

Presence of low-grade inflammation in old rats does not worsen skeletal muscle loss under an endotoxemic and dietary stress

Gilles Mayot, Karine Vidal, Lydie Combaret, Denis Breuillé, Stephanie Blum, Christiane Obled, Isabelle Papet

► To cite this version:

Gilles Mayot, Karine Vidal, Lydie Combaret, Denis Breuillé, Stephanie Blum, et al.. Presence of low-grade inflammation in old rats does not worsen skeletal muscle loss under an endotoxemic and dietary stress. Experimental Gerontology, 2007, 42 (12), pp.1167. 10.1016/j.exger.2007.09.002 . hal-00499029

HAL Id: hal-00499029 https://hal.science/hal-00499029

Submitted on 9 Jul 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Accepted Manuscript

Presence of low-grade inflammation in old rats does not worsen skeletal muscle loss under an endotoxemic and dietary stress

Gilles Mayot, Karine Vidal, Lydie Combaret, Denis Breuillé, Stephanie Blum, Christiane Obled, Isabelle Papet

 PII:
 S0531-5565(07)00214-8

 DOI:
 10.1016/j.exger.2007.09.002

 Reference:
 EXG 8384

To appear in: *Experimental Gerontology*

Received Date:3 May 2007Revised Date:8 August 2007Accepted Date:14 September 2007

Please cite this article as: Mayot, G., Vidal, K., Combaret, L., Breuillé, D., Blum, S., Obled, C., Papet, I., Presence of low-grade inflammation in old rats does not worsen skeletal muscle loss under an endotoxemic and dietary stress, *Experimental Gerontology* (2007), doi: 10.1016/j.exger.2007.09.002

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Presence of low-grade inflammation in old rats does not worsen skeletal muscle
2	loss under an endotoxemic and dietary stress
3	
4	Gilles Mayot ^a , Karine Vidal ^b , Lydie Combaret ^a , Denis Breuillé ^b , Stephanie Blum ^b ,
5	Christiane Obled ^a , Isabelle Papet ^{a*}
6	
7	^a INRA, Centre Clermont-Ferrand – Theix, UMR 1019 Unité de Nutrition Humaine, F-63122
8	Saint-Genès-Champanelle, France
9	^b Nutrition and Health Department, Nestlé Research Center, 1000 Lausanne 26, Switzerland
10	
11	* To whom correspondence should be addressed: Dr. Isabelle Papet, Unité de Nutrition
12	Humaine, INRA Theix, 63 122 Saint-Genès-Champanelle, France.
13	Telephone: 33 4 73 62 42 01
14	Fax: 33 4 73 62 47 55
15	Email: papet@clermont.inra.fr
16	
17	Running title: Response to a stress in inflamed or not old rats
18	
19	Keywords: Ageing; Inflammation; Lipopolysaccharide; α_2 -macroglobulin; Fibrinogen;
20	Albumin.
21	
22	Abbreviations used: CRP: C-reactive protein, BW: body weight, EDL: extensor digitorum
23	longus, IL-6: interleukin-6, LGI-Con: low-grade inflamed rats submitted to the control
24	treatment, LGI-Str: low-grade inflamed rats submitted to the stress, NI-Con: non-inflamed

- 25 rats submitted to the control treatment, <u>NI-Str:</u> non-inflamed rats submitted to the stress,
- 26 TNF-α: tumor necrosis factor-alpha.

27 Abstract

28 The study aimed to determine if age-associated low-grade inflammation aggravates the 29 response to a stress, especially regarding to sarcopenia. Initial inflammatory status in 22 30 month-old rats was based on plasma α_2 -macroglobulin and fibrinogen concentrations. The 31 stress applied was a single intra-peritoneal injection of lipopolysaccharide followed by a 23-32 day period of malnutrition, *i.e.* a 4% casein diet distributed in quantity limited to 50% of 33 spontaneous food intake. The response to the stress was analyzed in non-inflamed and low-34 grade inflamed rats and compared to non-inflamed and low-grade inflamed rats, which 35 received the control treatment (*i.e.* no lipopolysaccharide injection and an 18% casein diet). 36 The stress-induced body weight loss was higher in inflamed than non-inflamed rats, but the 37 decrease in muscle weight was not worsened. Muscle protein turnover was not affected by the 38 stress. Plasma α_2 -macroglobulin levels increased after the stress, whatever the initial 39 inflammatory status. However, fibrinogen levels decreased more in inflamed than non-40 inflamed rats and albumin levels were not affected by the stress. Independently of the initial 41 inflammatory status, the liver glutathione content was strongly depleted by the stress. These 42 results extend and support our previous findings by demonstrating that age-associated low-43 grade inflammation does not aggravate sarcopenia in old rats.

44 **1. Introduction**

45 Frailty syndrome is an age-associated physiological state of vulnerability, resulting 46 from impaired homeostatic reserves and a reduced capacity to withstand stress (Fried and 47 Walston, 2003). Frailty consists of multi-system decline and is considered to be a 48 consequence of changes in neuromuscular, endocrine and immune functions that occur as 49 people progress in age (Fried and Walston, 2003; Vanitallie, 2003; Ferrucci et al., 2005; 50 Paganelli et al., 2006). Frailty often results in several "vicious loops": neuromuscular 51 impairment induces increased rate of falls and fractures in old age; the act of falling causes 52 itself hospitalization and immobilization, which aggravates sarcopenia; sarcopenia leads to 53 deficit in continuous neuromuscular training which brings about neuromuscular impairment 54 (Bales and Ritchie, 2002; Fried and Walston, 2003; Mühlberg and Sieber, 2004). The 55 unintentional body weight loss, which is a frailty criterion (Fried et al., 2001), usually results 56 from poor responses to successive various stresses (Vellas et al., 1992).

Frail subjects exhibit evidence of increased inflammation revealed by modified acute 57 58 phase protein concentrations (Walston et al., 2002; Puts et al., 2005). Age-associated increase 59 in the levels of inflammatory markers, such as interleukin-6 (IL-6) and CRP, are associated 60 with disability and mortality (Ferrucci et al., 1999; Harris et al., 1999; Ferrucci et al., 2002; 61 Cohen et al., 2003). Since age-associated inflammation appears to be an important component 62 of frailty (De Martinis et al., 2006), it could worsen the aged subjects' response to a stress. In 63 the same way, acute phase proteins, such as α_2 -macroglobulin and fibrinogen have been 64 recently identified as markers of frailty in old rats (Mayot et al., 2007).

