since the models are rarely in the exact principal-axis rotation state, although the

target asteroids with only one lightcurve period should be. When finding the characteristic

shape features, it is not clear whether the body should be rotated to the principal-axis state.

Here we include both approaches: methods that fix one axis to be aligned with the rotation

axis and ones that allow the coordinate system to be rotated arbitrarily. In the first two

methods, i.e., the one finding the overall dimensions of the shape (the OD technique) and
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the one defining the best-fit ellipsoid in the sense of facet distances (the E1 technique), the

model shape is not rotated to the principal-axis state. The third technique, that gives the

best-fit ellipsoid in the sense of radii lengths (hereafter the E2 technique, section 3.3) the

shortest axis is not forced to be aligned with the rotation axis of the model. Thus, only the

shape is fitted, disregarding the rotational state. The fourth technique, computation of the

principal moments of inertia (hereafter the PMI technique, section 3.4), also considers only

the shape without fixing the original rotation state.

3.1 Overall dimensions (OD)

The overall dimensions of the shape were computed in three stages (Fig. 1). First, the

largest extent in z-axis (spin axis) direction was calculated from

2c = max(zi) − min(zi), (3)

where zi are the z coordinates of all the polyhedron vertices. Second, the largest extent of

projection to xy-plane was found from

2a = max(xi cos φax + yi sin φax) − min(xi cos φax + yi sin φax), (4)

where xi and yi are the values of the x and y coordinates of all the polyhedron vertices.

φax is the azimuthal angle between x-axis and the trial direction in which the extent of the

projection was calculated. φax was sampled with one degree step over the range [0◦, 180◦].

Last, the largest extent, 2b, of projection to xy-plane, perpendicular to direction of a, was

computed analogously with 2a. Figure 1
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3.2 Ellipsoid I (E1)

With the first of the ellipsoid-based techniques, we compare the support functions of the

model and the ellipsoid. The support function is defined as

ρ(θ, φ) = n(θ, φ) · r(θ, φ), (5)

where θ and φ are the spherical coordinates, n is the surface normal, and r is the radius

vector. Thus, ρ(θ, φ) is the distance of the tangent plane at point (θ, φ) from the origin. As

in Kaasalainen et al. (1992), we calculated the difference

df =
∑

i

|ρm,i − ρe,i|
ρe,i

gi, (6)

where gi is the area of the corresponding facet element on a unit sphere, ρm,i is the distance

of the model shape’s facet i from the origin, and ρe,i is the distance of corresponding ellipsoid

facet (with the same surface normal) from the origin.

We chose the orientation (origin and z-axis) of the ellipsoid to coincide with that of the

model. The ellipsoid axis ratios were searched by setting the shortest (polar) axis length

c=1, and sampling the azimuthal axis lengths a, b within the range [1,3], with a step δ = 0.1.

Axes were then scaled so that the ellipsoid and the model were of the same volume. The

azimuthal rotation φax of the longest ellipsoid a-axis with respect to the x-axis was sampled

over the range [0◦, 90◦] with a step of δ = 10◦.

3.3 Ellipsoid II (E2)

Another way of finding the characteristic ellipsoid dimensions is to compare the radii of the

model shape and the ellipsoid. We did not force ellipsoid z-axis to coincide with model’s

rotation axis or ellipsoid origin with that of the model, and minimized function χ2
e of nine
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free parameters: semi-axis of the ellipsoid (a, b, c), transformation of the origin of the model

shape (rc) to coincide with the origin of the ellipsoid, and rotation of the model shape (α, β,

and γ) for its axes to coincide with the principal axes of the ellipsoid:

χ2
e =

∑
i

(rm,i − re,i)
2

r̄2
m,i

, (7)

where rm,i is the model shape’s ith radius in a system whose origin translated by rc and

which is rotated by Euler angles α, β, and γ, and r̄m,i is the mean of the model radii. re,i

are the ellipsoid radii calculated for the same vertex directions as the model radii rm,i. The

minimization was carried out using Nelder and Mead’s simplex method described in Press

et al. (1994).

3.4 Principal moments of inertia (PMI)

The inertia tensor of an arbitrary shape can be calculated by summing up the moments and

products of inertia for different parts of the shape. In this case, we found it most practical

to divide each shape into polygonal cones and furthermore into tetrahedra so that the total

inertia matrix is obtained from

Ijk =
∑

i

tjk,i, (8)

where tjk,i is the moment (j = k) or product (j �= k) of inertia of a single tetrahedron.

j, k = [1, 3] correspond to the x, y, and z coordinates and i stands for the ith tetrahedron.

For calculating ti, we followed the formulas given by Tonon (2004). The principal moments

and principal axes were obtained by diagonalizing the inertia tensor I using Jacobi transfor-

mations (Press et al., 1994).
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4 Results

4.1 New spin and shape solutions

New spin and shape solutions are presented for eight asteroids, for which new lightcurves

have been observed during the past few years. The new data are summarized in Table 1

and lightcurves are shown in Fig. 2. The data are stored in SAPC (Standard Asteroid

Photometric Catalog, http://www.astro.helsinki.fi/SAPC) which is the updated version of

the Uppsala Asteroid Photometric Catalogue (UAPC, Lagerkvist et al., 2001). We also

used previously published data that is stored in UAPC and SAPC. We considered all the

lightcurves as relative photometry, since this is adequate for spin and shape determination,

and the number of absolute observations was too small for studying phase-curve behaviour. Table 1

Figure 2
For (79) Eurynome, (130) Elektra, and (376) Geometria, we obtained an unambigu-

ous spin and shape solution, for (54) Alexandra, (93) Minerva, (471) Papagena, and (776)

