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Minimizing earliness-tardiness penalties for common due date 

single-machine scheduling problems by a recovering beam search algorithm 

 

 

 

Abstract 

This study considers the NP-hard problem of scheduling jobs on a single-machine 

against common due dates with respect to earliness and tardiness penalties. An effective 

and efficient recovering beam search (RBS) algorithm is proposed to solve this 

problem. To validate and verify the developed algorithm, computational experiments are 

conducted on a well-known benchmark problem set, and the results are compared with 

nine meta-heuristics from the relevant literature. The experimental comparison results 

reveal that the proposed RBS algorithm is a state-of-the-art approach to the 

single-machine scheduling problem with earliness and tardiness penalties. In terms of 

both solution quality and computational effort, this study successfully develops a 

near-optimal approach that will hopefully encourage practitioners to apply it to 

real-world problems. 
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1. Introduction 

In recent decades, production scheduling requirements for meeting a common due 

date have been investigated extensively, especially since the just-in-time (JIT) 

philosophy was widely applied in different industries. In general, common due date 

problems can be classified into two categories: restrictive and unrestrictive ones. If the 

optimal value of a common due date has to be determined or is given and has no 

influence on the optimal sequence of jobs, it is called unrestrictive. On the other hand, if 

a common due date is given and may influence the optimal sequence of the jobs, it is 

called restrictive. Therefore, a search for an optimal sequence of the jobs has to be 

carried out with respect to the due date (Feldmann & Biskup, 2003). 

Meeting a restrictive common due date is a general scheduling issue in practice. 

Such instances might occur if a customer orders different variations of a product, all of 

which must be delivered in the same truck or container ship for transportation cost 

saving (Sule, 1997), or if a firm has installed a weekly bulk delivery to the wholesaler 

(Feldmann & Biskup, 2003). A survey of US manufacturing practitioners reveals that 

meeting a restrictive common due date is one of the most important scheduling criteria 

(Wisner & Siferd, 1995). When scheduling a production system, jobs completed before 

the common due date incur earliness penalties, which may include holding costs for 

finished goods, deterioration of perishable goods and opportunity cost. On the contrary, 

jobs completed after the common due date sustain tardiness penalties, which may 

include loss of future sales and rush shipping cost. Besides, the importance of a 

customer can also be taken into account by using different weights for orders 

(Dauzère-Pérès & Sevaux, 2004). Hence, in connection with JIT production and 

delivery, earliness and tardiness penalties are of continuing interest for scheduling 

researchers and practitioners. However, scheduling problems with a restrictive common 
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due date where the objective is to minimize earliness-tardiness penalties is not a trivial 

issue. Even a relatively simple problem, such as the class of a single-machine, is 

NP-hard (Hall et al., 1991). 

This study focuses on restrictive common due date single-machine scheduling 

problems with respect to total weighted earliness-tardiness penalties. In the standard 

three-field notation this problem is denoted as 1/ / ( )res
i i i i id d E Tα β= +� . Due to the 

nature of the complexity of this problem, global optimal solutions cannot be easily 

obtained when the problem size is large. Thus, for the 1/ / ( )res
i i i i id d E Tα β= +�  

problem, no efficient exact methods are known to exist when no restrictions are placed 

on the values of the penalty per unit time of earliness ( iα ) and the penalty per unit time 

of tardiness ( iβ ).  

Despite this discouraging theoretical result, the past three decades have witnessed 

growing interest in the 1/ / ( )res
i i i i id d E Tα β= +�  problem. A comprehensive survey 

on relevant studies of this subject was provided by Gordon et al. (2002). Researchers 

developed polynomially or pseudo-polynomially solvable algorithms for special cases 

where conditions for iα  and iβ  are imposed (Cheng & Gupta, 1989; Hall et al., 1991; 

Hoogeveen & van de Velde, 1991; Kahlbacher, 1993). Studies employing 

meta-heuristics (Lee & Kim, 1995; James, 1997; Feldmann & Biskup, 2003; Hino et al., 

2005) and dealing with this argument are even more recent. These recent published 

meta-heuristics do provide excellent results, but in some cases these meta-heuristics are 

so intricate that independent coding is unlikely to lead to the same effectiveness or 

efficiency. 

