

Differential proteomic profiling of mitochondrial from , rat and human reveals distinct patterns of age-related oxidative changes

Karlfried Groebe, Frank Krause, Birgit Kunstmann, Hermann Unterluggauer, Nicole H. Reifschneider, Christian Scheckhuber, Charturvedala Sastri, Werner Stegmann, Wojciech Wozny, Gerhard P. Schwall, et al.

▶ To cite this version:

Karlfried Groebe, Frank Krause, Birgit Kunstmann, Hermann Unterluggauer, Nicole H. Reifschneider, et al.. Differential proteomic profiling of mitochondrial from , rat and human reveals distinct patterns of age-related oxidative changes. Experimental Gerontology, 2007, 42 (9), pp.887. 10.1016/j.exger.2007.07.001 . hal-00499024

HAL Id: hal-00499024 https://hal.science/hal-00499024v1

Submitted on 9 Jul 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Accepted Manuscript

Differential proteomic profiling of mitochondrial from *Podospora anserina*, rat and human reveals distinct patterns of age-related oxidative changes

Karlfried Groebe, Frank Krause, Birgit Kunstmann, Hermann Unterluggauer, Nicole H. Reifschneider, Christian Scheckhuber, Charturvedala Sastri, Werner Stegmann, Wojciech Wozny, Gerhard P. Schwall, Slobodan Poznanović, Norbert A. Dencher, Pidder Jansen-Dürr, Heinz D. Osiewacz, André Schrattenholz

PII:\$0531-5565(07)00147-7DOI:10.1016/j.exger.2007.07.001Reference:EXG 8367

To appear in: *Experimental Gerontology*

Received Date:26 March 2007Revised Date:18 June 2007Accepted Date:6 July 2007

Please cite this article as: Groebe, K., Krause, F., Kunstmann, B., Unterluggauer, H., Reifschneider, N.H., Scheckhuber, C., Sastri, C., Stegmann, W., Wozny, W., Schwall, G.P., Poznanović, S., Dencher, N.A., Jansen-Dürr, P., Osiewacz, H.D., Schrattenholz, A., Differential proteomic profiling of mitochondrial from *Podospora anserina*, rat and human reveals distinct patterns of age-related oxidative changes, *Experimental Gerontology* (2007), doi: 10.1016/j.exger.2007.07.001

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Differential proteomic profiling of mitochondrial from *Podospora anserina*, rat and human reveals distinct patterns of age-related oxidative changes

Karlfried Groebe[†], Frank Krause[§], Birgit Kunstmann[‡], Hermann Unterluggauer[#], Nicole H. Reifschneider[§], Christian Scheckhuber[‡], Charturvedala Sastri[†], Werner Stegmann[†], Wojciech Wozny[†], Gerhard P. Schwall[†], Slobodan Poznanović[†], Norbert A. Dencher[§], Pidder Jansen-Dürr^{#,} Heinz D. Osiewacz[‡] and André Schrattenholz[†]*

[†] ProteoSys AG, Carl Zeiss Strasse 51, 55129 Mainz, Germany,
[§]Physical Biochemistry, Department of Chemistry, Darmstadt University of Technology, Petersenstrasse 22, D-64287 Darmstadt, Germany.
[‡]Institute of Molecular Biosciences, Molecular Developmental Biology, Johann
Wolfgang Goethe-University, Marie-Curie-Str. 9, D-60439 Frankfurt, Germany.
[#]Institute for Biomedical Ageing Research, Austrian Academy of Sciences, Rennweg 10, A-6020 Innsbruck, Austria.

Acknowledgements:

This work was supported by EC FP6 Contract Nr. LSHM-CT-2004-512020; (http://www.mimage.uni-frankfurt.de). This publication reflects only the authors' views. The EC is not liable for any use that may be made of the information herein. We thank S. Goto, H. Nakamoto, R. Takahashi (Toho University, Japan) and M. Sugawa (Charité-Universitätsmedizin Berlin, Germany) for generously providing rat brain tissue samples.

We thank Jennifer Schütz and Katja Biefang-Arndt for excellent technical assistance.

*Author to whom correspondance should be addressed:

Prof. Dr. André Schrattenholz, CSO

ProteoSys AG

55129 Mainz

Carl-Zeiss-Str. 51

Tel.: +49-6131-5019215

Fax: +49-6131-5019211

andre.schrattenholz@proteosys.com

Abstract

According to the 'free radical theory of ageing', reactive oxygen species are a key event during ageing of biological systems. Mitochondria are a major source of ROS and prominent targets for ROS-induced damage. Whereas mitochondrial DNA and membranes were shown to be oxidatively modified with ageing, mitochondrial protein oxidation is not well understood. The purpose of this study was an unbiased investigation of age-related changes in mitochondrial proteins and the molecular pathways by which ROS-induced protein oxidation may disturb cellular homeostasis. In a differential comparison of mitochondrial proteins from young and senescent strains of the fungal ageing model *Podospora anserina*, from brains of young (5 months) versus older rats (17 and 31 months), and human cells, with normal and chemically accelerated in vitro ageing, we found certain redundant posttranslationally modified isoforms of subunits of ATP synthase affected across all three species. These appear to represent general susceptible hot spot targets for oxidative chemical changes of proteins accumulating during ageing, and potentially initiating various age-related pathologies and processes.

This type of modification is discussed using the example of SAM-dependent Omethyl transferase from *Podospora anserina* (PaMTH1), which surprisingly was found to be enriched in mitochondrial preparations of senescent cultures.

Introduction

The free radical theory of ageing (Harman, 1956) implicates molecular damage caused by reactive oxygen species (ROS) as a major cause of ageing processes in most if not all species. The mitochondrial theory of ageing linking mutations in mitochondrial DNA to the ageing process (Miquel et al., 1983; Miquel, 1991) has

subsequently found widespread support (for review see: Kowald, 2001; Wallace, 2001; Jacobs, 2003).