65 <u>CRP, IL-6 and tumor necrosis factor- α (TNF- α) receptor-2 levels were negatively</u> 66 correlated with the rate of skeletal muscle protein synthesis (Toth et al., 2005). Similarly, in 67 frail human skeletal muscle, TNF- α mRNA and protein levels decreased in concert with 68 increases in strength and protein synthesis after 3 months of resistance exercise (Greiwe et al.,

4/24

69 2001). These results support the idea that age-associated low-grade inflammation affects 70 skeletal muscle metabolism and could participate in sarcopenia development. However, they 71 do not prove the causal relationship within the old population. Indeed, inflamed/frail subjects 72 are often older than control groups (Walston et al., 2002; Barbieri et al., 2003). Thus, these 73 observations may be independent of inflammatory status and more directly related to age. 74 Indeed we observed that low-grade inflammation, lasting at least one month, does not 75 enhance sarcopenia in old rats (Mayot et al., 2006). Since this investigation was performed in 76 rats kept in conditions minimizing any kind of stress, it is not excluded that age-associated 77 low-grade inflammation could impact the old rats' response to a stress.

78 Diseases, such as infections, and periods of malnutrition, which are frequent in elderly 79 patients, are stressor events that may accelerate frailty (Fried and Walston, 2003). Sarcopenia 80 is associated with a doubled risk of nosocomial infection (Cosqueric et al., 2006). Poor daily 81 energy intake and protein intake adjusted for energy intake are related to frailty (Bartali et al., 82 2006). Four to 31% of free-living and up to 60% of geriatrics patients on admission in 83 hospitals or nursing homes have shown evidence of malnutrition (Seiler, 2001). Most of these 84 deficits affecting ill elderly subjects are related to proteins and micronutrients. An low protein 85 diet (0.45 vs. 0.92 g/kg/d) reduced muscle mass and function in elderly women (Castaneda et 86 al., 1995). Acute diseases and malnutrition decrease skeletal muscle mass, which provides 87 amino acids for most vital functions (Heymsfield et al., 1982; Obled et al., 2002).

The aim of the present study was to evaluate whether age-associated low-grade inflammation impacts the old rats' response to a stress. The chosen stress combines a shortlasting inflammation (endotoxin injection) and protein-energy malnutrition. This double stress was used to mimic a situation in elderly subjects, who frequently face any kind of transient febrile episode followed by a period of protein-energy malnutrition. The investigation was primarily focused on body weight change, skeletal muscle weight and protein metabolism.

94 The acute phase protein response, weights of various organs and the glutathione liver status95 were considered as complementary targets.

96

97 2. Material and methods

98 2.1. Animals

99 Wistar male rats were produced and bred in our conventional, non specific-pathogen-100 free, animal facility (Unité Expérimentale de Nutrition Comparée, INRA, Theix, France). 101 Before the experiment, rats were maintained in collective cages (3 to 4 per cage) under 102 controlled conditions (temperature 21°C, relative humidity 55%, 12-h dark period starting at 103 2000 h). They had free access to water and standard pellets (A04 from SAFE (Scientific 104 Animal Food and Engineering), Villemoisson-sur-orge, France). The composition of the diet 105 was 16% protein, 3% fat, 60% carbohydrates, 12% water, fibers, vitamins and minerals. The 106 study was performed according to the current legislation on animal experiments in France.

107

108 2.2. Experimental design

109 2.2.1. Pre-experimental period

110 At the age of 22 months, rats which were apparently ill and those exhibiting acute 111 phase proteins levels that are predictive of old rat mortality (Mayot et al., 2007) [i.e. α_2 -112 macroglobulin and fibrinogen concentrations higher than 500 mg/l and 5.4 g/l, respectively] 113 were excluded. Thirty-four apparently healthy rats were housed in individual cages and 114 acclimatized to their new environment for 3 weeks. They received a diet containing 18% 115 case over 4 daily periods of 3 hours each, regularly spaced. The quantity of food distributed 116 during the light and dark periods were adjusted to represent about 30 and 70% of the ad 117 *libitum* daily intake, respectively. Four rats died during this period and two rats, which did not

118 eat, were excluded. Blood was withdrawn from a lateral tail vein 7 days before the end of the119 pre-experimental period.

120 2.2.2. Main experiment

121 Rats were distributed into 2 classes (non-inflamed (NI) and low-grade inflamed (LGI), 122 n = 14, each) based on their inflammatory status that was analyzed by hierarchical clustering 123 using Ward distance on α_2 -macroglobulin and fibrinogen variables (Mayot et al., 2007). At 124 day 0, each class was sub-divided into two groups receiving either the control (Con) or the 125 stress (Str) treatment. The control treatment, consisting in maintaining rats in the pre-126 experimental conditions, was applied to 6 non-inflamed rats (NI-Con group) and 5 low-grade 127 inflamed rats (LGI-Con group). The stress consisted in a single intra-peritoneal injection of 128 lipopolysaccharide from *Escherichia coli* 0127:B8 (0.4 mg/kg) followed by a 23-day period 129 of protein-energy malnutrition, during which rats received a diet containing 4% casein in 130 quantity individually limited to 50% of spontaneous food intake (distributed in four meals as 131 for control treatment). It was applied to 8 non-inflamed rats (NI-Str group) and 9 low-grade 132 inflamed rats (LGI-Str group). Rats were weighed at day 0 then three times per week. Blood 133 was sampled at day 8 at day 21 for plasma analyses. At day 23, all surviving rats (n = 5 for 134 NI-Con, LGI-Con and NI-Str groups and n = 7 for LGI-Str group) were anaesthetized with an 135 intra-peritoneal injection of ketamine (150 mg/kg). Epitrochlearis muscle was quickly 136 removed and incubated to measure in vitro protein metabolism, as already described 137 (Combaret et al., 2003). Rats were then killed by aortic blood withdraw. Posterior leg skeletal 138 muscles, liver, spleen, kidneys, epidydimal adipose tissue, mesentery, small intestine, colon 139 were dissected and weighted. Liver was frozen at -80 °C until glutathione analysis.

140 2.3. Biochemical measurements

Plasma α₂-macroglobulin, fibrinogen and albumin were measured as already described
(Mayot et al., 2007). Total glutathione was quantified spectrophotometrically using a standard

143 enzymatic recycling procedure and 5,5'-dithio-bis-2-nitrobenzoic acid as oxidant (Malmezat144 et al., 1998).

