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Abstract: 
 

   Alzheimer’s disease (AD) is responsible for the most common form of dementia among elderly 

people. Signature features of the AD brain are intra/extracellular deposits of β-amyloid (Aβ) and 

neurofibrillary tangles composed of hyperphosphorylated tau. Recent evidence indicates that in AD 

altered Zn2+ homeostasis can play an important role in the development of the disease as the cation 

promotes Aβ oligomerization and plaque formation. In this study, we investigated whether 

intraneuronal Zn2+ homeostasis is affected by known “pro-AD factors” such as mutant forms of the 

amyloid precursor (APP), presenilin-1 (PS1), and tau proteins. Oxidative stress is a potent trigger 

for mobilization of intracellular free Zn2+ ([Zn2+]i) and we therefore evaluated ROS-driven [Zn2+]i 

rises in neurons obtained from triple transgenic AD mice (3xTg-AD) that express mutant APP, PS1 

and tau. In this study, [Zn2+]i rises triggered by prolonged exposure to the membrane-permeant 

oxidizing agent 2,2'-dithiodipyridine were found to be significantly higher in 3xTg-AD neurons 

when compared to control cultures, suggesting that neuronal expression of pro-AD factors can 

facilitate altered Zn2+ homeostasis. 
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INTRODUCTION 

 

   Alzheimer’s disease (AD) is the most common neurodegenerative disorder of the aging brain.  

AD is associated with the appearance of parenchymal deposits of β-amyloid (Aβ) and 

neurofibrillary tangles made of hyperphosphorylated-tau protein (h-tau) surrounded by altered 

neuritic processes and reactive glia. Growing evidence suggests that alteration in Zn2+ levels is an 

important contributing factor in AD as the cation can induce Aβ oligomerization and plaque 

formation (Frederickson et al., 2005).  

   Zn2+ is a potent mediator of neuronal death (Sensi and Jeng, 2004) and intraneuronal Zn2+ 

([Zn2+]i) homeostasis is tightly controlled by a balance between influx, sequestration, buffering, and 

extrusion. Most Zn2+ enters neurons through Ca2+-permeable glutamate receptors (i.e: the NMDA 

and divalent-permeable AMPA receptors) and voltage-sensitive Ca2+ channels (Sensi et al., 1997). 

Zn2+ buffering and sequestration are largely controlled by Zn2+-binding proteins (metallothioneins; 

MTs) and mitochondria, while extrusion is mediated by the activity of several Zn2+ transporters 

(Sekler et al., 2007).   

   Zn2+ binding to MTs is greatly affected by changes in the redox state of the two Zn2+/Cysteine 

cluster regions. Recent studies indicate that endogenous reactive oxygen species (ROS) or 

exogenous oxidants are able to promote harmful Zn2+ release from MTs (Aizenman et al., 2000; 

Bossy-Wetzel et al., 2004; Maret, 2000). MTs are present in the central nervous system in three 

isoforms (MT1, 2 and 3), but, while MT1 and MT2 are expressed in astrocytes, MT3 is selectively 

expressed in neurons (Aschner, 1996), thereby representing a potential injurious source of 

releasable Zn2+ inside of neurons (Lee et al., 2003).  

   Zn2+ is sequestered by mitochondria (reviewed in Sensi and Jeng, 2004; Gazaryan et al., 2007; 

Malaiyandi et al., 2005) and, notably, mitochondrial Zn2+ can be re-released into the cytosol in a 

Ca2+-dependent fashion (Frazzini et al., 2007; Sensi et al., 2003). Mitochondrial Zn2+ accumulation 

is not always a benign process as the cation can potently disrupt mitochondrial function and 
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promote strong oxidative stress as well as neuronal death (Brown et al., 2000; Gazaryan et al., 2007; 

Malaiyandi et al., 2005; Sensi et al., 1999). 