Age-related loss of mitochondrial functions has been demonstrated in various systems over the last several decades (Osiewacz and Hermanns, 1992; Osiewacz, 2002). In the filamentous fungus *Podospora anserina*, an extensively studied ageing model, mitochondrial DNA reorganisation is a hallmark of ageing of all wild-type strains (Esser et al., 1981; Stahl et al., 1978; Belcour et al., 1982; Belcour and Begel, 1980). Stabilization of mtDNA leads to increased lifespan. Some strains even appear to have acquired immortality (Koll et al., 1984; Schulte et al., 1988; Borghouts et al., 1997; Stumpferl et al., 2004). More recently, the impact of mitochondrial respiration on lifespan has been elaborated. A switch from a standard cyanide dependent respiration to an cyanide resistant, alternative pathway leads to a reduced generation of ROS and an increased lifespan (Schulte et al., 1988; Borghouts et al., 2001; Stumpferl et al., 2004; Gredilla et al., 2006; Dufour et al., 2000).

In the yeast *Saccharomyces cerevisiae*, the level of ROS production increases in naturally aged yeast mother cells (Laun et al., 2001). In *Caenorhabditis elegans* age-related mtDNA deletions were reported previously (Melov et al., 1995; Melov et al., 1995) and a systematic knock-down of mitochondrial genes via RNAi resulted in the generation of long-lived worm mutants (Lee et al., 2003). Using a mouse model, expressing a mutant mtDNA polymerase, it was shown recently that increased levels of point mutations and deletions of mtDNA can indeed cause a phenotype of reduced lifespan and premature onset of ageing-related phenotypes (Trifunovic et al., 2005; Kujoth et al., 2005). Whereas it is unlikely that increased oxidative stress results from mitochondrial dysfunction in these mouse models, it is currently unknown if the ageing phenotype is due to a disturbed energy metabolism or other causes, such as increased apoptosis (Kujoth et al., 2005).

Sporadic loss of mitochondrial function with ageing has also been observed in various rodent and mammalian tissues, and loss of function was correlated to the occurrence of mtDNA mutations, at least in some cases. In numerous non-reproductive tissues of many species, mitochondrial genes (like nuclear genes) accumulate mutations as the animals age (Vijg, 2000). The accumulation of mtDNA mutations can be explained either by a decreased degradation rate of damaged mitochondria or by a replication advantage of smaller mtDNA molecules (reviewed by Kowald et al., 2005).

The crucial role of mitochondria on intermediary metabolism and regulation is thus well established. Age-related mitochondrial dysfunction affects calcium signalling and downstream processes like apoptosis (Chan 2006). Irreversible lesions of mitochondrial genes or proteins have been shown to result in functional decline (Brookes et al. 2004; Brookes et al. 2002). Neuronal cells are especially vulnerable to mitochondrial damage due to excessive ATP demands of active synaptic regions. The crucial balance of ATP- and calcium homeostasis, explains the importance of mitochondria in many neurodegenerative diseases (Schrattenholz and Soskic 2006). Also, the critical role of ROS during ageing is broadly accepted (Singh 2006; Sanz et al. 2006; Kang and Hamasaki 2003; Osiewacz 2002). The gradual accumulation of irreversible oxidative modifications results in very specific patterns of redundant protein isoforms (Dencher et al. 2006), prompting this work as a systematic attempt to differentially quantitative conserved molecular patterns of age-related changes of mitochondrial proteins.

In the present study, we employed high resolution 2D-PAGE (Hunzinger et al. 2006), and three different ageing models: the filamentous fungus *P. anserina* with a clear mitochondrial etiology of ageing (Scheckhuber et al. 2007; Osiewacz 2002;Osiewacz

and Scheckhuber 2006), rats at three different ages, and different stages of a HUVEC (human umbilical vein endothelial cells) *in vitro* senescence model, applying both replicative senescence and premature (stress-induced) senescence. Mitochondrial samples from these models were used to establish respective signatures of age-related differential proteins, which were subsequently analyzed for redundant posttranslational isoforms. It has recently been shown that there is a crucial relationship between resolution and differential quantification of proteins requiring isotopic labeling with a detection method providing sufficient dynamic range to enable statistical treatment of differences (Schrattenholz and Groebe, 2007). For relatively complex samples with redundant isoforms, high resolution 2D-PAGE has turned out to be a good compromise.

Despite the fact that the biological systems used in this study are from evolutionary far distant species, the focus on mitochondrial proteins resulted in some striking common mechanistic aspects. We find certain clusters of ROS-related modifications which occur in homologous mitochondrial (or mitochondria-associated) proteins across species.

On this background, systematic molecular profiling of age-related models, using proteomic and genomic platforms has gained considerable steam (Schieke et al. 2006; Weinreb et al. 2007; Vo and Palsson 2006), showing that proteomic signatures are directly correlated to activity-, cellular stress- and energy-dependent protein markers (Ding et al. 2006b; Johnson et al. 2006; Forner et al. 2006).

Proteins and pathways identified as being affected by age- and ROS -dependent posttranslational modifications in our study are discussed with a focus on two

representative cases, ATP synthase (Arrell et al. 2006; Krause et al. 2005) and SAMdependent O-methyl transferase (Averbeck et al. 2000).