Berbericia a few possible spin solutions and, for (31) Euphrosyne, a constrained distribution

of spin solutions. As mentioned above, errors of 5◦(λ) and 15◦(β) apply to each spin solution

due to inaccuracies in the model shape and scattering law. The uncertainty of the period

depends on the period itself and on the total time span of the observations, as explained

in connection to Eq 1. The number of digits in the rotation periods corresponds to their

accuracy in Table 2, where all the spin solutions are summarized. Some of the targets show

double solutions, implying two solutions with the same rotation period and pole latitude,

and pole longitudes roughly 180◦ apart. Table 2

The accuracy of spin solution is usually considered to depend on the number of apparitions

but at least in this case, where the number of apparitions was five or more in every case, it did

not correlate with the period accuracy. Neither did the total time span of the observations

which was of the same order for all the targets. We, however, found a correlation between

the number of lightcurves and the accuracy of the period solution. In general, the period
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uncertainty for each spin solution is ΔP from Eq. 1. For all eight targets of this paper,

ΔP for a single spin solution was about 0.00001. However, for a majority of the targets,

there were more than one spin solution, and thus the real period uncertainty was larger

than ΔP . The plot in Fig. 3 shows how the period uncertainty depends on the number

of lightcurves. It seems that, when the number of lightcurves is around 10-13, the period

uncertainty decreases sharply, then reaching more slowly the level of ΔP , which is reached at

around 30 lightcurves. This, of course, is highly sensitive to the quality of the lightcurves, but

for a set of lightcurves covering close to one rotation, this kind of behaviour might be common

in lightcurve inversion. A similar occurrence is present in asteroid orbit computation, where

the uncertainty of the orbital parameters decreases sharply as the observational time interval

increases to a certain point (e.g., Muinonen et al., 2006).

The number of lightcurves alone, however, is not a sufficient measure in the cases where

the total time span of observations is short or the number of apparitions is low and we do

not consider the case here. However, the uncertainty does not increase to infinity for limited

data sets, but settles to a few percent of the rotation period for a single lightcurve covering

one revolution. This is based on the period uncertainties obtained for targets with only a

few lightcurves in Muinonen et al. (2007). It is left for future studies to find out if the sharp

increase in period uncertainty is typical for lightcurve inversion, or was it just due to the

relatively small number (eight) of sample objects. Figure 3

For comparison to our results, there is a summary of previous solutions in the Database

of asteroid spin vector determinations (http://vesta.astro.amu.edu.pl/Science/Asteroids/).

The database was originally created by Per Magnusson, at that time working at the Uppsala

Observatory (Sweden), and is currently maintained by Agnieszka Kryszczynska at the Poznan

Observatory. Recent results of some targets included in this paper are found in Durech et

al. (2007). Differences to the results in other publications are due to the use of different

modelling techniques. Naturally, it enhances the reliability of the results if they are in
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agreement with the ones obtained using other methods. On the other hand, if the results

are different from others, further observations are needed to find the correct solution.

For the asteroid sizes, there are varying estimates in the literature. Our data for sizes

and spectral classes have been collected from UAPC (Lagerkvist et al. 2001).

We assessed the need for weighting lightcurves according to the sampling density of

lightcurve points (Eq. 2). However, adding weights had no effect to the solutions and, to be

consistent with earlier solutions, we omitted them. This analysis showed again the stability

of the convex inversion method. However, there may be cases, where the densely observed

lightcurves dominate so strongly that they prevent finding a good fit for sparsely observed

curves of high quality. In such cases, applying weights may stabilize the problem.

(31) Euphrosyne, C, 247 km

We used ten lightcurves, one of which was new (Table 1). The other lightcurves were

published in Kryszczynska et al. (1996), Barucci et al (1985), McCheyne et al. (1985), and

Schober et al. (1980). The data spanned a total of 30 years. This is an example of a target

with data sufficient to provide only a clearly restricted number of solutions instead of an

unambiguous solution, although the amount of data is extensive (Fig. 4). The (P,rms)-plot

shows that the best fits to the data are achieved with the period range of P = 5.5300−5.5340

h, but periods up to 5.5375 h are possible. The (λ, β) plot shows that two distinct spin axis

ranges, one around λ = 200◦, β = 0◦ and another one around λ = 330◦, β = −30◦ . Plotting λ

and β against rms did not help to choose the correct pole and further observations should be

planned according to the (λ, β)-plot to eliminate spurious solutions. In the Poznan database,

there are also a wide range of solutions for this target none of which is, however, in agreement

with our solution. Figure 4

(54) Alexandra, C, 160 × 135 km

We used a data set of 20 lightcurves, two of which were not published before (Table 1).

The other data were from Belskaya et al. (1993), Tancredi and Gallardo (1991), Di Martino
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et al. (1987), Haupt and Hanslmeier (1985), and van Houten Groeneveld et al. (1979). The

data spanned a total of 42 years. We obtained three possible solutions for the spin state,

namely 1) λ = 307◦, β = 20◦, and P = 7.02263 h, 2) λ = 122◦, β = −36◦, and P = 7.02334 h,

and 3) λ = 325◦, β = −37◦, and P = 7.02334 h, the latter two constituting a double solution.

The shape solutions corresponding to the first and the double solution were different, and

are not displayed here. There is a previous spin solution in the Poznan database, namely

λ = 160/290◦, β = 50◦, and P = 7.026384 h, which is different from ours.

(79) Eurynome, S, 68 km

We used 33 lightcurves, one of which was not published before (Table 1). The other data

were from Michalowski and Velichko (1990), Di Martino and Cacciatori (1984), De Angelis

and Mottola (1995), Scaltriti and Zappalà (1976), Schober (1976), and Shevchenko et al.

(1996). The total time span of the observations was 32 years. An unambiguous spin solution

was obtained at λ = 64◦, β = 15◦, and P = 5.97857 h. The shape solution is shown in Fig.

5. Our pole solution lies within ten degrees of one of the solutions in the Poznan database. Figure 5

(93) Minerva, C, 150 km

14 lightcurves were used, five of which had not been published before (Table 1). The

rest of the data are published in Millis et al. (1985), Debehogne et al. (1982), and Denchev

(2000, in Lagerkvist et al. 2001). The total time span of the observations was 26 years.