   Recent studies suggest ways by which disruption of Zn2+ homeostasis might play a role in AD-

related neurodegeneration (Frederickson et al., 2005; Religa et al., 2006). Expression levels of Zn2+ 

transporters such as ZnT1, ZnT4 and ZnT6 are altered in the brain of individuals affected by mild 

cognitive impairment (MCI) and AD (Lovell et al., 2005; Lovell et al., 2006). Furthermore, studies 

in AD animal models have shown that genetic ablation of synaptic Zn2+ (Lee et al., 2002) or use of 

Zn2+ chelators can have a significant effect on brain accumulation of Aβ (Cherny et al., 2001; Lee 

et al., 2002; Lee et al., 2004). Further substantiating a role for Zn2+ unbalance in AD, a recent phase 

II clinical trial employing the cell-permeable Zn2+/Cu2+ modulator clioquinol has been reported to 

produce a significant decrease in the rate of cognitive decline in a subset of AD patients (Ritchie et 

al., 2003).  

   Oxidative stress is an additional contributing factor in AD (Butterfield et al., 2001) and in this 

study, we investigated whether expression of pro-AD factors such as mutant forms of the amyloid 

precursor protein (APP), presenilin-1 (PS1) and tau protein can modulate ROS-mediated [Zn2+]i 

rises in cultured cortical neurons obtained from a triple transgenic mouse model of AD (3xTg-AD). 

3xTg-AD mice display the major pathological features of the AD brain, including progressive and 

age-dependent Aβ and tau pathology, and show an early (at 4-6 month of age) intraneuronal 

accumulation of Aβ in AD-vulnerable hippocampal neurons that well correlates with concomitant 

appearance of signs of altered synaptic plasticity and cognitive deficits (Billings et al., 2005; Oddo 

et al., 2003).  
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MATERIALS AND METHODS 

 

Materials. FluoZin-3 AM and Newport Green diacetate were purchased from Molecular Probes 

(Invitrogen, Milan, Italy). 2,2'-dithiodipyridine (DTDP) was purchased from Sigma-Aldrich (Milan, 

Italy). Tissue culture media and serum were from Gibco (Invitrogen, Milan, Italy). All other 

chemicals and reagents were obtained from common commercial sources.   

 

Animal cell cultures. All animal procedures were approved by our institutional animal care 

and use committee, and are in accordance with the NIH “Principles of laboratory animal care” and 

national laws. Murine cortical cultures were prepared from embryonic 3xTg-AD, presenilin-1 

knock-in (PS1KI), and non-Tg (CD1) mice. Neurons were plated upon astrocytic monolayers on 

poly-lysine + laminin coated coverslips as previously described (Sensi et al., 1999). 

 

[Zn2+]i  imaging studies. [Zn2+] imaging was carried out using an inverted microscope coupled to a 

xenon lamp, a PC-controlled filter wheel, a 40X, epifluorescence oil immersion objective, and 

fluorescent cubes. Cultures (at 7 D.I.V.) were loaded in the dark, with Newport Green diacetate (3 

µM) or FluoZin-3 AM (5 µM) in a HEPES-buffered medium (HCSS) whose composition was (in 

mM): 120 NaCl, 5.4 KCl, 0.8 MgCl2, 20 HEPES, 15 glucose, 1.8 CaCl2, 10 NaOH, pH 7.4, for 30 

min at 25ºC, then washed in HCSS and kept in the dark for an additional 30 min; excitation was at 

490 nm and emission at 530 nm. Experiments were carried out at room temperature (25ºC). Drugs 

were applied by bath application and removed through a rapid flow exchange system. Images were 

acquired with a 12 bit digital CCD camera (ORCA-HR, Hamamatsu, Bridgewater, NJ) and 

analyzed (after background subtraction from a cell-free region of the dish) with Metafluor 6.0 

imaging software (Universal Imaging Corporation, Downingtown, PA). Fluorescence values where 

then converted in [Zn2+]i calibrated values by employing the following equation: [Zn2+]i = Kd(F-

Fmin)/(Fmax-F) where Kd is 15 nM (FluoZin-3) or 1 µM (Newport Green). Fmax was obtained at 
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the end of each experiment by adding the Zn2+-selective ionophore Na+-pyrithione (10 µM) in the 

presence of 50 µM Zn2+, while baseline fluorescence values were considered as Fmin.   

 

Experiment replication and statistics.  All experiments reported represent at least 3 independent 

replications. Comparisons were obtained by Student-Newman-Keuls’ test (p < 0.001). 