Materials and Methods

Isolation of crude mitochondrial fractions from rat brain

Left brains of 5-, 17-, and 31-month-old male rats (F344/DuCrj, purchased from Charles River Japan) were obtained from the animal facility at Toho University (Japan). The ad libitum fed rats had a mean life span of 29 months (Takahashi and Goto, 1987). Brain tissue was frozen in liquid nitrogen immediately upon dissection and stored at - 80 °C for 1 - 5 years until isolation of mitochondria. Long-term storage of bovine heart mitochondria under these conditions for at least 16 months did not affect the yield of OXPHOS-supercomplexes (Krause et al. 2005). Rat brain mitochondria were isolated as gentle as possible (crude mitochondrial fraction) as described by Krause et al. (2005). A half brain was homogenized by a 2 ml tight-fit glass-teflon homogenizer (clearance 45–65 µm) with nine strokes (1100 rpm) after addition of 4 volumes of homogenization buffer (350 mM sucrose, 5 mM Hepes-NaOH, 1 mM EDTA, and 0.5 mM protease-inhibitor Pefabloc SC, pH 7.4) to 1 volume of tissue and the homogenate was centrifuged at 1300g (4 °C, 3 min). The pellet was extracted twice with each 2 and 1 ml homogenization buffer, respectively, and 1500g centrifugation. Thereafter, the combined supernatants were centrifuged with 17,000g (10 min, 4 °C). The crude mitochondrial pellet was washed once and resuspended in 320 mM sucrose, 0.5 mM Pefabloc SC. Finally, all isolated mitochondria were frozen as aliquots (5 - 7 mg/ml protein) in liquid nitrogen and stored at -80 °C.

Isolation of mitochondrial proteins from P. anserina

Mitochondria were isolated from juvenile and senescent P. anserina cultures, respectively, according to a previously published protocol (Gredilla et al. 2006) with the following modifications. Crude mitochondria were isolated by differential centrifugation for 35 minutes at 15.000 g and 4°C. The mitochondrial pellet was resuspended in 1 ml of mitochondria isolation buffer (10 mM Tris, 1mM EDTA, 0.33 M sucrose, pH7.5) and layered on a 20-50 % discontinuous sucrose gradient. After centrifugation for 1 hour at 100.000 g in a swing-out bucket rotor (TH641) the mitochondria were banding between the 50 and the 36 % sucrose step. Approximately 30 ml mitochondrial isolation buffer without BSA were added to the collected mitochondria fraction and centrifuged for 15 min at 15.000 g at 4 °C. Special care was taken to ensure standardized processing times in individual preparations of mitochondria. Following this strategy three pairs of mitochondria (protein content: ~1 mg) from juvenile and senescent wild-type strain were isolated (analytical scale). In addition, one pair of mitochondria from juvenile and senescent cultures was prepared at a preparative scale of approximately 4 mg total mitochondrial protein. The differential pooling scheme for proteomic analyses is shown together with results (Figure 2).

HUVEC cell culture:

Endothelial cells were isolated from human umbilical veins as described by (Jaffe et al. 1973) and cultured in Endothelial Cell Basal Medium (Cambrex BioScience, Verviers) supplemented with EGM Singlequots (Cambrex BioScience, Verviers), containing 0.1% hEGF, 0.1% hydrocortisone, 0.1% GA-1000, 0.4% BBE and 2% FBS. The cells were subcultured by trypsinization with trypsin-EDTA (Gibco Life Technologies, Vienna, Austria), seeded on cell culture dishes coated with 0.2% gelatine and grown in an atmosphere of 5% CO₂ at 37 °C. Cells were passaged at a

ratio of 1:5 in regular intervals. At later passages, the splitting ratio was reduced to 1:3 and 1:2, respectively. Cells were passaged such that the monolayers never exceeded 70–80% confluency. PDL were estimated using the following equation: n = (log10 F - log10 I)/301 (where n is the population doublings, F; number of cells at the end of one passage, and I; number of cells that were seeded at the beginning of one passage). After roughly 65 population doublings, the cells reached growth arrest, corresponding to 90-95% SA-β-Galactosidase positive cells.

Tertiary butylhydroperoxide (tBHP) treatment (stress induced senescence) = chemical ageing:

Young cells were treated on five consecutive days with 50µM tBHP (Fluka) for one hour each. After treatment, cells were washed twice with PBS and cultivation continued in standard EGM until the next tBHP-treatment. Following the last stress, the cells were cultivated for 24 hours in EGM and harvested for preparation of crude mitochondrial extracts.

Isolation of Mitochondria from HUVEC

Preparation of crude mitochondrial extracts was done according to the general guidelines (Rickwood and Hayes 1984) by differential centrifugation. All buffers and devices for extraction were ice-cooled. HUVEC of different replicative age were grown on 145mm culture dishes, rinsed twice with ice-cold PBS, scraped off the dishes and resuspended in 5ml homogenisation buffer [10mM HEPES pH 7.4; 1.1mM EDTA; 0.5%BSA and the antioxidant mixture SCAVEGR [(available at www.brainBitsLLC.com; see (Brewer et al. 2006)] and collected by centrifugation at 500g for 2min. The resulting pellet was again resuspended in Homogenisation buffer and homogenized in an iced - glass Teflon potter at 500rpm. After immediate addition

of Sucrose (0.25 molar) the suspension was centrifuged two times for 10min with 1500g and the resulting mitochondria-enriched supernatants collected. In a final step this crude mitochondria were pelleted by centrifugation at 13700g for 10min, washed twice in resuspension buffer [10mM HEPES pH 7.4; 0.25M Sucrose; 1.1mM EDTA plus protease inhibitor cocktail (Complete Mini EDTA free tablets from Roche)] and snap frozen in liquid nitrogen. Protein concentration of samples was determined by Bradford assay.

High resolution IEF/SDS-PAGE: 2D-PAGE was performed by 54 cm daisy chain serial IPG-IEF as described (Hunzinger et al. 2006). Briefly, shock-frozen samples were thawed at 25 °C and dissolved in 8M Urea, 4% CHAPS, 0.1M Tris pH 7.4. The volume was adjusted to 20 μ L if necessary, followed by incubation of the sample at room temperature for 30 min with shaking at 1000 rpm in a Thermomixer comfort (Eppendorf). The samples were centrifuged for 5 min at 12000 rcf and 25 °C, and the soluble extracts were collected by removing the supernatant.