The recovering beam search (RBS) algorithm, first proposed by Della Croce and 

T’kindt (2002), is one of the most recent and hopeful hybrid heuristics for combinatorial 
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optimization problems. The RBS algorithm is an enhancement method of beam search 

(BS), which is a truncated branch and bound algorithm for solving combinatorial 

optimization problems. In the BS search procedure, only the w  most promising nodes 

at each level of the search tree are retained for further branching, instead of all nodes, 

and w  is the so-called beam width. Meanwhile, the remaining nodes are pruned off 

permanently. Since only w  nodes are retained at each level of the search tree, the 

running time of BS is polynomial in terms of the problem size (Valente & Alves, 2005).  

However, if a node leading to the optimal solution is discarded during the search 

process, there is no way to later reach the optimal solution using the classic BS. The 

RBS algorithm seeks to improve upon previous possibly incorrect decisions through the 

use of a recovering phase that searches for improved partial solutions dominating those 

selected by the beam. Notably, to guarantee that the total number of explored nodes is 

polynomial, a partial solution may be only substituted by another partial solution with 

the same depth level of the search tree in the recovering phase (Della Croce & T’kindt, 

2002).  

A number of successful applications of the RBS method on scheduling problems 

(Della Croce et al., 2004; Ghirardi & Potts, 2005; Valente & Alves, 2005; Esteve et al., 

2006) have recently appeared in the literature. In an attempt to assist in reducing the gap 

between theory and practice, this study proposes an RBS algorithm for the  

1/ / ( )res
i i i i id d E Tα β= +�  problem. The remainder of this paper is organized as 

follows. In the next section, the problem is formulated. Section 3 gives a detailed 

description of the proposed RBS algorithm. The computational results of applying the 

proposed RBS algorithm to a famous benchmark problem set are provided in section 4, 

as well as comparisons of the performances with nine meta-heuristics from the relevant 

literature. Finally, this study concludes with suggestions for possible future research. 
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2. Problem formulation 

The 1/ / ( )res
i i i i id d E Tα β= +�  problem can be defined as follows. Consider a 

set of n  jobs, each of which requires exactly one operation to be scheduled on a 

single-machine with a restrictive common due date d . For each job i , the processing 

time ip , the penalty per unit time of earliness iα , and the penalty per unit time of 

tardiness iβ  are given in advance.  

A penalty of i iEα  applies when job i  is completed iE  time units earlier than 

d ; whereas a penalty of i iTβ  is incurred when it is completed iT  time units later than 

d . Let iC  be the completion time of job i . The iE  and the iT  for each job i  can 

be calculated by max{ ,  0}id C−  and max{ ,  0}iC d− , respectively. The objective is to 

minimize the total weighted earliness-tardiness penalty: 
1
( )

n

i i i ii
E Tα β

=
+� . Besides these 

parameters, the following assumptions are made: 

� Every job is processed without preemption. 

� The setup times of the jobs are included in the processing times and are 

sequence-independent. 

� The ready time of each job is zero; namely all the jobs are available at the 

beginning of the scheduling period. 

� The machine can process no more than one job at a time and is continuously 

available. 

3. The proposed RBS algorithm for the 1/ / ( )res
i i i i id d E Tα βα βα βα β= += += += +����  problem 

For a common due date case with general earliness-tardiness penalties, there is an 

optimal solution satisfying the following three optimality properties. To obtain the 
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objective function value more efficiently, the following section develops and elaborates 

on the proposed RBS algorithm by using the three well-established properties. 

Property 1. An optimal schedule does not contain any idle time between any 

consecutive jobs (Kahlbacher, 1993).  

Property 2. The optimal schedule is V-shaped around the common due date. In the 

optimal schedule, the jobs completed before or on the common due date d  are 

scheduled in a non-increasing order of the ratios i ip α , and the jobs starting on or 

after d  are scheduled in a non-decreasing order of the ratios i ip β  (Smith, 1956). 