145 2.4. Statistical analysis

146 Values are given as means \pm SE. The significance of difference between non-inflamed 147 and low-grade inflamed rats during the pre-experimental period was analyzed with Student's t 148 test for unpaired data. The significance of the initial inflammatory status and the treatment 149 effects was analyzed with 2-way ANOVA. For parameters measured before and at various 150 times after stress induction ANOVA for repeated measurements was performed with the 151 initial inflammatory status and the treatment as the between-rat factors and the time as the 152 within-rat factor. The significance of differences among the four groups was further analyzed 153 by Fisher's PLSD test, when appropriate. Linear regression was used to determine the 154 relationship between acute phase protein variation and body weight change. P values ≤ 0.05 155 were considered significant. Statistical analyses were performed using StatView for 156 Windows, version 5 software (SAS Institute, Cary, NC), excepted the hierarchical clustering 157 using Ward distance, which was performed with XLSTAT, version 7.5 software (Addinsoft, 158 Paris, France).

159

161 3.1. Old rats' characteristics before the experimental period

According to the experimental design, <u>low-grade</u> inflamed rats exhibited 287 and 41% higher initial plasma concentrations of α_2 -macroglobulin (<u>147 ± 21 vs. 38 ± 6 mg/l, P =</u> <u>0.0002</u>) and fibrinogen (<u>4.5 ± 0.2 vs. 3.2 ± 0.1 g/l, P = 0.0002</u>), respectively (Table 1). As expected, <u>low-grade</u> inflamed rats exhibited 13% lower initial concentration of albumin than non-inflamed rats (<u>12.1 ± 0.6 vs. 13.9 ± 0.6 g/l, P = 0.055</u>); however this difference <u>was only</u> <u>a trend</u>. Maximal initial concentrations of α_2 -macroglobulin and fibrinogen were 307 mg/l

¹⁶⁰ **3. Results**

168 and 5.6 g/l, respectively, and minimal initial concentration of albumin was 8.3 g/l. The 169 relative body weight loss occurring over the pre-experimental period (day -22 to day 0) was 170 74% higher in low-grade inflamed than non-inflamed rats (- 6.7 ± 1.3 vs. - 3.9 ± 1.2 %, P = 171 0.134) without change in food intake; however the effect of the initial inflammatory status did 172 not attain statistical significance. Based on 2-way ANOVA, groups did not differ with respect 173 to mean body weights at days -22 and 0, and food intake before day 0 (Table 1). No 174 interaction between treatment and initial inflammatory status was significant for any 175 measured parameter (Table 1) indicating the absence of any bias related to the configuration 176 of the groups.

177 3.2. Stress-induced mortality and body weight change in low-grade inflamed and non178 inflamed old rats

179 The stress (endotoxin injection followed by protein-energy malnutrition) applied to the 180 old rats induced 37 and 22% of mortality in NI-Str and LGI-Str groups, respectively. Indeed, 181 three rats from <u>NI-Str</u> group deceased at days 1, 2, and 6 and two rats from <u>LGI-Str</u> group 182 deceased at days 1 and 22. No mortality was observed in non-stressed rats, but one rat from 183 NI-Con group was euthanized at day 17 due to its huge body weight loss. As expected, mean 184 relative body weight losses (%) over 23 days were very much higher in stress groups (NI-Str: 185 21.0 ± 1.0 and LGI-Str: 24.0 ± 1.3) than in control groups (NI-Con: 2.2 ± 0.6 and LGI-Con: 186 2.2 ± 1.4). Based on the ANOVA for repeated measurements, cumulative body weight loss 187 was dependent on the treatment and the time but not on the initial inflammatory status of rats 188 (Fig. 1). The significant interaction between the treatment, the initial inflammatory status and 189 the time likely reflects the fact that relative body weight losses over time were higher in LGI-190 Str than NI-Str, whereas they were similar in NI-Con and LGI-Con groups. Comparison of 191 results from LGI-Str and LGI-Con groups with the ANOVA for repeated measurements 192 indicated that the relative body weight losses over time was higher in LGI-Str than in NI-Str

(there was a significant interaction between the initial inflammatory status and time). It is worthwhile to note that stress-induced body weight loss (NI-Str and LGI-Str groups) was correlated with initial concentration of either α_2 -macroglobulin (r² = 0.545, P = 0.006) or fibrinogen (r² = 0.331, P = 0.050) and inversely correlated with the initial albumin concentration (r² = 0.340, P = 0.047).

198 3.3. Stress effects on skeletal muscles in low-grade inflamed and non-inflamed old rats

199 Based on two-way ANOVA, the stress (endotoxin injection followed by protein-200 energy malnutrition) applied to the old rats decreased absolute and relative gastrocnemius 201 muscle weights by 12% (2.02 ± 0.07 vs. 2.31 ± 0.06 g) and 15% (323 ± 11 vs. 379 ± 17 202 mg/100g body weight at day 0 (BW)), respectively (Table 2). The same trend was observed 203 for the absolute and relative weight of *tibialis anterior* (-9% (744 \pm 26 vs. 815 \pm 24 g) and -204 11% (119 ± 5 vs. 134 ± 5 mg/100 g BW)). The stress had no effect on *entensor digitorum* 205 longus (EDL) and soleus. The initial inflammatory status did not affect the muscle weights, 206 excepted for the relative weight of *soleus*, which was 18% higher in inflamed (30.1 ± 0.8) 207 mg/100 mg BW) than in control rats $(25.5 \pm 1.9 \text{ mg}/100 \text{ mg BW})$. Neither protein synthesis, 208 nor protein degradation was affected by the treatment or the initial inflammatory status (Fig. 209 2).

3.4. Stress effects on organs and adipose tissues in low-grade inflamed and non-inflamed old
rats

The stress (endotoxin injection followed by protein-energy malnutrition) applied to old rats decreased absolute (and relative) weights of spleen, liver, kidneys and small intestine by about 33 (34), 27 (28), 26 (28) and 10% (12%), respectively (Table 3). The significance was not reached for the stress-induced decreases in absolute and relative weights of colon, mesentery and epidydimal adipose tissue respectively. Inflamed rats exhibited higher absolute (42%) and relative (48%) weights of kidneys and 11% higher relative weight of liver than

218 non-inflamed rats. Interaction between stress and initial inflammatory status was significant 219 for absolute weight of kidneys and relative weights of kidneys and liver, indicating that stress-220 induced decreases in these organ weights were higher in inflamed than non-inflamed rats. The 221 initial inflammatory status had no significant effect on absolute or relative weights of colon, 222 mesentery and epidydimal adipose tissue.