Two solutions were accepted, namely 1) λ = 49◦, β = −40◦, and P = 5.98313 h and 2)

λ = 216◦, β = 21◦, and P = 5.98088 h. The shape solutions for both pole directions were

similar, and the model is shown in Fig. 6. The previous spin solution in the Poznan database

is λ = 196◦, β = 13◦, and P = 5.9784 h. Figure 6

(130) Elektra, G, 215 × 155km

We used 58 lightcurves of Elektra, four of which were new (Table 1), and the rest are

published in Danforth and Ratcliff (1994), Debehogne et al. (1990), Harris and Young
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(1989), Weidenschilling et al. (1987), Shevchenko et al. (1996), and Durech et al. (2007).

The total time range of the observations was 26 years. The solution that fitted the data the

best was λ = 160◦, β = −85◦, and P = 5.22466 h. The corresponding shape model is shown

in Fig. 7. The solution is the same, within error limits, as the one by Durech et al. (2007)

(λ = 65◦, β = −88◦, and P = 5.224664 h. Figure 7

(376) Geometria, S, 36 km

We used 35 lightcurves of Geometria, one of which was new. The old data were published

in Kryszczynska et al. (1996), Barucci and Di Martino (1984), Hainaut-Rouelle et al. (1995),

Zeigler (1987), and Michalowski et al. (2005). Observations ranged a total of 21 years. The

best fit solution was λ = 68◦, β = 2◦, and P = 7.71002 h. The shape model is shown in Fig.

8. The pole longitude is similar to earlier solutions, but the latitude is different. Figure 8

(471) Papagena, S, 140 km

We used 13 lightcurves, one of which was new (Table 1). The older data has been

published in Lustig (1977), Di Martino and Cacciatori (1984), Scaltriti and Zappalà (1978),

and Surdej and Surdej (1977). The total time span of the observations was 31 years. We

obtained three acceptable spin solutions: 1) λ = 29◦, β = 41◦, and P = 7.7.11364 h, 2)

λ = 222◦, β = 40◦, and P = 7.11246 h, and 3) λ = 236◦, β = 56◦, and P = 7.11512 h. The

corresponding shape solutions are different, and are not displayed here. The first of the pole

solutions is close to one of the two earlier solutions in the Poznan database.

(776) Berbericia, C, 390 km

33 lightcurves were used. Two of the curves were unpublished (see Table 1), and the rest

published in Debehogne et al. (1983), Di Martino et al. (1987), Schober (1979), Hainaut-

Rouelle et al. (1995), and Durech et al. (2007). The observations spanned a total of 28

years. Two solutions that fitted the data equally well were 1) λ = 170◦, β = +59◦, and

P = 7.66701 h and 2) λ = 347◦, β = +11◦, and P = 7.66701 h. The shape solutions were
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otherwise similar, but mirror images through horizontal reflection. The shape corresponding

to the solution λ = 170◦, β = +59◦ is shown in Fig. 9. Durech et al. (2007) obtained a single

solution λ = 347◦, β = +12◦, and P = 7.66701 h, in agreement with one of our solutions. Figure 9

4.2 Characterization of shape solutions

We used a set of 87 convex inversion shape solutions, five of which are published in this pa-

per, and the rest in K01, Kaasalainen et al. (2002a,b; 2003, 2004), Slivan et al. (2003), T03,

Michalowski et al. (2004, 2005, 2006), Marchis et al. (2006), and Durech et al. (2007). Also

the Database of Asteroid Models from Inversion Techniques (http://astro.troja.mff.cuni.cz/projects/asteroid

was used in collecting the data. In the following, we discuss the ranges of axis ratios as well

as correlations between shape, size, rotation period, and taxonomic type. It has to be kept in

mind that, especially for non-elongated objects, the vertical dimension of the model shapes

is somewhat ill-defined when using only relative photometric observations. Otherwise, the

features and dimensions of the shapes have been shown to be stable, e.g., against using var-

ious scattering laws in lightcurve inversion (K01). Taxonomic types are defined according

to the SMASS classification (Bus and Binzel 2002). Most of the asteroids included in this

study belong to the three main categories C, S, and X, and two are determined as D-type.

Properties of all the sample asteroids are collected in Table 4.

4.2.1 Axis ratios

If we define the overall dimensions and axis lengths of the characteristic ellipsoids as c < b <

a, the corresponding principal moments are Cc > Cb > Ca. To make comparison of these

quantities easier, we discuss the axis ratios that lie in the range [0,1]; in the former case this

corresponds to c/a, c/b and b/a, while in the latter case to Ca/Cc, Cb/Cc, and Ca/Cb. For

the OD and E1 techniques, the definition of the c-axis is straightforward, since it is fixed to

be aligned with the rotation axis. For the other two methods, where all the axes are allowed
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to vary, we define the c-axis as the one closest to the original rotation axis.

In many other contexts, shapes are characterized with elongation (1 − b/a) and flatness

(1− c/b) but, in asteroid research, axis ratios have been in common use. Thus, an elongated

asteroid has a low b/a-ratio, while a flat asteroid has a low c/b-ratio. Table 3

In Table 3, we show the mean, standard deviation, and maximum and minimum values

for the axis ratios obtained with the four different methods. In general, the methods give

similar mean values, except for the Cb/Cc-ratio of PMI, whose mean is lower than the other

corresponding ratios. The value of b/a is, by definition, constrained to the range [0,1] for all

the methods, but c/b is allowed to exceed unity for the OD and PMI techniques. In Figs.

10a and b, we see that the first three approaches (OD, E1, and E2) give similar results for

individual targets, whereas the results of the PMI technique are clearly different (Fig. 10c).

Thus, the axis ratios from the first three methods can be compared with one another, while

the principal moments should be considered separately. Figure

10We use the first three methods to define the actual dimensions of the asteroids. In Fig.