Property 3. In the optimal schedule, either the first job starts from time zero or the 

completion time of one job coincides with the common due date d  (Hoogeveen & van 

de Velde, 1991). 

Consider a 1/ / ( )res
i i i i id d E Tα β= +�  problem with depth size n  (i.e. n  jobs) 

of the search tree. A flowchart of the RBS algorithm is depicted in Figure 1. The 

following subsection will discuss the related steps in detail. 

| Insert Figure 1 about here |→ ←  

Step 1: Initialization 

Set 0l =  and 1{ }S σ= , where l  denotes the search tree level, S  

represents the vector of the best current partial solutions at a given level, 

and 1σ  be the parent (root) node. 

Step 2: Main loop 

A. For each best current partial solution kσ  in S , branch kσ  to generate 

the corresponding child nodes. 



ACCEPTED MANUSCRIPT

AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 8 

B. Filter procedure:  

(a) Add to C  the ϕ  child nodes that are selected by the SEA priority 

evaluation function, where C  denotes a set of filtered offspring 

nodes and ϕ  is a filter width parameter defined by experimental 

testing. 

(b) For each child node in C , compute its evaluation function value 

(1 ) +V LB UBγ γ= − , where γ  ( 0 1γ≤ ≤ ) denotes the upper bound 

weight in the weighted sum of a lower bound ( LB ) and an upper 

bound (UB ) on the optimal solution value of that partial solution. 

(c) Sort the child nodes in C  in a non-decreasing order of their 

evaluation function values and add to T  the w  child nodes with the 

best evaluation function values, where T  denotes a set of beam 

nodes and w  is a beam width parameter defined by experimental 

testing. 

C. Recovering phase: 

(a) For each partial solution represented by the node in T , pick the last 

job in the job list and find the best sequence by placing that job in all 

possible positions in the partial solution. 

(b) Update the vector of the best current partial solutions S  by the w  

partial solution found so far. 

Step 3: Stopping criterion: 

Let 1l l= + , IF l n< : GO TO step 2; ELSE STOP: rearrange each partial 

solution in S  according to properties 1~3 and find the best solution. 

3.1. The SEA priority evaluation function 
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Recently, we proposed a quick method, namely the sequential exchange approach 

(SEA; Lin et al., 2007), to obtain a near optimum solution for 

1/ / ( )res
i i i i id d E Tα β= +�  problems. This simple heuristic firstly divides the jobs into 

two sets: ES  and LS , where jobs in set ES  start processing before the common due 

date, and jobs in set LS  start processing on or after the common due date. Then, SEA 

swaps or moves jobs between the two sets systematically to derive a near optimum 

solution. 

The priority evaluation function of the filter procedure at each search tree level is a 

key issue in the RBS technique. In this study, a computationally inexpensive filtering 

procedure, namely the SEA priority evaluation function is applied to select some of the 

children of each beam node for a more detailed evaluation. Assume that a near optimum 

solution π  is obtained by the SEA. Based on the job j ’s order number ([ ]j ) in ES  

or LS  of solution π , we set the priority evaluation function value of job (node) j  

( jPEFV ) as follows: 

 [ ] 1,   if job 
 

 [ ],  if job     

 

E
j

L

n j j S
PEFV

j j S

− + ∈�
= � ∈�  

Then, the ϕ  filtered child nodes with the best SEA priority evaluation function 

values are added to set C  for further evaluation. 

3.2. The evaluation function 

After being filtered by the SEA priority evaluation function, the ϕ  selected child 

nodes are then accurately evaluated via a function V  defined by (1 ) +V LB UBγ γ= − , 

where γ  is a given weight and LB  and UB  refer to a lower bound and an upper 

bound, respectively.  
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In this study, we propose the following heuristic to obtain UB  of the partial 

schedule 'π  represented by the node. The idea for this heuristic is based on work 

completed by Dileepan (1993) and Biskup and Feldmann (2001). 