 

 

 

RESULTS  

 

   To evaluate dynamic changes in [Zn2+]i levels, cultured (7 D.I.V.) cortical neurons obtained from 

3xTg-AD and control mice were loaded with the Zn2+-selective fluorescent probes FluoZin-3 or 

Newport Green (Gee et al., 2002; Sensi et al., 1999). 3xTg-AD mice have been developed by 

LaFerla and colleagues by introducing two transgenes (APPswe and tauP301L) into the germline of the 

mutant PS1M146V knock-in mouse (Oddo et al., 2003), and therefore, in our study, ROS-mediated 

[Zn2+]i rises in 3xTg-AD neurons were compared with both PS1KI and non-Tg cultures considered 

as controls. Probe loaded cultures were exposed to the oxidizing compound 2,2'-dithiodipyridine 

(DTDP) and changes in either FluoZin-3 or Newport Green fluorescence units converted in 

calibrated [Zn2+]i values. In pilot experiments, we evaluated DTDP-driven [Zn2+]i rises in 3xTg-AD 

(and control) neurons loaded with Newport Green, a Zn2+-sensitive probe that shows an 

intermediate affinity (Kd = 1 µM) for the cation. In these experiments, exposure to different DTDP 

concentrations (up to 200 µM) failed to promote any significant Zn2+-dependent fluorescence 

increase, indicating that DTDP-mediated [Zn2+]i rises were in a (sub-micromolar) range not 

detectable by the probe (data not shown). We then repeated the DTDP challenge in 3xTg-AD, 

PS1KI and non-Tg neurons loaded with the high affinity (Kd = 15 nM) Zn2+-selective probe 
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FluoZin-3 and evaluated [Zn2+]i rises in the three cultures. In these experiments, DTDP exposure 

was found capable to promote detectable increases in probe fluorescence. A set of dose-finding 

experiments (i.e.: DTDP concentrations ranging from 10 to 50 µM) indicated that DTDP at 50 µM 

is sufficient to bring [Zn2+]i transients to saturating molar values (> 150 nM) that are not suitable for 

reliable quantification with FluoZin-3, while optimal [Zn2+]i excursions could be obtained with 

prolonged (10 min) exposure to 25 µM DTDP (Fig.1).  FluoZin-3 loaded AD and control cultures 

showed no differences in basal [Zn2+]i levels, while analysis of peak [Zn2+]i rises obtained upon 

exposure to DTDP (25 µM; 10 min) revealed significantly higher levels in 3xTg-AD neurons (mean 

± SEM: 20.17 ± 3.76 nM) when compared with PS1KI  (5.51 ± 0.74 nM)  and non-Tg cultures (0.10 

± 0.15 nM; p< 0.001; Fig.2A). Peak [Zn2+]i rises in PS1KI neurons were significantly greater than 

those observed in non-Tg neurons (p< 0.001). To better estimate the extent of DTDP-mediated 

[Zn2+]i increases, we also performed an integral analysis of the overall cytosolic Zn2+ overload 

occurring during the 10 minute exposure to the oxidant. Confirming what observed in the case of 

peak [Zn2+]i levels, cytosolic Zn2+ overload was found to be significantly higher (p< 0.001) in 

3xTg-AD cultures (Fig. 2B).  

  

 

 

DISCUSSION 

    

   Results presented in this study indicate that expression of pro-AD factors such mutant APP, PS1, 

and tau can facilitate perturbation of intraneuronal Zn2+ homeostasis.   

   DTDP can catalyze disulfide exchange and mobilizes Zn2+ from MTs in vitro (Jiang et al., 1998) 

thus, the intraneuronal [Zn2+]i rises observed upon DTDP exposure are likely due to Zn2+ release 

from MTs. It should be pointed out that altered Zn2+ homeostasis, MTs expression, and increased 

oxidative stress are all playing a critical role in AD and brain aging (Mocchegiani et al., 2005).  
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   In AD, Aβ generates ROS (Behl et al., 1994) and can thereby promote ROS-driven [Zn2+]i 

release. [Zn2+]i accumulation can, in turn, trigger potent mitochondrial dysfunction and further ROS 

generation (reviewed in Sensi and Jeng, 2004). Thus, Zn2+-induced oxidative stress can act as a 

catalyst and enhancer of a self-perpetuating vicious cycle.  