11a we show the distributions of dimensional ratios (c/b, b/a) from the E2 technique (the OD

and E1 techniques produce similar distributions). We see, that c/b and b/a most commonly

lie within the range [0.7,1], b/a getting slightly lower values. There are a few objects that

are significantly elongated with b/a below 0.6. These can be binary asteroids, or Eros and

Itokawa -like elongated objects. The c/a-ratio usually lies within the range [0.5,1]. The

results are in accordance with laboratory and numerical simulations (see Holsapple et al.

2002), which suggest that, for fractured shapes, b/a = [0.6, 0.7] and c/a = [0.45, 0.5]. Figure

11There is an interesting feature of S- and D-type objects achieving significantly smaller

b/a ratios than C- and X-types. From Bus and Binzel (2002), it is evident, that C- and

X-type asteroids are spectrally close to one another, while the spectra of S- and D-types

deviate from each other and from those of the C- and X-types. The S-types also have higher

albedos than the C- and X-types. The C-types are known to be of lower density than the
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other spectral types, which could explain the more spherical shapes, since the energy of a

collision, strong enough to fracture, e.g., an S-type asteroid, is absorbed into the interior

by breaking the structure of the porous material inside a C-type asteroid, thus producing

a global crater on the surface of the target (e.g., asteroid (253) Mathilde), but leaving it

otherwise unfractured. Further studies with more observations of different spectral types are

called for to shed light on this possible correlation between the spectral types and shape.

4.2.2 Shape, rotation period, and size

Having at hand methods to characterize the shapes of convex bodies, we can study the

correlations between shape and other physical properties. In the following, we show distri-

butions with dimensions obtained using only the E2 technique, since other characterization

techniques give similar results.

There is dependence between shape and rotational period as seen in Fig. 12, since all of

the most elongated objects have periods between 4.5− 10 h, while the ones with axial ratios

b/a > 0.7 are slow or fast rotators. It is also interesting, that only C- and S-type asteroids

have periods over 11 h. There is no evident explanation for these results, and more data are

required to make any further conclusions. Especially, long-period targets (P > 15 h) lack

proper lightcurve data. Also, data of short-period asteroids (P < 2 h) would be of interest

since, for these, the centrifugal forces begin to override the internal forces, and loose rubble

pile asteroids may begin to separate into parts. This should be seen in the elongation of

these objects. Figure

12The shape vs size plot (Fig. 13) also shows non-random features: as would be expected,

the small objects reach more elongated shapes than the large ones while spherical shapes

are represented by the entire size range. Observations of the largest asteroids are called

for to provide information about the limit above which the asteroids are spherical. This

limit should also depend on the taxonomic type. In our sample, the largest asteroid, (2)
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Pallas (D = 523 km), is spherical, but the second largest, (10) Hygiea (D = 429 km), is

clearly elongated with b/a = 0.75. Both are C-type asteroids. Taxonomic and shape data of

asteroids smaller than 30 km in diameter is now almost completely lacking, and thus more

observations of this population are also called for. Figure

13

4.2.3 Principal moments

The principal moments of the shape models are not suitable for the determination of the

axis ratios, since they give systematically lower values than the techniques giving the actual

dimensions (Fig 10c). They can, however, be used to estimate the goodness of the convex

shape model.

The axis of the largest inertia of the convex shape model does not usually coincide with

the rotation axis of the model. One plausible explanation for this is that the lightcurve

features caused by non-convex shape features and possible albedo markings in the target

asteroids are reproduced by the convex model shapes with homogenous albedo distribution,

distorting the shape somewhat, and causing deviation from principal-axis rotation. However,

even slight changes in shape of nearly spherical models may change the directions of the

principal axis significantly. Principal axes are also unstable for models with b/a-ratio close

to unity since the vertical dimension for such objects is ill-defined. Thus, knowing the angle

θ between the axis of largest inertia and axis of rotation of the model shape may provide

us information about the scale of non-convexities or albedo features of target shapes with

b/a-ratio significantly different from unity.

As seen in Fig. 14, θ reaches values up to 45◦. For elongated objects it seems to be

smaller, increasing with increasing b/a-ratio. A large range of θ values would be expected

for objects with b/a > 0.9 but, curiously, it decreases sharply with b/a increasing from 0.9 to

1. Along with increasing c/b-ratio, the deviation increases steadily towards spherical shapes.

As an example, elongated shapes with b/a-ratio below 0.7 usually have θ < 20◦. A few such
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objects, however, show larger θ values, suggesting strongly non-convex shape, or significant

variegation of albedo on the surface. Figure

14In Fig. 11d, we see that two of the shape models have principal moment ratios Cb/Cc

above unity, which implies an unstable rotation state. Such solutions exist, since the shapes

have been inspected only by eye, and it is impossible to decide if an irregular object has

Cb/Cc = 1 or a bit larger. Slight excesses can be tolerated for two reasons. First, the

dimension along the spin axis of the shape solution is sensitive to the scattering law. For

determining the shape solutions used in this paper, a combination of Lommel-Seeliger and

Lambert scattering laws has been used, and the weight of the Lambertian part has been about

10%. However, this scattering law is inaccurate for expressing the scattering behaviour of

asteroid surfaces, and we do not know what the optimal weight for each asteroid would

exactly be. Without altering the shape otherwise, the vertical dimension of the model can

be moderately altered by changing the weight of the Lambertian part.

If the vertical stretching in principal-moments sense was only due to the ill-defined scat-

tering law, there would be basis for changing the scattering parameters to produce a more

spherical shape. However, another reason for too large Cb/Cc-ratios is the same as that

for the tilt angle of axis of largest inertia to the rotation axis of the model - the convexity

of the shape model. For these reasons we should be careful when considering refinement

of the vertical axis dimension of the shape solution. This dimension is anyway the least

constrained quantity of the shape model, when only relative photometry is available. If the

vertical stretching is small, not visible to an eye, the solution can be accepted.