Heuristic of UB. Let AS  and BS  be the ordered sets of jobs that are started after the 

common due date and completed before the common due date, respectively. The main 

steps of the UB  heuristic are as follows. 

Step 1: Sequentially assign the jobs of the partial schedule 'π  into BS  until the 

time gap 
B

gap ii S
T d p

∈
= −�  is smaller than the assigned job’s processing 

time. Then, add the remaining jobs of 'π  to set AS  in a non-decreasing 

order of i ip β . 

Step 2: IF AS = ∅ : GO TO step 3; ELSE: GO TO step 5. 

Step 3: Add to set Pαβ  all the jobs which are not included in 'π  according to 

the decreasing ratios i iβ α . The tiebreak rule gives preference to the job 

with the smallest value of iβ . 

Step 4: Iteratively assign the first job of Pαβ  to set BS  and delete it from Pαβ  

until one of the following situations occurs: 

A. The time gap gapT  is smaller than the assigned job’s processing time. 

If in this case 0gapT > , sequentially search for another job of Pαβ  

which fits into the gap. As soon as 0gapT =  or no more jobs of Pαβ  

fit into the gap, assign the remaining jobs of Pαβ  to set AS . Finally, 

sequence all jobs in AS  and BS  according to property 2 (the 

V-shaped property). 
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B. 2n  jobs have been assigned to set BS . In this case iteratively assign 

the first of the remaining jobs of Pαβ  to set BS  until the objective 

function value is increased. Terminate the heuristic and the current 

objective function value is saved as UB . 

Step 5: Shift the jobs in BS  and AS  to make the completion time of the final job 

in BS  and the start time of the initial job in AS  equal to the common 

due date d . Terminate the heuristic and the current objective function 

value is saved as UB . 

To get LB  of the evaluation function ,V  we formulate the 

1/ / ( )res
i i i i id d E Tα β= +�  problem, and decompose the problem into a subproblem 

based on the Lagrangian relaxation, and further develop an efficient multiplier 

adjustment method to compute the values of the Lagrangian multipliers. The 

1/ / ( )res
i i i i id d E Tα β= +�  problem can be logically formulated as an integer 

programming problem (P): 

1

min ( )
n

i i i i
i

Z E Tα β
=

= +�  

 s.t.  ,   1,  2,  ...,  ,i i i iT s p d E i n= + − + =                            (1) 

(1 ),   1,  2,  ...,  1;  1,  ...,  ,i i k iks p s M x i n k i n+ ≤ + − = − = +          (2) 

,   1,  2,  ...,  1;  1,  ...,  ,k k i iks p s Mx i n k i n+ ≤ + = − = +              (3) 

,  ,  0,   1,  2,  ...,  ,i i iT E s i n≥ =                                 (4) 

{0,  1},   1,  2,  ...,  1;   1,  ...,  .ikx i n k i n∈ = − = +                    (5) 

The values for earliness and tardiness are calculated by constraint (1). Constraints 

(2) and (3) determine the starting times of the jobs. If job i  is sequenced prior to job 
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k  the constraint i i ks p s+ ≤  only holds if ikx = 1. Due to the addition of big number 

M , constraint (3) is not restrictive with ikx = 1. Alternatively, for ikx = 0, constraint (3) 

gives k k is p s+ ≤  and constraint (2) is not restrictive. 

A Lagrangian relaxation of constraint (1) yields the Lagrangian subproblem (LR): 

(LR) [ ]
1

( ) min ( ) ( ) ( )

            s.t.  (2) (5),

n

i i i i i i i i i
i

L s p d E Tλ λ α λ β λ
=

= + − + + + −

−

�  

where ( )1 2,  ,  ..., nλ λ λ λ=  are the Lagrangian relaxation multipliers. 