Experimental design, quantification and protein identification: The experimental strategy for obtaining statistically significant results about differential protein abundances using ProteoTope inverse replicate gels was performed as described previously (Poznanovic et al. 2005;Schrattenholz and Groebe 2007;Neubauer et al. 2006). In brief, protein iodination reactions with either ¹²⁵I or ¹³¹I were conducted with identical chemical iodine concentrations. Less than 1 mg of protein from each radiolabelled sample were mixed and separated by 2-D PAGE high resolution daisy chains covering a pH range of 4–9. A high sensitivity radio imaging technique was applied to discriminate between ¹²⁵I and ¹³¹I signals in one 2-D PAGE gel and to generate a quantitative multicolour differential display of proteins from separate

samples labelled with different iodine isotopes. For each pair of samples, reverse replicate gels were prepared, i.e., the labels (¹²⁵I and ¹³¹I) used on sample 1 and sample 2 were inverted. Depending on the respective biological system, a total of two to five individual samples per age group entered the study, so the statistical evaluation was based on four to ten data points in each age group.

Depending on the number of age groups in each biological system, different pooling schemes were applied as shown in Figure 2. In the case of 2 groups (juvenile vs. senescent; Figure 2a), young subjects were individually compared to the pool of all old subjects, and old subjects were individually compared to the pool of all young subjects. In the case of three or more age groups (Figure 2b), each subject from each age group was individually compared to a common pool of all subjects. Abundance ratios of one group vs. another are obtained by dividing the abundance ratios of the respective groups vs. the common pool. The former layout has the advantage that the measured differences in protein abundance are larger (than in comparisons involving a common pool) and that it provides a *direct* comparison between the conditions of interest (whereas in comparisons via a common pool each comparison between two age groups depends on *two* individual measurements). As its major disadvantage, the former pooling scheme can only be applied to two samples.

Gel image analysis was performed using the Pic/Greg software package by the Fraunhofer Gesellschaft in Sankt Augustin (<u>http://www.fit.fraunhofer.de/projekte/greg/index_en.xml</u>) as described previously (Hunzinger et al. 2006). Spot quantification and statistical identification of differential spots was performed as described (Schrattenholz and Groebe 2007). In brief, protein

spots were included if spot volume was at least 1.e10 (in units used by Greg) and background intensity was at least four times less than spot intensity. All spots were checked manually using the Pic program and accepted or rejected depending on their actual appearance. Individual protein spot abundance ratios for the different conditions were statistically analyzed by t-tests and only those spots meeting significance criteria were subjected to MALDI-TOF peptide mass fingerprinting, as published before (Vogt et al. 2005). To this end, selected spots were excised from the gel by a picking robot (ProPick, Genomic Solutions Ltd, Huntingdon, UK) and proteins in gel pieces were trypsin digested using a ProGestrobot (Genomic Solutions Ltd, Huntington, UK). A ProMS-robot (Genomic Solutions Ltd, Huntingdon, UK) was used to apply samples for MALDI-TOF mass spectrometry onto an anchor target (Bruker, Bremen, Germany). Mass spectra of peptide ions were obtained using an Ultraflex MALDI time-of-flight (TOF) mass spectrometer (Bruker, Bremen, Germany) in reflector mode within a mass range from m/z 800 to 4000. The MS spectra were calibrated and annotated automatically. The resulting peptide mass fingerprints were searched against the non redundant NCBI Protein Sequence Database using Mascot Server software v. 1.8. (Matrix Science, London, UK).

Results

Mitochondria were isolated by differential centrifugation from cell pellets obtained by collecting cultured human endothelial cells, *P.anserina* cultures and by homogenization of freshly prepared rat brains. The experimental procedures for mitochondrial isolation except that for *P. anserina* mitochondria were purified by sucrose density centrifugation whereas mitochondria from rats and cell cultures were isolated by differential centrifugation. The subsequent proteome analysis was the same for the three species, providing both mitochondria of comparable quality and

statistically significant results. In the case of HUVEC, additional samples were collected after exposure to mild oxidative stress, known to induce a phenotype of premature senescence (Unterluggauer et al., 2003). As shown in Figure 1, by representative false colour images of radioactive spot intensities on high resolution 2D gels (pH range 4-9) of mitochondrial preparations of the three species investigated (rat brain, upper panel, *P. anserina* in the middle and human cells in the lower part), there are overall quite distinct patterns of protein expression and a variety of age-related differential spots. Despite the differences of patterns, replicates were highly reproducible and identified proteins were homologous in some cases or relating to similar pathway in other cases. The experimental strategy for obtaining statistically significant results about differential protein abundances using ProteoTope inverse replicate gels and identifying them by tracer-controlled preparative gels was performed as described previously (Poznanovic et al. 2005;Schrattenholz and Groebe 2007;Neubauer et al. 2006).

Several hundreds of such gels have been differentially quantified in inverse duplicates for each of the following conditions and according to the pooling scheme shown in Figure 2: Thus, excluding contributions from variations of individual protein patterns, mitochondrial preparations of juvenile and senescent *P. anserina* cultures were compared (Table S1). Then mitochondrial brain proteins of young rats (5 months) were compared against those of middle-aged (17 months; Table S2) and old rats (31 months, Table S3). Also a comparison of the middle-aged group against the old group was included (Table S4). In a further set of experiments human cells were compared in the same way, results from the comparison of young and senescent HUVEC cells are shown in Table S5 and corresponding results from a model of chemically accelerated ageing (young and tBHP-treated HUVEC cells as described in Unterluggauer et al. 2003) are compiled in Table S6.