4.2.4 Irregularity of shapes

One way to demonstrate the irregularity of a shape is to compute the deviation from the

best-fit ellipsoid. Here we use the root-mean-square value (rms) of the ellipsoid fit from the

E2 technique
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rms =

√
χ2

e

nv

, (9)

where χ2
e is obtained from Eq. 7, and nv is the number of vertices. As seen in Fig. 15,

rms lies within range [0.02,0.06]. Curiously, all the most elongated objects with b/a < 0.65

have rms < 0.04. There are only a few such objects, however, and more observations are

needed to see if this is a real phenomenon. Towards flatter shapes, i.e., along with decreasing

c/b-ratio, the shapes seem to become more irregular in general. Otherwise, there does not

seem to be a correlation between rms and elongation or flatness. Between size and rms,

there is a slight negative correlation with Pearson product-moment correlation coefficient

r = −0.32. This seems natural, since large objects can be expected to be more regular in

shape than small ones. Between rms and taxonomic type, there is no correlation. Figure

15The targets with small rms have lightcurves characteristic for ellipsoidal shapes, i.e.,

two equal minima and maxima per lightcurve period, and they might as well be modelled

as ellipsoids. Most asteroids, however, have lightcurves with more than two minima and

maxima or unequal maxima or minima. If such objects are modelled with an ellipsoid, a lot

of information is lost.

Another way do describe the irregularity of a polyhedron is to calculate how large a

portion of the model surface is covered with large planar areas. When this portion increases,

the irregularity of the objects increases as well. Since the distribution of the facet areas

cannot be guaranteed to be independent on the shape model, using the distribution of facet

areas as a classification method requires that all the models are obtained with the same

modelling technique and the same number of shape parameters. In Table 4, we show, as

an example, quantities f1, the fraction of the facets with area more than 20% of the largest

facet area, and f2, the fraction of the largest facet area of the total surface area (we give

these quantities for only 52 shapes, since the exact modelling technique for the rest was
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unclear. f1 and f2 are somewhat correlated with Pearson’s r = −0.57, i.e., when the number

of large facets decreases, the fraction of the total surface area covered by the largest facet

increases. In Fig. 16, f1 is plotted against the E1 ellipsoid axis ratios. We see that, Figure

16towards more spherical shapes, the number of large facets increases, which means a more

even distribution of facet sizes, and implies a more regular shape. Results are in agreement

with the observation that, on elongated shapes, only a few facets often comprise a large

fraction of the total surface area. According to simulations and test analysis, these large

facets can be interpreted to show potential locations of global-scale concavities (KT01, K01).

Within our sample, only C-type asteroids have f1 > 0.12, while the most dense cluster of X-

types is located in f1 < 0.05. This implies that, among the C-type asteroids, there are more

regular bodies than among other spectral types. This is in agreement with the assumption

that the C-type asteroids, consisting of more porous material than the other types, are also

less subjected to fractionation than other types. In Fig. 17 we show how the facet sizes are Figure

17distributed in decreasing order on the surfaces of three different model shapes. The model of

(776) Berbericia in Fig. 17c shows that a large part of the surface area is covered by only a

few facets, while the model of (2) Pallas (Fig. 17a) has more evenly distributed facet areas.

This implies that Berbericia is irregular, while Pallas has more soft features. The case of

(6) Hebe lies in between these. The linear-exponential shape of the distribution is typical

for models for which facets were combined for Minkowski minimization after the convex

inversion procedure. The sharp decrease of size in the small-end of the facets distribution is

caused by the combination procedure, which leaves some facets unchanged. In Table 4, we

give the slope k of the linear part for the 34 models, and in Fig. 18 we plot k against size.

Decreasing value of k means more evenly distributed facet areas, and thus, a more regular Figure

18shape. According to the plot, the C-type asteroids get more irregular with decreasing size,

while other types show more shattered k values.

In Fig. 19 we see that, as the dominance of the largest facets increases, the deviation θ
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of the axis of the largest moment of inertia from the rotation axis increases as well. Objects

with both large θ and small f1 are likely to contain global scale nonconvexities, locations of

which might be incicated by the locations of the largest facets. Figure

19We also calculated the shapes of the largest facets as the axis ratios of the best-fit ellipse.

There was no evident correlation with facet shape and model shape or taxonomic type. Thus,

facet shapes cannot be used to define the existence of global scale circular craters, expected

to exist mainly on C-type asteroids. Table 4

5 Conclusions and future work

Three approaches are presented for calculating the global dimensions of convex polyhedron

shape models of asteroids, and the results from all the techniques are in agreement. The

relatively good ellipsoid fits to model shapes suggest that the surface irregularity of asteroids

might be described by multiplying the best-fit ellipsoid by a spherical harmonics series, as

was done for potato tubers by Torppa et al. (2006). This would be a continuation to the

work of Muinonen and Lagerros (1998), who modelled asteroids statistically with Gaussian

spheres. And, after all, asteroid and potato tuber shapes are not that far from each other.

The principal moments of inertia may be used to describe the dynamical state of the

model, providing information about how well it describes the shape of the target asteroid.

Notable deviation of the principal axis of the model shapes from their rotation axis, espe-

cially for elongated objects and along with the existence of large planar areas, may reflect

presence of large-scale concavities or strong albedo variegation on the surface. To evalu-

ate the reliability of this interpretation, however, we have to carry out a large number of

simulations for various shapes and scattering properties.

In addition to the OD, E1, E2, and PMI techniques, we calculated the principal compo-

nents, i.e., the Karhunen-Loeve transform, for each model shape by sampling evenly a grid
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of points on their surfaces. Axis ratios, however, differed significantly from those of the other

methods, and it is left for future studies to find a physical interpretation for these quantities,

and possibly a more suitable way to sample the points within the shape.