If 0i iα λ+ <  or 0i iβ λ− <  for some i  ( 1,  2,  ...,  i n= ), then we have iE = ∞  

or iT = ∞ , giving ( )L λ = −∞ . To avoid this, we therefore require that i i iα λ β− ≤ ≤  

for each i  ( 1,  2,  ...,  i n= ). The Lagrangian subproblem (LR) is solved by setting 

0i iE T= =  for each i , where 1,  2,  ...,  i n= , and then scheduling the jobs in a 

non-increasing order of /i ipλ  according to Smith’s rule (Smith, 1956). 

In general, the Lagrangian multipliers can be iteratively updated using the 

subgradient optimization method (SOM) to improve the lower bound. However, 

experiments have shown that it takes a lot of time to get the SOM to converge (Sourd & 

Kedad-Sidhoum, 2003). The speed increases of the multiplier adjustment method 

(MAM) more than sufficiently compensate for the possible loss in lower quality over 

the SOM, we resort to using the MAM. 

The MAM first requires a heuristic to sequence the jobs, and then chooses the 

multipliers so that the resulting lower bound is as large as possible. Let is∗  be the start 

time of job i  ( 1,  ...,  i n= ) in the job sequence generated by the heuristic. To obtain the 

maximum value of LR, we solve the problem LR( is∗ ):  
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W =
1

max ( )
n

i i i
i

s p dλ ∗

=
+ −�  

(LR( is∗ ))      s.t.  1 1/ / ,   i i i ip p iλ λ + +≥ ∈early jobs,                        (6) 

1 1/ / ,   i i i ip p iλ λ + +≤ ∈tardy jobs,                        (7) 

* *,   1,  2,  ...,  .i i i i nα λ β− ≤ ≤ =                           (8) 

where * max{ / ,  ,  1,  ...,  }i i k kp p k i i nα α− = − = + and * min{ / ,  1,  2,  ...,  }i i k kp p k iβ β= = . 

To obtain the Lagrangian multipliers more rapidly, we use the weighted shortest 

processing time (WSPT) and the weighted longest processing time (WLPT) to generate 

the initial job sequence and is∗ . Then, we calculate *
i i iR s p d= + −  ( 1,  2 ,...,  i n= ), 

and set the Lagrangian multipliers as follows: 

*
 , if 0,i i i�      Rβ= ≥  

*
 , if 0.i i i�      Rα= − <  

After obtaining the Lagrangian multipliers, we can get the solution to the problem 

LR( is∗ ) and set it as the LB  of the evaluation function V . 

4. Computational results and discussion 

4.1. Test problems 

One difficulty faced by researchers in scheduling is to compare their developed 

heuristics with those of other researchers. If a standard set of test problems is accessible, 

different algorithms’ performances can be compared on exactly the same set of test 

problems. For this reason we chose 280 benchmark problems from Biskup and 

Feldmann (2001) as the test problems for this study. 

Biskup and Feldmann have generated benchmark problems with the number of 

jobs n = 10, 20, 50, 100, 200, 500 and 1000 for the 1/ / ( )res
i i i i id d E Tα β= +�  
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problem. The restrictive factor h  for determining the common due date d , which can 

be computed as id h p� �= � �� , was set to be 0.2, 0.4, 0.6 and 0.8. For each combination 

of n  and h , ten instances were generated, respectively. Thus, the test bed comprised 

280 problems. 

4.2. Computational results 

The choice of parameters may affect the quality of the results. Choosing 

appropriate values for the parameters is time consuming and in general seems dependent 

on the set of data. A number of preliminary experiments were performed to fine tune the 

parameters of the proposed RBS algorithm. The experiments conducted here reveal that 

the filter width ϕ  and the beam width w  yielded better quality within reasonable 

computational expenses at values of around 6 and 3, respectively. The experiments also 

indicate that the parameter γ  yielded better quality at values of around 0.3, 0.4, 0.5, 

and 0.6 for h = 0.2, 0.4, 0.6 and 0.8 problems, respectively. Consequently, these values 

were used for the experiments conducted in this study.  