In Table1, we have summarized examples of age-related proteins with redundant isoforms, i.e. MALDI-TOF based identifications of the same amino acid backbone (and GeneBank accession #), but with slight differences in spectra and 2D gel positions. We listed all redundant isoforms found for SAM-dependent O-methyl-transferase (SAM-OMT, PaMTH1), ATP-synthase F1 complex and reticulocalbin. These differences on the background of a single amino acid sequence always indicate posttranslational modifications, and they can be expected to be age-related because of our particular experimental paradigms.

Proceeding from identifying such multiple redundant isoforms, we see that differential abundances of related spot pairs are quite distinct: As shown in Figure 3 and Table 1, there are subunit isoforms of ATP synthase with relatively large differential amplitudes (e.g. spots 1192 and 1555 from *P. anserina*), as well as others with relatively subtle differences. This is due to the fact, that underlying posttranslational modifications are associated with distinct domains of ATP synthase subunits; whereas other parts of the protein remain unaffected. As will be shown below, there are indications from detailed inspection of mass spectra that ROS-related oxidative chemical reactions are responsible on the molecular level.

In both age-dependently differential isoforms of SAM-OMT shown in Figure 4 and Table 1, we found N-formylkynurenine-modifications (by typical characteristic mass increments of 4, 16 and 32 at respective peptides) (Bienvenut et al. 2002; Simat and Steinhart 1998). The specific oxidized sites are at tryptophanes W 35, 37 und 56. and abundances of this oxidative modification are different between juvenile and senescent *P. anserina* cultures: W 35 and 37 are more oxidized in senescent strains (~50% N-formylkynurenine in senescent vs. ~25% N-formylkynurenine in juvenile cells).

Taken together, our data show that some common targets for protein modification as a result of ageing can be identified in the three model systems applied in the current study. Moreover, at least one particular oxidative modification, the dioxygenation of aromatic tryptophane residues to N-formyl-kynurenine occurs in an age-dependent manner in one of the models investigated. This relatively stable type of carbonylation by ROS will serve as a marker of age-related events in the ongoing study.

Discussion:

Alterations in mitochondrial structure or function have been implicated in a variety of human diseases, ageing and longevity for quite some time. Since the initial reports of age-related mtDNA reorganization in *P. anserina* in the late 1970's and early 1980's (Stahl et al., 1978; Cummings et al., 1979) (Kück et al., 1981; Osiewacz and Esser, 1984) and complete sequencing of the human mitochondrial genome in 1981, enormous progress has been made in understanding the the relationship between mitochondrial energy metabolism and ageing (Gillardon 2006;Schrattenholz and Soskic 2006;Marin-Garcia et al. 2006;Lesnefsky and Hoppel 2006;Ruiz-Romero et al. 2006). So far 800-1200 mt-proteins have been described (Reinders et al. 2006; Alonso et al. 2005;Bailey et al. 2005) and organized in corresponding public databases (Prokisch et al. 2006;Basu et al. 2006). This also includes mtDNA information, with ROS-related mutations and subsequent consequences on the protein level (Rottenberg 2006; Capri et al. 2006).

Obviously mitochondrial genes and even more so, proteins can have different biological roles at different ages, and the constant generation of ROS accumulates to age-dependent decline of function. Recent data from invertebrate (Dufour et al., 2000; Gredilla et al., 2006; Borghouts et al., 2002) and animal models for ageing (Trifunovic et al., 2005) as well as from human cell cultures {Stoeckl et al., 2006} tend

to suggest that, besides mitochondrial ROS production, other consequences of mitochondrial dysfunction, e.g. a reduction of ATP levels (Stoeckl et al., 2006) (Zwerschke et al., 2003; Wang et al., 2003; Stoeckl et al., 2007 in press), may contribute to cellular and organismic ageing. Nevertheless, the available data still suggest a key role for ROS-induced damage in ageing. To address a potential role of ROS-induced protein damage in an unbiased way, we used a proteomics approach in the current study. Concerning the chemical nature of oxidative modifications, we focussed on the differential analysis of ROS-related posttranslational modifications, like N-formyl-kynurenine (Hunzinger et al. 2006) in redundant protein spots, like the ones demonstrated for putative SAM-dependent O-methyltransferase (PaMTH1), which was age-dependently carbonylated at distinct W-residues in *P. anserina* is homologous to catecholamine O-methyltransferase (COMT) in higher organisms (Averbeck et al. 2000) which in mammals is part of dopamine metabolism and has been shown to play key role in a variety of age-related human neurological disorders. By finding a COMT-homologue as being associated with mitochondria and modified by ROS-and age-related molecular changes, we support recent reports about impairments in mitochondrial functions contribute to the pathogenesis of Morbus Parkinson (Eriksen et al. 2005; Ding et al. 2006a; Jin et al. 2005). For the first time, we have indications linking dopamine-related metabolism and mitochondrial processes and it would be interesting to compare our proteomic results to agedependent mtDNA deletions causing functional impairment in aged human substantia nigra neurons and Parkinson disease (Bender et al. 2006; Kraytsberg et al. 2006). Moreover, the identification of of PaMTH1 in the sucrose density purified mitochondrial fraction was surprising because the link of such a protein to mitochondria is new. In the initial identification this protein was found to increase in quantity during the ageing of *P. anserina* in total protein extracts.

Finally, we found ATP synthase affected by age-dependent processes across all species investigated. This is in line with recent reports about specific protein oxidation and protein expression in aged rat brain, conditions of neuronal stress or under caloric restriction, where ATP synthase F1 β and α subunits were consistently among markers found (Poon et al. 2006c; Poon et al. 2006a; Sultana et al. 2006; Poon et al. 2005; Poon et al. 2006b; Kim et al. 2006). Our findings establish ATP synthase firmly as one of the prime mitochondrial targets of age-related molecular changes. Since the protein was uniformly affected in all models investigated in this study, we assume here a conserved mechanism of ageing represented by a "hot spot" of accumulating ROS-related damage. This finding suggests that functional inactivation of ATPase by posttranslational modification may directly contribute to the loss of intracellular ATP levels found in senescent human cells (Wang et al., 2003; Zwerschke et al., 2003; Stoeckl et al., 2006; 2007)(and possibly in aged tissue as well).