223 3.5. Stress effects on acute phase proteins and liver glutathione in low-grade inflamed and

224 non-inflamed old rats

225 The stress, the initial inflammatory status and the time had significant effects on both 226 α_2 -macroglobulin and fibrinogen plasma concentrations (Fig. 3), and the interaction between 227 the stress and the time was significant for fibrinogen. Only initial inflammatory status had a 228 significant effect on albumin plasma concentration. As expected, α_2 -macroglobulin, 229 fibrinogen and albumin were stable over time in non-stressed rats (NI-Con and LGI-Con 230 groups). In stressed rats (NI-Str and LGI-Str groups), α_2 -macroglobulin was higher at days 8 231 and 21 than day -7. In NI-Str group, it was higher at day 8 than day 21. However, due to high 232 variability, differences were not significant in LGI-Str group. The decrease in fibrinogen at 233 days 8 and 21 was higher in LGI-Str than NI-Str group to reach similar values as in NI-Con 234 group. Albumin was stable in stressed rats.

The stress, but not the initial inflammatory status, had a significant effect on glutathione status (Fig. 4). Glutathione concentration and content were 59% ($3.04 \pm 0.6 \text{ vs.}$ $7.50 \pm 0.21 \text{ }\mu\text{mol/g}$) and 70% ($37 \pm 7 \text{ }\text{vs.} 126 \pm 8 \text{ }\mu\text{mol}$) lower in stressed than non-stressed rats, respectively.

239

240 **4. Discussion**

The present data indicate that age-associated low-grade inflammation renders old rats more vulnerable to stress-induced body weight loss, although without further decrease in

skeletal muscle weight. Stress-induced decreases in some abdominal organ weights and in fibrinogen plasma concentrations were enhanced by the initial low-grade inflammatory status, but responses of the other acute phase proteins to the stress and stress-induced decreases in liver glutathione concentration and content were independent of the initial inflammatory status of old rats.

248 In agreement with our previous characterization of a cohort of old rats regarding their 249 inflammatory status (Mayot et al., 2007), rats belonging to the non-inflamed groups NI-Con 250 and NI-Str were clearly non-inflamed and those belonging to the inflamed groups LGI-Con 251 and LGI-Str exhibited low-grade inflammation at the beginning of the experiment. Indeed for 252 the formers, their initial plasma α_2 -macroglobulin and fibrinogen levels did not differ from 253 mean values previously observed for each corresponding first quartile in old rats or for adult 254 rats (8 months). Conversely, the others groups exhibited α_2 -macroglobulin and fibrinogen 255 levels similar to mean values previously observed in third quartiles in old rats. Of note, these 256 concentrations reflect low-grade inflammation since they are much lower than those reported 257 in acute (Breuillé et al., 1998; Breuillé et al., 1999) and chronic (Mercier et al., 2002) 258 inflammation. In addition, initial plasma concentrations of acute phase proteins in inflamed 259 old rats are consistent with those observed with age in human. Indeed, in old (66-76 years) 260 healthy subjects fibrinogen level was ~ 47% greater and albumin level ~ 12% lower than in 261 young (22-26 years) healthy subjects (El Yousfi et al., 2005). We have recently shown that 262 increased fibrinogen and α_2 -macroglobulin levels to the range observed in present inflamed 263 rats were associated with increased levels of soluble TNF- α receptor-1 (Mayot et al., 2007). 264 An activation of the TNF- α signaling is likely to occur in inflamed rats and might be active on 265 skeletal muscle protein metabolism, as recently suggested in human (Toth et al., 2005).

266 Interestingly, old rats submitted to the control treatment (<u>NI-Con</u> and <u>LGI-Con</u> 267 groups) exhibited stable levels of plasma acute phase protein concentrations over time. Thus,

268 the inflammatory status defined at the beginning of the experiment was maintained all along 269 the experiment in non-stressed rats. In parallel, final relative weights of liver, kidney and 270 spleen were higher in inflamed than non-inflamed old rats submitted to control treatment. 271 These organs play key role in the control of inflammation and immunity. Taken together, our 272 results support the fact that the spontaneous low-grade inflammation observed in old rats is a 273 chronic inflammation, which could affect the immune system and potentially weaken old rats. 274 This is further supported by the observation that body weight loss observed after the stress 275 was higher in inflamed than non-inflamed old rats.

276 In this context, the response of skeletal muscle to the stress regarding its mass and 277 protein turnover was interesting to compare between initially inflamed and non-inflamed old 278 rats. We recently showed that low-grade inflammation did not aggravate sarcopenia in control 279 conditions (Mayot et al., 2006). In the present study, we confirmed our precedent results since 280 skeletal muscle masses and protein turnover rates were not different between the two control 281 groups <u>NI-Con</u> and <u>LGI-Con</u>. Moreover, present results are going one step further, showing 282 that age-associated low-grade inflammation does not induce any negative effect in regards to 283 skeletal muscle mass and protein metabolism in case of additional stress.

284 The stress applied to old rats, consisting in a single endotoxin injection followed by a 285 23-day period of protein-energy malnutrition, induced severe metabolic disturbances 286 leading to increased mortality rate, loss of body weight and decreased abdominal organ 287 weights. The effect of the stress on acute phase protein response was protein-dependent. 288 Indeed, plasma levels of α_2 -macroglobulin increased, whereas fibrinogen levels decreased 289 and albumin levels did not change in stressed old rats. The increase in α_2 -macroglobulin is 290 consistent with the fact that sepsis and protein-deficient diet are known to stimulate its 291 synthesis in young rats (Breuillé et al., 1998; Lyoumi et al., 1998; Breuillé et al., 1999). If 292 the stress would have been only an inflammatory stress, an increase in fibrinogen would

293 have been also expected. The fact that its plasma concentration decreased under the stress 294 suggests that either its utilization increased or its synthesis was limited by the malnutrition 295 in these old rats. The decrease in fibrinogen concentration is in agreement with data 296 obtained in piglets that were fed with a protein-deficient diet (Jahoor et al., 1999). Taken 297 together, these observations suggest that the transient inflammatory stress (*i.e.* endotoxin 298 injection) and the following protein-energy malnutrition stress used in the present study in 299 old rats may have had opposite effects on some metabolic aspects. Albumin levels were not 300 affected by the stress applied to old rats. By contrast, sepsis and protein-deficient diet are 301 known to decrease it in young rats (Lyoumi et al., 1998; Ruot et al., 2002). Thus, as we 302 already suggested (Mayot et al., 2007), albumin may not be a good nutritional marker in old 303 rats. Glutathione which is known to be very sensitive to protein intake (Hum et al., 1992) 304 and to decrease during infection (Breuillé et al., 1994) was highly depleted in the stressed 305 old rats. The overall effect of the present stress applied in old rats on plasma levels of acute 306 phase proteins and liver glutathione status was largely consistent with known effects of 307 protein-deficient nutrition in young animals, albumin excepted.