The proposed RBS algorithm was coded in Visual C#.net, and run on a PC with an 

Intel Pentium 4 (2.4GHz) CPU. The final results of the proposed RBS algorithm 

compared with nine meta-heuristics proposed by Feldmann and Biskup (2003) and Hino 

et al. (2005) are shown in Table 1. Feldmann and Biskup investigated the same 

benchmark problems by applying five different meta-heuristics, namely evolutionary 

strategy (ES), ES with a destabilization phase (ESD), simulated annealing (SA), 

threshold accepting (TA) and TA with a back step (TAR). However, they only 

considered the problems with the restrictive factor h  set as 0.2 and 0.4. Each 

meta-heuristics was performed three runs on each single instance with different initial 

random numbers. The data listed in Table 1 are the best objective function values 
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obtained from totaling 15 runs of the five different meta-heuristics (FDM). 

Hino et al. (2005) proposed four meta-heuristics, including tabu search (TS), 

genetic algorithm (GA), hybrid of tabu search and genetic algorithm (HTG), and hybrid 

of genetic algorithm and tabu search (HGT) to the same benchmark problems. Each 

instance was solved over ten trials by each of these four meta-heuristics and the best 

solutions obtained were recorded. 

| Insert Table 1 about here |→ ←  

To compare the effectiveness of the different approaches, the solution quality is 

measured by listing the average improvement rate (%) of the objective function values 

from the upper bounds proposed by Biskup and Feldmann (2001). As revealed in Table 

1, on the whole, the proposed RBS algorithm outperformed the nine meta-heuristics. 

Total average improvement rates of 6.72 and 4.37 for the problems with the restrictive 

factors h = 0.2, 0.4, and h = 0.2, 0.4, 0.6, 0.8 were achieved, respectively. The 

proposed RBS algorithm was superior in all of the different sized problems with 

different values for the restrictive factor. Notably, for all of the n = 10 instances, the 

optimal solutions (determined by applying LINGO to their integer programming 

models) were obtained by the proposed RBS heuristic, too. These analytical results 

clearly indicate that the proposed algorithm is a promising approach for solving the 

1/ / ( )res
i i i i id d E Tα β= +�  problem. 

The average computation time (CPU time in seconds) of the proposed RBS 

algorithm run on a Pentium 4 (2.4GHz) PC and that of the five different meta-heuristics 

(FDM) proposed by Feldmann and Biskup (2003) run on a Pentium 90 PC are presented 

in Table 2. It should be noted that the FDM proposed by Feldmann and Biskup would in 

general require multiple trials with different random seeds to get a better solution.  
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| Insert Table 2 about here |→ ←  

As revealed in Table 2, the computation time required by the proposed algorithm is 

very short. Since the computation times vary with hardware, software and coding, this 

study did not directly compare computational efficiency. Nonetheless, even for 

problems involving up to 1000 jobs, the proposed RBS algorithm can obtain very good 

solutions within reasonable computational expenses. This indicates that the proposed 

RBS heuristic can be applied to real world problems. 

On the other hand, as the running time of the meta-heuristics proposed by Hino et 

al. (2005) is provided as a graph, therefore, only approximate values of the GA and the 

hybrid meta-heuristics (i.e. HTG and HGT) can be used for comparison. The average 

running time of n = 1000 is over 90 and 32 seconds of the GA and the hybrid 

meta-heuristics on a Pentium 4 (1.7GHz) PC, respectively. Notably, the best objective 

function values of these meta-heuristics were obtained from ten runs while the objective 

function values of the proposed RBS algorithm were obtained from one trial. These 

results indicated that the proposed RBS algorithm is a more efficient and effective 

approach compared with these state-of-the-art meta-heuristics.  

5. Conclusions 

Single-machine is one of the most useful models in practice, since a complex 

system can be reduced to a single-machine problem, especially if there is a bottleneck 

machine in the system. The purpose of this study is to make a step towards establishing 

an effective heuristic for the 1/ / ( )res
i i i i id d E Tα β= +�  problem. In this study, we 

propose an RBS algorithm for this problem. The experimental results clearly indicate 

that the proposed RBS algorithm is a state-of-the-art method for solving this problem, 
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as seen by comparing the obtained results to the best available meta-heuristics on a wide 

range of benchmark instances. Further, the experimental results also indicate that the 

proposed approach can be applied to efficiently schedule common due-date problems 

with general earliness-tardiness penalties of a realistic size.  