The statistical study of various physical properties of asteroids shows interesting features:

S-type asteroids achieve smaller b/a ratios than C- and X-types, large asteroids, as well as

those with long rotation periods have less elongated shapes, and C-type objects dominate the

population of large asteroids. Original facet information from the convex inversion procedure

should be preserved since, it seems, that the distribution of facet areas is in somewhat binded

to other physical properties and thus, could be used to classify asteroids. Combining facets

for Minkowski minimization seems to change the original facet area distribution, and produce

a logarithmic distribution for the intermediate size range, while preserving the spike for the

largest facets (Fig. 17), showing those shapes in which large planar areas exist. Additional

shape data are required, however, to make further conclusions about classifying asteroids

according to the slope of the linear part of the logarithmic distribution. Additional shape,

size, and taxonomic data of the extreme populations (those with diameters D < 30 km and

D > 300 km, and with periods P < 2 h and P > 15 h) are, however, called for in order to

perform a more thorough analysis of the asteroid population. Also, different orbital popula-

tions should be separated in statistical studies, but also this requires a lot more observational

data. Especially, radar-derived shapes would increase the number of small, kilometer-sized

near-Earth asteroids available for characterization. The shape solutions derived from the

radar observations or spacecraft flybys, however, cannot be included in the analysis at the

moment, since none of our techniques allows processing of non-star-like shapes. Thus, we

plan to develop the existing techniques and, in the future, include also non-star-like shapes

in the analyses.
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tables

Table 1. Information about the photometric lightcurve observations published in this study.
Columns contain the following information: 1) asteroid name, 2) date of observation, 3)
phase angle, and 4) observatory code (TH–Taurus Hill, SR–Slope Rock, JK–Jakokoski).
Asteroid Obs date α(◦) Observatory
(31) Euphrosyne Mar 30, 2007 21.7 TH
(54) Alexandra Dec 15, 2006 11.8 SR

Jan 21, 2007 18.5 TH
(79) Eurynome Feb 4, 2006 21.9 TH
(93) Minerva Dec 22, 2005 8.5 JK

Jan 14, 2006 14.5 JK
Dec 24, 2006 16.0 TH
Jan 30, 2007 5.9 TH
Feb 21, 2007 4.4 SR

(130) Elektra Feb 25, 2005 4.1 JK
Mar 1, 2005 5.5 JK
Mar 18, 2005 10.4 JK
Apr 22, 2006 7.8 TH

(376) Geometria Mar 26, 2006 21.5 TH
(471) Papagena Mar 25, 2007 16.9 TH
(776) Berbericia Mar 27, 2005 7.9 JK

Apr 1, 2005 8.5 JK
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Table 2. Summary of the spin solutions. Columns are as follows: 1) asteroid name, 2) pole
direction as ecliptic longitude and latitude, 3) rotation period, 4) rms-residual of the fit, 5)
number of lightcurves, 6) number of apparitions, and 7) total time span of the observations.
Asteroid λ, β(◦) P (h) rms Ncur Napp T(yr)
(31) Euphrosyne distribution 5.534 ± 0.004 0.012- 10 5 30

0.0125
(54) Alexandra 307,20 7.02263 0.016 20 5 42

122,-36 7.02334 0.017
325,-37 7.02334 0.017

(79) Eurynome 64,15 5.97857 0.014 33 5 32
(93) Minerva 49,-40 5.98313 0.015 14 5 26

216,21 5.98088 0.014
(130) Elektra 160,-85 5.22466 0.019 58 12 26
(376) Geometria 68,2 7.71002 0.021 35 10 21
(471) Papagena 29,41 7.11364 0.021 13 3 31

222,40 7.11246 0.021
235,56 7.11512 0.021

(776) Berbericia 170,59 7.66701 0.014 33 7 28
347,11 7.66701 0.013
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Table 3. Comparison of the results of shape characterization using the four different
methods. Colums contain: 1) method, 2) axial ratio, 3) mean value of the axial ratio, 4)
standard deviation of the axial ratios, 5-6) maximum and minimium values of the axial
ratios.
method ratio σ mean max min
Overall dimensions b/a 0.1119 0.8463 0.9989 0.4903

c/b 0.1258 0.8709 1.2102 0.5203
Ellipsoid fit (facets) b/a 0.1061 0.8478 1.0000 0.5556

c/b 0.1131 0.8790 1.0000 0.4762
Ellipsoid fit (radius) b/a 0.1232 0.8348 0.9945 0.4343

c/b 0.0942 0.8670 1.0000 0.6550
Principal moments Ca/Cb 0.1191 0.8588 0.9977 0.4978