Some of the differential proteins found in the HUVEC model and others in rat and *P. anserina* point to downstream consequences of ROS-related damage of ATP synthase on dopamine- and proteasome-related pathways. Moreover we found indications that the intrinsic mitochondrial pathway of apoptosis regulated via the mitochondrial transition pore (Deniaud et al. 2006;Schrattenholz and Soskic 2006;Soskic et al. 2007) is involved. The mitochondrial transition in turn regulates mitochondrial autophagy observed in ageing (Cavallini et al. 2007;Donati et al. 2006;Terman and Brunk 2006). ROS-effects from oxidative phosphorylation and ATP synthase upon reductive defence mechanisms and apoptosis (Piec et al. 2005;Soti and Csermely 2006;Deocaris et al. 2006) are in line with our finding of age-dependence of cyclophilin D, a part of the mitochondrial permeability transition pore

and support the free radical theory of ageing (Poon et al. 2006c;Poon et al. 2006a;Sultana et al. 2006;Poon et al. 2005;Poon et al. 2006b;Kim et al. 2006).

Last but not least, our results from mitochondria preparations with HUVEC add to the increasing evidence that mitochondrial proteins interact intimately with the endoplasmic reticulum, Golgi and other organelles (Dolman et al. 2005; McMahon et al. 2006), and that this localisational dynamics is moving mitochondrial proteins (or their posttranslational derivatives!) to a variety of cytosolic and membrane compartments including even the outer plasma membrane. We hope that our data can contribute to providing a novel and more comprehensive understanding of the molecular consequences of energy metabolism on ageing, longevity and cellular stress management. It is noteworthy that the best-studied example of this class of proteins is the F_1F_0 ATP synthase (Yonally and Capaldi 2006), which we were able to profile in considerable detail in this study.

SOFR

Figure legends

Figure 1: Representative images of high resolution 2D gels of mitochondrial preparations from the three ageing models: The IEF-range of these high resolution gels employing 54 cm serial IPG's, was from 4-9, and the range of apparent molecular masses was from 200 to 10 kD.

Dual isotope labelling allowed differential quantification of proteins from two samples in one experiment: In the upper part the differential display of the pattern of one particular 31 month old rat against the pattern of the pool of all rats is shown. In the middle, mitochondria from senescent *P. anserina* were compared against a pooled preparation from juvenile cells and in the bottom part, mitochondrial material from senescent HUVEC against pooled material from juvenile HUVEC.

In each case, the load was 10 µg of mitochondrial proteins labelled with I-125 and I-131, respectively. The radioactive quantities of differential spots in inverse replicates of such experiments provided absolute pattern control and served as basis for statistical analysis of age-dependent molecular changes. These experiments were meant for differential and quantitative pattern analysis and statistics only, the bulk of material was subsequently used for mass spectrometry-based identification of agedependent mitochondrial proteins from tracer-controlled and silver-stained preparative gels as described previously (Hunzinger et al. 2006).

Figure 2: Schematic cartoon showing the design of the pooling paradigms for differentially comparing age-related changes of protein expression. Key is quantitative pattern control and unequivocal identification of differential proteins by radioactive dual-isotope labelling of senescent and juvenile mitochondrial preparations. The two radioisotopes are colour-coded as orange (¹³¹I) and blue (¹²⁵I); and individual sample pairs (which were subsequently analyzed in single high

resolution 2D gels) are depicted on top of each other (note the always complementary isotopes). For each sample pair, inverse replicates were analyzed (highlighted with an additional box in Figure 2a and subsequently by vertical bars), providing independent measuremants of protein concentrations, applicable to statistical analysis. The inserts show results for individual proteins. In the paradigm for comparing two conditions only, individual samples (e.g. Ju1-Ju4 or Se1-Se4) of one condition were always compared to the pool of the other condition, and vice versa, as shown in Figure 2a. Thus, individual freak contributions could reliably be eliminated. In the case of three or more conditions of a model (e.g. 5, 17 and 31 months old rats), a common pool of all of these conditions was differentially compared to individual samples (Figure 2b). The differences between conditions are calculated as the total of the differences of the individual conditions with respect to the common pool (Figure 2b). The latter methodology could also be applied if there are only two conditions; it would, however, lead to smaller absolute differences in spot volumes and hence larger relative errors. Both approaches give similar results.

The statistical robustness originated from the application of these schemes to four independent paradigms using models from three species (*P. anserina, R. norvegicus, Homo sapiens*).

Figure 3: Dual false colour images of all redundant protein isoforms and subunits found for ATP synthase in four age-related models from three species: Names of specific subunits are shown beneath resepective redandant spots in 2D-gels. Each one of them represents different molecular entities and the examples, which are labeled by spot numbers (see also Table 1) include isoforms with highly significant differences in concentration, as well as others with not much of a change. The larger

the difference, the clearer the false colur red-blue difference; the pl range of IPG's where the respective spots were found is indicated. Taken together, the underlying biophysical basis is posttranslational modifications, which are expected to yield direct information of hot spots of ROS-related damage. The structural information relating certain domains which are affected and potentially interacting proteins could translate to functional implications and a novel understanding of age-related cascades of dysfunction.