Possible directions for future research include hybridizing the RBS algorithm with 

meta-heuristics, such as simulated annealing (SA), genetic algorithm (GA), tabu search 

(TS), and ant colony optimization (ACO), and also by extending the proposed RBS 

algorithm to assist in solving multi-machine scheduling problems with general or 

non-linear earliness-tardiness penalties in regards to a common due date. 
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Figure 1. Flowchart of the RBS algorithm 
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Table 1.  Average improvement rate (%) of meta-heuristics and the proposed RBS 

algorithm from upper bounds 

n h FDM TS GA HTG HGT RBS 

10 0.2 6.19 5.95 6.07 6.07 6.07 6.19 
 0.4 2.17 1.93 1.98 1.98 1.98 2.17 
 0.6  -0.08 0.00 0.00 0.00 0.02 
 0.8  0.15 0.15 0.15 0.15 0.15 
        

20 0.2 3.84 3.84 3.84 3.84 3.84 6.53 
 0.4 1.63 1.62 1.62 1.62 1.62 4.31 
 0.6  0.71 0.68 0.71 0.71 2.31 
 0.8  0.41 0.28 0.41 0.41 2.76 
        

50 0.2 5.65 5.70 5.68 5.70 5.70 7.25 
 0.4 4.64 4.66 4.60 4.66 4.66 6.35 
 0.6  0.32 0.31 0.27 0.31 3.93 
 0.8  0.24 0.19 0.23 0.23 2.54 
        

100 0.2 6.18 6.19 6.17 6.19 6.19 8.97 
 0.4 4.94 4.93 4.91 4.93 4.93 6.44 
 0.6  0.01 0.12 -0.08 -0.04 1.98 
 0.8  0.15 0.12 0.08 0.11 2.33 
        

200 0.2 5.73 5.76 5.74 5.76 5.76 7.76 
 0.4 3.79 3.74 3.75 3.75 3.75 5.98 
 0.6  0.01 0.13 -0.37 -0.07 2.87 
 0.8  0.04 0.14 -0.26 -0.07 1.78 
        

500 0.2 6.40 6.41 6.41 6.41 6.41 8.82 
 0.4 3.52 3.57 3.58 3.58 3.58 7.11 
 0.6  -0.25 0.11 -0.73 -0.15 2.35 
 0.8  -0.21 0.11 -0.73 -0.13 1.58 
        

1000 0.2 6.72 6.73 6.75 6.74 6.74 8.95 
 0.4 4.30 4.39 4.40 4.39 4.39 7.27 
 0.6  -1.01 0.05 -1.28 -0.42 1.11 
 0.8  -1.13 0.05 -1.28 -0.40 2.65 

Total average for 
 h = 0.2 and 0.4 4.69 4.67 4.68 4.69 4.69 6.72 

Total average for 
 h = 0.2, 0.4, 0.6 and 0.8  2.31 2.43 2.24 2.37 4.37 
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Table 2.  The average computation time of the proposed RBS algorithm and the five 

different meta-heuristics (FDM) proposed by Feldmann and Biskup 

 n = 10 n = 20 n = 50 n = 100 n = 200 n = 500 n = 1,000 

  RBS: h = 0.2 < 0.01 < 0.01 0.021 0.15 1.12 15.37 232.10 
  RBS: h = 0.4 < 0.01 < 0.01 0.025 0.14 1.11 15.46 228.79 
  RBS: h = 0.6 < 0.01 < 0.01 0.024 0.14 1.12 15.66 230.44 
  RBS: h = 0.8 < 0.01 < 0.01 0.028 0.15 1.11 15.48 229.56 

Average of RBS < 0.01 < 0.01 0.024 0.145 1.115 15.49 230.22 

Average of FDM   0.9 47.8 87.3 284.9 955.2 3,547.2 10,962.5 

  
 

 