Cb/Cc 0.1320 0.8124 1.3494 0.4788
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Table 4. List of asteroids included in the statistical analysis. Colums contain: 1) asteroid
name, 2) b/a, 3) c/b, 4) rotation period, 5) diameter (from the IRAS minor planet survey),
6) taxonomic type, 7) rms of the E2 ellipsoid fit, 8) fraction of the total surface area
covered by the largest facet, 9) amount of facets with area 20% of the area of the largest
facet, and 10) slope of the facet size distribution.
Asteroid b/a c/b P (h) D(km) Tax rmse f1 f2 k
(2) Pallas 0.95 0.97 7.813225 523 C 0.026 0.020 0.278 -0.0046
(3) Juno 0.83 0.74 7.209531 244 S 0.037 0.196 0.016 -0.0064
(6) Hebe 0.95 0.94 7.274470 192 S 0.035 0.055 0.056 -0.0048
(7) Iris 0.89 0.80 7.138841 203 S 0.040 0.100 0.019 -0.0053
(8) Flora 0.94 0.89 12.86667 141 S 0.037 0.038 0.030 -0.0037
(9) Metis 0.84 0.75 5.079176 180 S 0.037 0.074 0.015 -0.0034
(10) Hygiea 0.78 0.98 27.623152 429 C 0.034 0.049 0.023 -0.0037
(12) Victoria 0.82 0.86 8.659852 117 S 0.047 0.062 0.012 -0.0030
(15) Eunomia 0.72 0.83 6.082752 272 S 0.047 0.058 0.049 -0.0053
(16) Psyche 0.85 0.96 4.195947 264 X 0.025 0.039 0.099 -0.0046
(17) Thetis 0.81 0.97 12.266025 93 S 0.038 0.041 0.023 -0.0033
(18) Melpomene 0.85 0.90 11.571433 148 S 0.038 0.055 0.021 -0.0037
(19) Fortuna 0.86 0.95 7.443223 220 C 0.026 0.034 0.112 -0.0045
(20) Massalia 0.86 0.74 8.09902 151 S 0.030
(21) Lutetia 0.87 0.80 8.16827 99 X 0.033 0.122 0.003 -0.0023
(22) Kalliope 0.78 0.95 4.148200 187 X 0.027 0.034 0.018 -0.0025
(23) Thalia 0.95 0.79 12.31240 111 S 0.028 0.035 0.031 -0.0037
(29) Amphitrite 0.93 1.00 5.390119 219 S 0.025 0.035 0.112 -0.0045
(32) Pomona 0.78 0.91 9.447659 82 S 0.028 0.044 0.023 -0.0042
(39) Laetitia 0.78 0.86 5.138237 159 S 0.029 0.051 0.056 -0.0049
(41) Daphne 0.83 0.82 5.98798 182 C 0.061
(42) Isis 0.93 0.93 13.597010 107 S 0.047 0.074 0.036 -0.0061
(43) Ariadne 0.66 0.76 5.761986 65 S 0.038 0.089 0.006 -0.0034
(44) Nysa 0.74 0.82 6.421417 73 X 0.038
(45) Eugenia 0.91 0.81 5.699152 214 C 0.021 0.062 0.013 -0.0041
(52) Europa 0.91 0.87 5.629958 312 C 0.029 0.052 0.066 -0.0044
(54) Alexandra 0.87 0.91 7.023337 171 C 0.035 0.030 0.145 -0.0056
(55) Pandora 0.93 0.97 4.804044 67 X 0.038 0.087 0.019 -0.0054
(63) Ausonia 0.60 0.97 9.297591 108 S 0.023 0.056 0.010 -0.0032
(69) Hesperia 0.89 0.79 5.655199 143 X 0.039 0.080 0.011 -0.0033
(79) Eurynome 0.93 0.97 5.97857 68 S 0.035 0.072 0.061 -0.0056
(85) Io 0.98 0.96 6.875110 157 C 0.033 0.028 0.175 -0.0058
(87) Sylvia 0.76 0.91 5.183642 271 X 0.032 0.084 0.019 -0.0055
(88) Thisbe 0.96 0.84 6.041296 200 C 0.049 0.039 0.028 -0.0033
(93) Minerva 0.99 0.97 5.980877 146 C 0.027 0.024 0.211 -0.0047
(107) Camilla 0.75 0.98 4.84393 237 C 0.031 0.028 0.165 -0.0051
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Asteroid b/a c/b P (h) D(km) Tax rmse f1 f2 k
(110) Lydia 0.90 0.99 10.92580 89 X 0.058
(115) Thyra 0.93 0.87 7.23996 83 S 0.051
(125) Liberatrix 0.97 0.94 3.968198 47 X 0.035
(129) Antigone 0.87 0.81 4.957154 125 X 0.030 0.156 0.009 -0.0055
(130) Elektra 0.85 0.90 5.224664 189 C 0.038 0.034 0.129 -0.0059
(135) Hertha 0.88 0.86 8.40061 82 X 0.025 0.089 0.009 -0.0048
(158) Koronis 0.75 0.68 14.20569 39 S 0.060
(165) Loreley 0.98 0.91 7.226670 160 C 0.057
(167) Urda 0.84 0.93 13.06137 42 S 0.039
(173) Ino 0.96 0.91 6.116510 159 C 0.041
(192) Nausikaa 0.91 0.89 13.62170 107 S 0.037 0.048 0.086 -0.0052
(196) Philomela 0.98 1.00 8.332826 146 S 0.010
(201) Penelope 0.87 0.90 3.747454 70 X 0.028 0.073 0.029 -0.0051
(208) Lacrimosa 0.85 0.76 14.0769 44 S 0.040
(218) Bianca 0.60 0.65 6.337172 62 S 0.110
(230) Athamantis 0.90 0.98 23.984501 113 S 0.040 0.061 0.069 -0.0060
(250) Bettina 0.83 0.79 5.05442 85 X 0.039 0.062 0.052 -0.0054
(277) Elvira 0.69 0.91 29.6922 29 S 0.059
(283) Emma 0.67 0.97 6.89522 150 X 0.015
(306) Unitas 0.81 0.88 8.73875 49 S 0.035
(311) Claudia 0.55 0.87 7.53139 27 S 0.038
(321) Florentina 0.72 0.77 2.870866 31 S 0.025
(337) Devosa 0.92 0.66 4.653680 63 X 0.033 0.139 0.019 -0.0049
(349) Dembowska 0.82 0.75 4.701211 143 S 0.040 0.094 0.005 -0.0029
(354) Eleonora 0.91 0.98 4.277185 162 S 0.044 0.046 0.020 -0.0030
(372) Palma 0.96 0.92 8.591030 195 C 0.040 0.059 0.033 -0.0048
(376) Geometria 0.94 0.97 7.715890 37 S 0.041 0.092 0.043 -0.0048
(382) Dodona 0.72 0.78 4.113226 60 X 0.056
(423) Diotima 0.93 0.99 4.775377 217 C 0.029
(451) Patientia 0.98 0.97 9.74119 230 C 0.045
(511) Davida 0.90 0.90 5.129367 337 C 0.026 0.034 0.122 -0.0046
(532) Herculina 0.87 0.99 9.404951 231 S 0.028 0.057 0.052 -0.0049
(534) Nassovia 0.81 0.72 9.46895 37 S 0.052
(584) Semiramis 0.93 0.70 5.068919 56 S 0.045 0.071 0.017 -0.0037
(624) Hektor 0.46 0.84 6.920509 D 0.035
(665) Sabine 0.75 0.82 4.294032 56 0.042
(675) Ludmilla 0.96 0.81 7.715486 350 S 0.029
(690) Wratislavia 0.89 0.70 8.61798 140 C 0.036
(694) Ekard 0.89 0.88 5.92193 92 C 0.041 0.086 0.033 -0.0062
(720) Bohlinia 0.76 0.73 8.91862 37 S 0.054
(776) Berbericia 0.89 0.99 7.66701 C 0.031 0.101 0.013 -0.0051
(944) Hidalgo 0.43 0.72 10.05863 D 0.179
(1036) Ganymed 0.99 0.84 10.312 41 S 0.036 0.047 0.062 -0.0048
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Asteroid b/a c/b P (h) D(km) Tax rmse f1 f2 k
(1580) Betulia 0.88 0.72 6.13836 C 0.057
(1627) Ivar 0.53 0.85 4.795170 S 0.031
(1862) Apollo 0.83 0.66 3.065142 S 0.033
(1980) Tezcatlipoca 0.66 0.74 7.25226 0.041
(2100) Ra-shalom 0.86 0.89 19.820101 C 0.038
(3908) Nyx 0.84 0.86 4.42601 0.049
(5587) 1990 SB 0.50 0.89 5.05227 0.025
(6053) 1993 BW3 0.94 0.82 2.5739 0.023 0.041 0.096 -0.0049
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Figure captions