308 Unfortunately, the effect of low-grade inflammation on stress-induced mortality in old 309 rats could not be statistically analyzed because of too low number of animals. Low-grade 310 inflammation increased the susceptibility of old rats to body weight loss. Indeed, low-grade 311 inflamed rats lost almost 30 g more body weight under the stress than non-inflamed rats. The higher stress-induced body weight loss in inflamed vs. non-inflamed rats could not be 312 313 explained by differences in adipose tissue or skeletal muscle weights. Part of the higher body 314 weight loss can be explained by higher decreases in liver, spleen kidneys and colon weights, 315 (Table 3). However, the results obtained from longitudinal observations (i.e. body weights 316 measured in the same rats before and during the treatment) are difficult to explain by the 317 transversal observations concerning mean skeletal muscles and organs weights from different

318 groups of rats. Indeed, transversal observations are generally associated with higher 319 variability than measurements performed in longitudinal observations. Finally, tissues and 320 organs that have not been dissected such as the skin, whose weight contributes to ~ 20% of 321 body weight (Obled and Arnal, 1992), might have been more affected in inflamed than non-322 inflamed old rats.

323 Regarding the acute phase reaction, the stress applied in old rats modified differently 324 the fibrinogen kinetic in inflamed as compared to non-inflamed rats. The fibrinogen 325 concentration was decreased by the stress in both groups, but to a greater extend in inflamed 326 than non-inflamed rats. The stress-induced increase in α_2 -macroglobulin might also have been 327 higher but variability was too high to observe a significant effect in LGI-Str group. Finally, 328 the inflammatory status of the old rats did not impact the stress response regarding the 329 glutathione status and the skeletal muscle protein turnover. Taken together, the initial 330 inflammatory status of old rats did not have a strong impact on the metabolic response to the 331 present stress and for sure did not enhance the stress-induced skeletal muscle loss.

332 The failure of low-grade inflammation to worsen the stress-induced skeletal muscle 333 loss extends our previous observation made in non-stressed rats showing that low-grade 334 inflammation does not aggravate sarcopenia (Mayot et al., 2006). The present stress applied in 335 old rats had more effects on splanchnic organs than on skeletal muscles. This is consistent 336 with decreases observed in splanchnic organ weights but not in skeletal muscle weights after a 337 50% dietary restriction in old rats (Chambon-Savanovitch et al., 1999). Similarly, higher 338 decreases in liver (49%) than in gastrocnemius (25%) weights were observed after 10 days of 339 starvation in old rats (Mosoni et al., 1999). Since muscle wasting and weakness are late 340 symptoms of malnutrition (Seiler, 2001), a longer malnutrition period might be required to 341 see differential reduction of skeletal muscle weight according to the initial inflammatory 342 status. In young rats, when starvation is initiated, there is a period of "saving" before skeletal

343 muscle loss becomes significant (Chérel et al., 1991). However, there is a large decrease in 344 skeletal muscle protein synthesis observed in fasting young rats, even during the early phase 345 during which muscle weight is preserved. A decrease in skeletal muscle protein synthesis is 346 also observed in piglets fed a protein-deficient diet (Jahoor et al., 1999). In contrast, skeletal 347 muscle protein turnover was not affected in our stressed old rats. Taken together, these 348 observations suggest that the present double stress (endotoxin injection combined with 349 protein-energy malnutrition) might have induced some early metabolic effects that might have 350 been counteracted by the 23-day period of malnutrition. This assumption seems to be 351 emphasized by the observation of the decreased fibrinogen concentration under the stress, as 352 opposed to the increase usually observed after an inflammatory stress. Thus, to definitively 353 conclude that low-grade inflammation does not worsen sarcopenia in aged, it would be 354 probably necessary to test the impact of another type of stress, for example a stress inducing a 355 more marked skeletal muscle loss than the present stress or a stress for which no opposite 356 metabolic effects are observed.

357 In conclusion, the present study clearly indicates that low-grade inflammation 358 increases the body weight loss induced by the endotoxin injection followed by malnutrition, a 359 stress that mimics a transient febrile episode followed by a period of protein-energy 360 malnutrition, which frequently occurs in elderly. Stress-induced decreases in organ weights 361 and fibrinogen plasma concentration were enhanced by the initial low-grade inflammatory 362 status. The response of skeletal muscle (weight and protein turnover) was not worsened by the 363 low-grade inflammation. This extends and supports our previous findings that age-associated 364 low-grade inflammation does not aggravate sarcopenia.

365 Acknowledgements

366 The authors thank Fabienne Béchereau, Philippe Denis, Johan Gimonet and Françoise367 Glomot for their technical participation.

368

```
369 References
```

Bales, C.W., Ritchie, C.S., 2002. Sarcopenia, weight loss, and nutritional frailty in the elderly.

371 Annual Review of Nutrition 22, 309-323.

- Barbieri, M., Ferrucci, L., Ragno, E., Corsi, A., Bandinelli, S., Bonafé, M., Olivieri, F.,
 Giovagnetti, S., Franceschi, C., Guralnik, J.M., Paolisso, G., 2003. Chronic
 inflammation and the effect of IGF-I on muscle strength and power in older persons.
 American Journal of Physiology Endocrinology and Metabolism 284, E481-E487.
- 376 Bartali, B., Frongillo, E.A., Bandinelli, S., Lauretani, F., Semba, R.D., Fried, L.P., Ferrucci,
- L., 2006. Low nutrient intake is an essential component of frailty in older persons.
 Journals of Gerontology Series A-Biological Sciences & Medical Sciences 61, 589-
- **379 593**.
- 380 Breuillé, D., Voisin, L., Contrepois, M., Arnal, M., Obled, C., 1999. A sustained rat model for

381 studying long-lasting catabolic state of sepsis. Infection and Immunity 67, 1079-1085.

- Breuillé, D., Arnal, M., Rambourdin, F., Bayle, G., Levieux, D., Obled, C., 1998. Sustained
 modifications of protein metabolism in various tissues in a rat model of long-lasting
 sepsis. Clinical Science 94, 413-423.
- Breuillé, D., Malmezat, T., Rosé, F., Pouyet, C., Obled, C., 1994. Assessment of tissue
 glutathione status during experimental sepsis. 16th Congress of the European Society
 of Parenteral and Enteral Nutrition, Birmingham, Clinical Nutrition 13, p. 5-6.
- Castaneda, C., Charnley, J.M., Evans, W.J., Crim, M.C., 1995. Elderly women accommodate
 to a low-protein diet with losses of body cell mass, muscle function, and immune

390 response. American Journal of Clinical Nutrition 62, 30-39.