   AD-associated alterations in [Zn2+]i homeostasis can have profound implications for the 

progression of the disease by interfering with Aβ oligomerization. Recent developments in AD 

research strongly support the view that the severity of neuronal loss and dementia is mediated by 

soluble Aβ oligomers, rather than fibrillar and insoluble deposits of Aβ (reviewed in LaFerla et al., 

2007). There is compelling evidence that, in the brains of AD subjects and AD animal models, 

levels of soluble Aβ species correlate better with cognitive decline than plaque density (Gong et al., 

2003; Lesne et al., 2006; Lue et al., 1999; Naslund et al., 2000; Oddo et al., 2006a). Studies in 

brains from AD patients and AD animal models have shown that formation of Aβ oligomers is 

initiated intracellularly rather than in the extracellular space (Walsh et al., 2000; Oddo et al., 2006b) 

and indicated that such process potently impairs synaptic transmission.  

   In this scenario, altered levels of intraneuronal Zn2+ might exert a critical role in setting the stage 

for the formation of an early nidus of intrasynaptic oligomerization of Aβ.  

   It should be also underlined that brain aging is the major risk factor for AD and is a potently 

disrupting Zn2+ homeostasis. Animal studies in neurons from aging hippocampi indicate that MT3 

expression is more abundant compared to young hippocampal extracts (Giacconi et al., 2003). MTs 

are potent antioxidants and protective factors against stress conditions and increased MT expression 

in the aging brain may simply reflect a protective endogenous response to a sub-chronic state of 

inflammatory and/or oxidative stress. On the other hand, it is conceivable that protective actions of 

MTs can be overridden by a concomitant increase in ROS-driven [Zn2+]i levels. As in the aging 

brain (and even more so in the AD brain) there is an increase in free radical generation, it is possible 

that ROS induce a chronic MT up-regulation that leads to higher intracellular availability of 
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releasable Zn2+ (Mocchegiani et al., 2001; Mocchegiani et al., 2004). Finally, it should be 

considered that aging and AD greatly affect mitochondrial capability to cope with both cation loads 

and oxidative stress and these conditions are associated with increased mutations of mitochondrial 

DNA as well as expression of defective mitochondrial proteins (Raule et al., 2007; Wallace, 2005), 

thereby setting the stage for a self-perpetuating vicious cycle. 

   In summary, in light of the pivotal role played by oxidative stress and [Zn2+]i unbalance in AD-

related neuronal degeneration, our study suggests an intriguing interplay between free radical 

production and pro-AD factors in the generation of altered [Zn2+]i homeostasis. Further 

investigations are needed to elucidate the pathways involved and how brain aging can modulate this 

pathological process.  
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Figure legends 

  

Fig. 1. Time course of DTDP-mediated [Zn2+]i rises in neurons isolated from 3xTg-AD, PS1KI, 

and non-Tg cortical neurons. FluoZin-3 loaded 3xTg-AD (�), PS1KI (�), and non-Tg (�) neuronal 

cultures were imaged before and during a 10 min exposure to 25 µM DTDP. Traces show mean (± 

SEM) [Zn2+]i rises in 15-27 neurons from one experiment representative of 3. 

 

Fig. 2. DTDP promotes different degrees of [Zn2+]i mobilization in 3xTg-AD, PS1KI , and non–

Tg cultured neurons. (A) FluoZin-3 loaded transgenic (3xTg-AD, PS1KI) and non-transgenic 

cortical neurons were exposed to DTDP (same paradigm as in Fig.1) and peak [Zn2+]i levels 

evaluated. Bar graph depicts peak [Zn2+]i rises (mean ± SEM) of >48 neurons from the three 

different cultures (n=3 for each condition). (B) Bar graph depicts the area under the curve of [Zn2+]i 

loads (mean ± SEM) of  a 10 min DTDP exposure. * and #  indicate differences between 3xTg-AD 

and PS1KI or PS1KI and non-Tg neurons, respectively (p< 0.001).     
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