Figure 1: Finding the overall dimensions of the shape. a) extent (2c) in spin axis (z) direction.
b) largest extent (2a) in xy-plane and largest extent (2b) in xy-plane, perpendicular to a.
The images are from equatorial and polar viewing directions, respectively.

Figure 2: Previously unpublished lightcurve data of a) (31) Euphrosyne, b) (54) Alexandra,
c) (79) Eurynome, d) (93) Minerva, e) (130) Elektra, f) (376) Geometria, g) (471) Papagena,
and h) (776) Berbericia. The horizontal axes refer to the time (UT/hours) of observation;
the observing date is given on each plot.

Figure 3: Period uncertainty of the eight convex inversion solutions published in this paper,
versus the number of observed lightcurves.

Figure 4: Distribution of possible spin states of (31) Euphrosyne. a) rms of the model fit
versus the rotation period (P ) and b) heliocentric ecliptic pole longitude (λ) versus pole
latitude (β).

Figure 5: Shape model of (79) Eurynome from two perpendicular equatorial viewing direc-
tions.

Figure 6: Shape model of (93) Minerva from two perpendicular equatorial viewing directions.

Figure 7: Shape model of (130) Elektra from two perpendicular equatorial viewing directions.

Figure 8: Shape model of (376) Geometria from two perpendicular equatorial viewing direc-
tions.

Figure 9: Shape model of (776) Berbericia from two perpendicular equatorial viewing direc-
tions.

Figure 10: Comparison of different methods for characterizing the shapes of the objects. a)
OD and E1, b) E1 and E2, and c) E2 and PMI.

Figure 11: Distributions of axis ratios of 87 convex inversion shape solutions from the a)
E2 and b) PMI techniques. Different taxonomic types are plotted with different symbols as
� =C, � =D,+ =S, � =X, and × =undefined.

Figure 12: Comparing b/a to the rotation period of the asteroid. Dimensions are from
the E2 technique. Different taxonomic types are plotted with different symbols as � =C,
� =D,+ =S, � =X, and × =undefined.

Figure 13: Comparing b/a to the size of the asteroid. Dimensions are from the E2 technique.
Different taxonomic types are plotted with different symbols as � =C, � =D,+ =S, � =X,
and × =undefined.
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Figure 14: Angle θ between the rotation axis of the model and the axis of the largest moment
of inertia. θ is plotted versus b/a and c/b (from the E2 method). Different taxonomic types
are plotted with different symbols as � =C, � =D,+ =S, � =X, and × =undefined.

Figure 15: rms of the E2 fit as a function of a) b/a and c/b, and b) size. Different taxonomic
types are plotted with different symbols as � =C, � =D,+ =S, � =X, and × =undefined.

Figure 16: Fraction of the facets with area more than 20% of the largest facet area (f1)
compared to the dimensions of the asteroid. Different taxonomic types are plotted with
different symbols as � =C, + =S, � =X, and × =undefined.

Figure 17: Distribution of facet areas on model of (2) Pallas, (6) Hebe, and (776) Berbericia.
The logarithms of the fractions of the largest facets from the total surface area are plotted
in decreasing order.

Figure 18: Slope k of the log(A/Atot) vs. size distribution. Different taxonomic types are
plotted with different symbols as � =C, + =S, and � =X.

Figure 19: Fraction of the largest facets (f1) versus the deviation of the rotation axis from
the axis of the largest moment of inertia.

40



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

I10268_fig_1a



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

I10268_fig_1b



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

I10268_fig_2a



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

I10268_fig_2b



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

I10268_fig_2c



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

I10268_fig_2d



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

I10268_fig_2e



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

I10268_fig_2f



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

I10268_fig_2g



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

I10268_fig_2h



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

I10268_fig_3



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

I10268_fig_4a



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

I10268_fig_4b



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

I10268_fig_5a



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

I10268_fig_5b



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

I10268_fig_6a



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

I10268_fig_6b



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

I10268_fig_7a



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

I10268_fig_7b



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

I10268_fig_8a



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

I10268_fig_8b



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

I10268_fig_9a



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

I10268_fig_9b



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

I10268_fig_10a



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

I10268_fig_10b



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

I10268_fig_10c



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

I10268_fig_11a



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

I10268_fig_11b



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

I10268_fig_12



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

I10268_fig_13



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

I10268_fig_14



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

I10268_fig_15a



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

I10268_fig_15b



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

I10268_fig_16a



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

I10268_fig_16b



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

I10268_fig_17a



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

I10268_fig_17b



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

I10268_fig_17c



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

I10268_fig_18



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

I10268_fig_19