- 391 Chambon-Savanovitch, C., Felgines, C., Farges, M.C., Pernet, P., Cezard, J.P., Raul, F.,
- 392 Cynober, L., Vasson, M.P., 1999. Severe dietary restriction initiated in aged rats:
 393 evidence for poor adaptation in terms of protein metabolism and intestinal functions.
 394 European Journal of Clinical Investigation 29, 504-511.
- 395 Chérel, Y., Attaix, D., Rosolokska-Huszcz, D., Belkhou, R., Robin, J.P., Arnal, M., Le Maho,
- 396 Y., 1991. Whole-body and tissue protein synthesis during brief and prolonged fasting397 in the rat. Clinical Science 81, 611-619.
- Cohen, H.J., Harris, T., Pieper, C.F., 2003. Coagulation and activation of inflammatory
 pathways in the development of functional decline and mortality in the elderly.
 American Journal of Medicine 114, 180-187.
- 401 Combaret, L., Béchet, D., Claustre, A., Taillandier, D., Richard, I., Attaix, D., 2003. Down402 regulation of genes in the lysosomal and ubiquitin-proteasome proteolytic pathways in
 403 calpain-3-deficient muscle. International Journal of Biochemistry & Cell Biology 35,
 404 676-684.
- 405 Cosqueric, G., Sebag, A., Ducolombier, C., Thomas, C., Piette, F., Weill-Engerer, S., 2006.
 406 Sarcopenia is predictive of nosocomial infection in care of the elderly. British Journal
 407 of Nutrition 96, 895-901.
- 408 De Martinis, M., Franceschi, C., Monti, D., Ginaldi, L., 2006. Inflammation markers
 409 predicting frailty and mortality in the elderly. Experimental and Molecular Pathology
 410 80, 219-227.
- El Yousfi, M., Mercier, S., Breuillé, D., Denis, P., Papet, I., Patureau Mirand, P., Obled, C.,
 2005. The inflammatory response to vaccination is altered in the elderly. Mechanisms
 of Ageing and Development 126, 874-881.
- 414 Ferrucci, L., Ble, A., Bandinelli, S., Windham, B.G., Simonsick, E.M., 2005. Inflammation:

415	he fire of frailty? In: Carey, R. (Ed.), Longevity and Frailty. Springer-Verlag,
416	Heidelberg, pp. 91-98.

- Ferrucci, L., Harris, T.B., Guralnik, J.M., Tracy, R.P., Corti, M.C., Cohen, H.J., Penninx, B.,
 Pahor, M., Wallace, R., Havlik, R.J., 1999. Serum IL-6 level and the development of
 disability in older persons. Journal of the American Geriatrics Society 47, 639-46.
- 420 Ferrucci, L., Penninx, B.W., Volpato, S., Harris, T.B., Bandeen-Roche, K., Balfour, J.,
- 421 Leveille, S.G., Fried, L.P., Md, J.M., 2002. Change in muscle strength explains
 422 accelerated decline of physical function in older women with high interleukin-6 serum
 423 levels. Journal of American Geriatrics Society 50, 1947-1954.
- Fried, L.P., Tangen, C.M., Walston, J., Newman, A.B., Hirsch, C., Gottdiener, J., Seeman, T.,
 Tracy, R., Kop, W.J., Burke, G., McBurnie, M.A., 2001. Frailty in older adults:
 evidence for a phenotype. Journals of Gerontology Series A-Biological Sciences &
 Medical Sciences 56, M146-M156.
- Fried, L.P., Walston, J., 2003. Frailty and failure to thrive. In: Hazzard, W., Blass, J.P.,
 Halter, J.B., Ouslander, J., Tinetti, M. (Eds.), Principles of Geriatric Medicine and
 Gerontology. New York: McGraw-Hill, pp. 1487-1502.
- 431 Greiwe, J.S., Cheng, B., Rubin, D.C., Yarasheski, K.E., Semenkovich, C.F., 2001. Resistance
- 432 exercise decreases skeletal muscle tumor necrosis factor alpha in frail elderly humans.
 433 FASEB Journal 15, 475-482.
- Harris, T.B., Ferrucci, L., Tracy, R.P., Corti, M.C., Wacholder, S., Ettinger, W.H. Jr,
 Heimovitz, H., Cohen, H.J., Wallace, R., 1999. Associations of elevated interleukin-6
 and C-reactive protein levels with mortality in the elderly. American Journal of
 Medicine 106, 506-512.
- Heymsfield, S.B., McManus, C., Stevens, V., Smith, J., 1982. Muscle mass: reliable indicator
 of protein-energy malnutrition severity and outcome. American Journal of Clinical

440 Nutrition 35, 1192-1199.

- Hum, S., Koski, K.G., Hoffer, L.J., 1992. Varied protein intake alters glutathione metabolism
 in rats. Journal of Nutrition 122, 2010-2018.
- Jahoor, F., Wykes, L., Del Rosario, M., Frazer, M., Reeds, P.J., 1999. Chronic protein
 undernutrition and an acute inflammatory stimulus elicit different protein kinetic
 responses in plasma but not in muscle of piglets. Journal of Nutrition 129, 693-699.
- 446 Lyoumi, S., Tamion, F., Petit, J., Déchelotte, P., Dauguet, C., Scotté, M., Hiron, M.,
- Leplingard, A., Salier, J.P., Daveau, M., Lebreton, J.P., 1998. Induction and modulation of acute-phase response by protein malnutrition in rats: comparative effect of systemic and localized inflammation on interleukin-6 and acute-phase protein synthesis. Journal of Nutrition 128, 166-174.
- Malmezat, T., Breuillé, D., Pouyet, C., Patureau Mirand, P., Obled, C., 1998. Metabolism of
 cysteine is modified during the acute phase of sepsis in rats. Journal of Nutrition 128,
 97-105.
- Mayot, G., Breuillé, D., Obled, C., Papet, I., 2006. Muscle mass and protein synthesis are not
 modified by low grade inflammation in old rats. 28th Congress of the European
 Society of Parenteral and Enteral Nutrition, Istanbul, p. 171.
- Mayot, G., Vidal, K., Martin, J.-F., Breuillé, D., Blum, S., Obled, C., Papet, I., 2007.
 Prognostic values of [alpha]2-macroglobulin, fibrinogen and albumin in regards to
 mortality and frailty in old rats. Experimental Gerontology 42, 498-505.
- Mercier, S., Breuillé, D., Mosoni, L., Obled, C., Patureau Mirand, P., 2002. Chronic
 inflammation alters protein metabolism in several organs of adult rats. Journal of
 Nutrition 132, 1921-1928.
- Mosoni, L., Malmezat, T., Valluy, M.C., Houlier, M.L., Attaix, D., Mirand, P.P., 1999. Lower
 recovery of muscle protein lost during starvation in old rats despite a stimulation of

465 protein synthesis. American Journal of Physiology 277, E608-616.