Figure 4: Putative SAM-dependent O-methyltransferase (PaMTH1) from *P. anserina*, which is homologous to catecholamine-O-methyltransferase (COMT) in higher organisms, is differentially oxidized and carbonylated in an age-dependent manner. In Figure 4A, the dual false colour images from inverse replicates of a differential and quantitative comparison of senescent and juvenile cells in each one 2D gel are shown (each 10 μ g), the differences between the two conditions are consistent and statistically significant (for details see Table S1). In Figure 4B, a similar frame of the corresponding tracer-controlled and silver stained preparative 2D gel is shown (250 μ g loaded). The trace amounts of I-125 labelled samples comigrating with the silver stained spots 6 and 7, again helped to control patterns in complex 2D-gel images, as described previously.

In Figure 4C, details of the MALDI-TOF identification are given; both spots 6 and 7 come to the same protein identity. The more detailed MS-based investigation revealed an age-dependent difference of N-formylkynurenine modifications of tryptophane residues W-35 and W-37 of the protein.

References

- Alonso J., Rodriguez J.M., Baena-Lopez L.A., Santaren J.F. (2005) Characterization of the Drosophila melanogaster mitochondrial proteome. J Proteome Res *4*:1636-1645
- Arrell D.K., Elliott S.T., Kane L.A., Guo Y., Ko Y.H., Pedersen P.L., Robinson J., Murata M., Murphy A.M., Marban E., Van Eyk J.E. (2006) Proteomic analysis of pharmacological preconditioning: novel protein targets converge to mitochondrial metabolism pathways. Circ Res *99*:706-714
- Averbeck N.B., Jensen O.N., Mann M., Schagger H., Osiewacz H.D. (2000) Identification and characterization of PaMTH1, a putative O-methyltransferase accumulating during senescence of Podospora anserina cultures. Curr Genet 37:200-208
- Bailey S.M., Landar A., Darley-Usmar V. (2005) Mitochondrial proteomics in free radical research. Free Radic Biol Med 38:175-188
- Barros, M. H., Bandy, B., Tahara, E. B. and Kowaltowski, A. J. (2004) Higher respiratory activity decreases mitochondrial reactive oxygen release and increases life span in Saccharomyces cerevisiae. J Biol Chem *279*, 49883-49888.
- Basu S., Bremer E., Zhou C., Bogenhagen D.F. (2006) MiGenes: a searchable interspecies database of mitochondrial proteins curated using gene ontology annotation. Bioinformatics 22:485-492

- Belcour, L. and Begel, O. (1980) Life-span and Senescence in *Podospora* anserina: Effect of Mitochondrial Genes and Functions. J. Gen. Microbiol. *119*, 505-515.
- Belcour, L., Begel, O., Keller, A.M., and Vierny-Jamet, C. (1982) Does Senescence in *Podospora anserina* Result from Instability of the Mitochondrial Genome? Biology of the Cell *43*, 11-21
- Bender A., Krishnan K.J., Morris C.M., Taylor G.A., Reeve A.K., Perry R.H., Jaros E., Hersheson J.S., Betts J., Klopstock T., Taylor R.W., Turnbull D.M. (2006) High levels of mitochondrial DNA deletions in substantia nigra neurons in ageing and Parkinson disease. Nat Genet *38*, 515-517
- Bienvenut W.V., Deon C., Pasquarello C., Campbell J.M., Sanchez J.C., Vestal M.L., Hochstrasser D.F. (2002) Matrix-assisted laser desorption/ionizationtandem mass spectrometry with high resolution and sensitivity for identification and characterization of proteins. Proteomics *2*, 868-876
- Borghouts, C., Kimpel, E., and Osiewacz, H.D. (1997). Mitochondrial DNA rearrangements of *Podospora anserina* are under the control of the nuclear gene grisea. Proc. Natl. Acad. Sci. U. S. A *94*, 10768-10773.
- Borghouts, C., Scheckhuber, C.Q., Werner, A., and Osiewacz, H.D. (2002).
 Respiration, copper availability and SOD activity in *P. anserina* strains with different lifespan. Biogerontology *3*, 143-153.
- Borghouts, C., Werner, A., Elthon, T., and Osiewacz, H.D. (2001). Coppermodulated gene expression and senescence in the filamentous fungus *Podospora anserina*. Mol. Cell Biol. *21*, 390-399.

- Brewer J., Benghuzzi H., Tucci M. (2006) Effects of thymoquinone, lycopene, and selenomethione in the presence of estrogen on the viability of SiHa cells in vitro. Biomed Sci Instrum 42, 37-41
- Brookes P.S., Pinner A., Ramachandran A., Coward L., Barnes S., Kim H., Darley-Usmar V.M. (2002) High throughput two-dimensional blue-native electrophoresis: a tool for functional proteomics of mitochondria and signaling complexes. Proteomics *2*, 969-977
- Brookes P.S., Yoon Y., Robotham J.L., Anders M.W., Sheu S.S. (2004)
 Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am J Physiol Cell Physiol *287*, C817-C833
- Capri M., Salvioli S., Sevini F., Valensin S., Celani L., Monti D., Pawelec G., De B.G., Gonos E.S., Franceschi C. (2006) The genetics of human longevity. Ann N Y Acad Sci *1067*, 252-263
- Cavallini G., Donati A., Taddei M., Bergamini E. (2007) Evidence for Selective Mitochondrial Autophagy and Failure in Ageing. Autophagy *3*, 26-27
- Chan D.C. (2006) Mitochondria: dynamic organelles in disease, ageing, and development. Cell 125, 1241-1252
- Cummings, D.J., Belcour, L., and Grandchamp, C. (1979) Mitochondrial DNA from *Podospora anserina* and the occurrence of multimeric circular DNA in senescent cultures. pp. 268-77. In: Engberg. J., et al., eds. Specific Eukaryotic. Genes. Copenhagen, Munksgaard., 1979. W3. AL36. 13th. 1978.