- 466 Mühlberg, W., Sieber, C., 2004. Sarcopenia and frailty in geriatric patients: implications for
 467 training and prevention. Zeitschrift Fur Gerontologie Und Geriatrie 37, 2-8.
- 468 Obled, C., Arnal, M., 1992. Contribution of skin to whole-body protein synthesis in rats at
 469 different stages of maturity. Journal of Nutrition 122, 2167-2173.
- 470 Obled, C., Papet, I., Breuillé, D., 2002. Metabolic bases of amino acid requirements in acute

471 diseases. Current Opinion in Clinical Nutrition and Metabolic Care 5, 189-197.

- 472 Paganelli, R., Di Iorio, A., Cherubini, A., Lauretani, F., Mussi, C., Volpato, S., Abate, M.,
- 473 Abate, G., Ferrucci, L., 2006. Frailty of older age: the role of the endocrine--immune
 474 interaction. Current Pharmaceutical Design 12, 3147-3159.
- 475 Puts, M.T.E., Visser, M., Twisk, J.W.R., Deeg, D.J.H., Lips, P., 2005. Endocrine and
 476 inflammatory markers as predictors of frailty. Clinical Endocrinology 63, 403-411.
- 477 Ruot, B., Béchereau-Rambourdin, F., Bayle, G., Breuillé, D., Obled, C., 2002. The response
- 478 of liver albumin synthesis to infection in rats varies with the phase of the479 inflammatory process. Clinical Science 102, 107-114.
- 480 Seiler, W.O., 2001. Clinical pictures of malnutrition in ill elderly subjects. Nutrition 17, 496481 498.
- 482 Toth, M.J., Matthews, D.E., Tracy, R.P., Previs, M.J., 2005. Age-related differences in
 483 skeletal muscle protein synthesis: relation to markers of immune activation. American
 484 Journal of Physiology-Endocrinology and Metabolism 288, E883-E891.
- 485 Vanitallie, T.B., 2003. Frailty in the elderly: contributions of sarcopenia and visceral protein
 486 depletion. Metabolism 52, 22-26.
- Vellas, B.J., Albarede, J.L., Garry, P.J., 1992. Diseases and aging: patterns of morbidity with
 age; relationship between aging and age-associated diseases. American Journal of
 Clinical Nutrition 55, 1225S-1230S.

21/24

- 490 Walston, J., McBurnie, M.A., Newman, A., Tracy, R.P., Kop, W.J., Hirsch, C.H., Gottdiener,
- 491 J., Fried, L.P., 2002. Frailty and activation of the Inflammation and coagulation
- 492 systems with and without clinical comorbidities results from the cardiovascular
- 493 health study. Archives of Internal Medicine 162, 2333-2341.

494 **Figure legends**

495

496 FIGURE 1 Time-course of cumulative relative body weight changes in non-inflamed and
497 low-grade inflamed old rats submitted to the control or the stress treatment.

- 498 Means \pm SE (n = 5 or 7). There are significant effects of the stress and the time on body 499 weight changes and significant interactions between the stress and the time, between the 500 initial inflammatory status and the time, and between the stress, the initial inflammatory status 501 and the time (ANOVA for repeated measurements with the stress and the initial inflammatory 502 status as the between-rat factors and the time as the within-rat factor). NI-Con: non-inflamed 503 rats submitted to the control treatment, NI-Str: non-inflamed rat submitted to the stress 504 treatment, LGI-Con: inflamed rats submitted to the control treatment, LGI-Str: inflamed rats 505 submitted to the stress treatment.
- 506

507 FIGURE 2 Skeletal muscle protein turnover in non-inflamed and low-grade inflamed old rats
508 submitted to the control or the stress treatment.

509 Means \pm SE (n = 5 or 7). Two-way (initial inflammatory status and treatment) ANOVA: 510 *epitrochlearis* protein synthesis and protein degradation: none significant effect, P < 0.05, <u>NI-</u> 511 <u>Con</u>: non-inflamed rats submitted to the control treatment, <u>NI-Str</u>: non-inflamed rat submitted 512 to the stress treatment, <u>LGI-Con</u>: inflamed rats submitted to the control treatment, <u>LGI-Str</u>: 513 inflamed rats submitted to the stress treatment.

514

515 **FIGURE 3** *Time-course of plasma* α_2 *-macroglobulin, fibrinogen and albumin concentrations* 516 *in non-inflamed and low-grade inflamed old rats receiving the control or the stress treatment.* 517 Bars represent means and SE for 5 or 7 rats in each group at each time. α_2 -macroglobulin: 518 significant effects of the stress, the initial inflammatory status and the time, (interaction

519 between the stress and the time P = 0.056; fibrinogen: significant effects of the stress, the 520 initial inflammatory status and the time, significant interaction between the stress and the time 521 (interaction between the stress, the initial inflammatory status and the time P = 0.072); 522 albumin: significant effect of the initial inflammatory status (ANOVA for repeated 523 measurements with the stress and the initial inflammatory status as the between-rat factors 524 and the time as the within-rat factor). Within a group, bars not sharing a common letter are 525 different (ANOVA for repeated measurement, followed by Fisher's PLSD test). NI-Con: non-526 inflamed rats submitted to the control treatment, NI-Str: non-inflamed rat submitted to the 527 stress treatment, LGI-Con: inflamed rats submitted to the control treatment, LGI-Str: inflamed 528 rats submitted to the stress treatment.

- 529
- 530 FIGURE 4 Liver glutathione status in non-inflamed and low-grade inflamed old rats
 531 submitted to the control or the stress treatment.
- 532 Means \pm SE (n = 5 or 7). Two-way (initial inflammatory status and treatment) ANOVA: 533 significant effect of the treatment for both concentration and content, *P* < 0.05, <u>NI-Con</u>: non-534 inflamed rats submitted to the control treatment, <u>NI-Str</u>: non-inflamed rat submitted to the 535 stress treatment, <u>LGI-Con</u>: inflamed rats submitted to the control treatment, <u>LGI-Str</u>: inflamed 536 rats submitted to the stress treatment.

Table 1

Old rats' characteristics before the experimental period

Initial inflammatory status	Non-inflamed		Low-grade inflamed		
Treatment	Control	Stress	Control	Stress	Two-way
Groups	<u>NI-Con</u>	<u>NI-Str</u>	LGI-Con	LGI-Str	ANOVA
α_2 -macroglobulin at D-7(mg/l)	36 ± 4	40 ± 12	167 ± 37	133 ± 26	Ι
Fibrinogen at D-7 (g/l)	3.24 ± 0.18	3.12 ± 0.22	4.42 ± 0.39	4.51 ± 0.28	Ι
Albumin at D-7 (g/l)	14.6 ± 0.9	13.3 ± 0.7	12.2 ± 0.8	12.1 ± 1.0	I (<i>P</i> = 0.066)
Body weight at D-22 (g)	693 ± 68	627 ± 24	613 ± 33	704 ± 45	ns
Body weight at D0 (g)	663 ± 59	603 ± 22	576 ± 17	648 ± 35	ns
D-22 to D0 body weight change (%)	- 4.0 ± 1.9	-3.8 ± 1.8	- 5.5 ± 2.9	-7.6 ± 1.0	ns
Food intake before D0 (g/d)	22.0 ± 1.4	21.1 ± 1.2	21.3 ± 0.9	22.1 ± 0.7	ns

Means \pm SE (n = 5 or 7). Two-way (initial inflammatory status and treatment) ANOVA: ns: none significant effect, I: significant effect of the initial inflammatory status, $P \le 0.05$, <u>P value is in parenthesis when a trend is observed. NI-Con:</u> non-inflamed rats submitted to the control

treatment, <u>NI-Str:</u> non-inflamed rat submitted to the stress treatment, <u>LGI-Con: low-grade</u> inflamed rats submitted to the control treatment, <u>LGI-Str: low-grade</u> inflamed rats submitted to the stress treatment.

Table 2

Skeletal muscle weights in non-inflamed and low-grade inflamed old rats submitted to the control or the stress treatment.

Initial inflammatory status	Non-inflamed		Inflamed	K	T
Treatment	Control	Stress	Control	Stress	Two-way
Group	<u>NI-Con</u>	<u>NI-Str</u>	LGI-Con	LGI-Str	ANOVA
Gastrocnemius (g)	2.31 ± 0.06	2.00 ± 0.09	2.29 ± 0.10	2.03 ± 0.11	Т
mg/100g BW	360 ± 32	333 ± 19	399 ± 13	316 ± 15	Т
Tibialis anterior (mg)	844 ± 40	719 ± 35	786 ± 23	762 ± 38	T (P=0.056)
mg/100g BW	130 ± 10	120 ± 8	137 ± 5	119 ± 6	T (<i>P</i> =0.069)
EDL (mg)	189 ± 18	179 ± 8	196 ± 9	190 ± 12	ns
mg/100g BW	29.3 ± 3.7	29.7 ± 1.1	34.2 ± 2.0	29.3 ± 1.1	ns
Soleus (mg)	156 ± 17	163 ± 17	172 ± 6	188 ± 6	ns
mg/100g BW	23.9 ± 2.6	27.1 ± 2.8	29.9 ± 0.9	30.3 ± 1.3	Ι

Means \pm SE (n = 5 or 7). Two-way (initial inflammatory status and treatment) ANOVA: ns: none significant effect, I: significant effect of the initial inflammatory status, T: significant effect of the treatment, *P* < 0.05. *P* value is in parenthesis when a trend is observed. BW: body weight at day 0, <u>NI-Con</u>: non-inflamed rats submitted to the control treatment, <u>NI-Str</u>: non-inflamed rat submitted to the stress treatment, <u>LGI-Con</u>: low-grade inflamed rats submitted to the control treatment, <u>LGI-Str</u>: low-grade inflamed rats submitted to the stress treatment.

Table 3

Organ and adipose tissue weights in non-inflamed and low-grade inflamed old rats submitted to the control or the stress treatment.

Initial inflammatory status	Non-inflamed		Infla	amed		
Treatment	Control	Stress	Control	Stress	ANOVA	
Group	<u>NI-Con</u>	<u>NI-Str</u>	LGI-Con	LGI-Str		
Liver (g)	15.9 ± 1.3	11.8 ± 0.5	17.7 ± 1.3	12.5 ± 0.4	Т	
g/100g BW	2.41 ± 0.08 ^a	1.96 ± 0.02 ^b	3.06 ± 0.17 °	1.96 ± 0.09 ^b	T, I, TxI	
Kidneys (g)	3.55 ± 0.17 ^{ab}	2.89 ± 0.14 ^a	5.66 ± 0.40 ^c	3.82 ± 0.25 ^b	T, I, TxI	
mg/100g BW	$548\pm040~^a$	$480\pm19~^a$	986 ± 71 ^b	601 ± 50^{a}	T, I, TxI	
Spleen (g)	1.43 ± 0.11	1.00 ± 0.02	1.62 ± 0.15	1.04 ± 0.08	Т	
mg/100g BW	220 ± 18	166 ± 4	280 ± 22	163 ± 14	T, I (<i>P</i> =0.085), TxI (<i>P</i> =0.063)	
Small Intestine (g)	10.4 ± 0.5	8.5 ± 0.5	10.2 ± 0.3	9.7 ± 0.4	Т	
g/100g BW	1.60 ± 0.10	1.42 ± 0.03	1.78 ± 0.06	1.53 ± 0.11	Т	

 \hat{b}

Colon (g)	1.80 ± 0.10	1.78 ± 0.06	1.99 ± 0.22	1.67 ± 0.10	ns
mg/100g BW	279 ± 26	297 ± 16	344 ± 31	267 ± 28	TxI (P=0.098)
Mesentery (g)	7.36 ± 2.70	4.28 ± 0.87	6.78 ± 1.34	5.05 ± 1.28	ns
g/100g BW	1.07 ± 0.34	0.71 ± 0.14	1.18 ± 0.23	0.74 ± 0.17	T (P=0.091)
Epidydimal adipose tissue (g)	12.1 ± 2.8	9.5 ± 2.1	9.1 ± 0.5	9.1 ± 1.3	ns
g/100g BW	1.77 ± 0.33	1.55 ± 0.32	1.58 ± 0.08	1.36 ± 0.17	ns

Means \pm SE (n = 5 or 7). Two-way (initial inflammatory status and treatment) ANOVA: ns: none significant effect, I: significant effect of the initial inflammatory status, T: significant effect of the treatment, TxI: significant interaction between the two factors, P < 0.05. <u>P value is in</u> parenthesis when a trend is observed. ^{a,b,c}: values, within a row, not sharing a common letter are significantly different (Fisher's test). BW: body weight at day 0, NI-Con: non-inflamed rats submitted to the control treatment, <u>NI-Str:</u> non-inflamed rats submitted to the stress treatment, <u>LGI-Str: low-grade</u> inflamed rats submitted to the control treatment, <u>LGI-Str: low-grade</u> inflamed rats submitted to the stress treatment.

FIGURE 3

FIGURE 4