- Dencher N.A., Goto S., Reifschneider N.H., Sugawa M., Krause F. (2006)
 Unraveling age-dependent variation of the mitochondrial proteome. Ann N Y
 Acad Sci *1067*, 116-119
- 22. Deniaud A., Hoebeke J., Briand J.P., Muller S., Jacotot E., Brenner C. (2006) Peptido-targeting of the mitochondrial transition pore complex for therapeutic apoptosis induction. Curr Pharm Des *12*, 4501-4511
- 23. Deocaris C.C., Kaul S.C., Wadhwa R. (2006) On the brotherhood of the mitochondrial chaperones mortalin and heat shock protein 60. Cell Stress Chaperones *11*, 116-128
- Ding Q., Dimayuga E., Keller J.N. (2006a) Proteasome regulation of oxidative stress in ageing and age-related diseases of the CNS. Antioxid Redox Signal *8*, 163-172
- Ding Q., Vaynman S., Souda P., Whitelegge J.P., Gomez-Pinilla F. (2006b)
 Exercise affects energy metabolism and neural plasticity-related proteins in the hippocampus as revealed by proteomic analysis. Eur J Neurosci *24*, 1265-1276
- Dolman N.J., Gerasimenko J.V., Gerasimenko O.V., Voronina S.G., Petersen O.H., Tepikin A.V. (2005) Stable Golgi-mitochondria complexes and formation of Golgi Ca(2+) gradients in pancreatic acinar cells. J Biol Chem 280, 15794-15799
- Donati A., Taddei M., Cavallini G., Bergamini E. (2006) Stimulation of macroautophagy can rescue older cells from 8-OHdG mtDNA accumulation: a safe and easy way to meet goals in the SENS agenda. Rejuvenation Res *9*, 408-412

- Dufour, E., Boulay, J., Rincheval, V., and Sainsard-Chanet, A. (2000) A causal link between respiration and senescence in *Podospora anserina*. Proc. Natl. Acad. Sci U. S. A *97*, 4138-4143.
- 29. Eriksen J.L., Wszolek Z., Petrucelli L. (2005) Molecular pathogenesis of Parkinson disease. Arch Neurol *62*, 353-357
- 30. Esser, K., Kück, U., Stahl, U., and Tudzynski, P. (1981). Mitochondrial DNA and Senescence in *Podospora anserina*. Curr. Genet. *4*, 83
- Forner F., Foster L.J., Campanaro S., Valle G., Mann M. (2006) Quantitative proteomic comparison of rat mitochondria from muscle, heart, and liver. Mol Cell Proteomics *5*, 608-619
- Gillardon F (2006) Differential mitochondrial protein expression profiling in neurodegenera.tive diseases. Electrophoresis *27*, 2814-2818
- Gredilla R., Grief J., Osiewacz H.D. (2006) Mitochondrial free radical generation and lifespan control in the fungal ageing model Podospora anserina. Exp Gerontol *41*, 439-447
- Harman, D. (1956). Ageing: a theory based on free radical and radiation chemistry. J Gerontol *11*, 298-300.
- 35. Hunzinger C., Wozny W., Schwall G.P., Poznanovic S., Stegmann W., Zengerling H., Schoepf R., Groebe K., Cahill M.A., Osiewacz H.D., Jagemann N., Bloch M., Dencher N.A., Krause F., Schrattenholz A. (2006) Comparative profiling of the mammalian mitochondrial proteome: multiple aconitase-2 isoforms including N-formylkynurenine modifications as part of a protein biomarker signature for reactive oxidative species. J Proteome Res *5*, 625-633

- Jacobs, H. T. (2003). The mitochondrial theory of ageing: dead or alive? Ageing Cell *2*, 11-17
- Jaffe E.A., Nachman R.L., Becker C.G., Minick C.R. (1973) Culture of human endothelial cells derived from umbilical veins: Identification by morphologic and immunologic criteria. J Clin Invest *52*, 2745-2756
- Jin J., Meredith G.E., Chen L., Zhou Y., Xu J., Shie F.S., Lockhart P., Zhang J. (2005) Quantitative proteomic analysis of mitochondrial proteins: relevance to Lewy body formation and Parkinson's disease. Brain Res Mol Brain Res *134*, 119-138
- Johnson D.T., Harris R.A., Blair P.V., Balaban R.S. (2006) Functional Consequences of Mitochondrial Proteome Heterogeneity. Am J Physiol Cell Physiol *292*, C698-707
- 40. Kang D., Hamasaki N. (2003) Mitochondrial oxidative stress and mitochondrial DNA. Clin Chem Lab Med *41*,1281-1288
- Kim K.B., Lee J.W., Lee C.S., Kim B.W., Choo H.J., Jung S.Y., Chi S.G., Yoon Y.S., Yoon G., Ko Y.G. (2006) Oxidation-reduction respiratory chains and ATP synthase complex are localized in detergent-resistant lipid rafts. Proteomics *6*, 2444-2453
- Koll, F., Begel, O., Keller, A.M., Vierny, C., and Belcour, L. (1984). Ethidium bromide rejuvenation of senescent cultures of *Podospora anserina*: Loss of senescence-specific DNA and recovery of normal mitochondrial DNA. Curr. Genet. *8*, 127-134

- 43. Kowald, A. (2001). The mitochondrial theory of ageing. Biol Signals Recept 10, 162-175.
- Kowald, A., Jendrach, M., Pohl, S., Bereiter-Hahn, J. and Hammerstein, P. (2005). On the relevance of mitochondrial fusions for the accumulation of mitochondrial deletion mutants: a modelling study. Ageing Cell *4*, 273-283
- 45. Krause F., Reifschneider N.H., Goto S., Dencher N.A. (2005) Active oligomeric ATP synthases in mammalian mitochondria. Biochem Biophys Res Commun *329*, 583-590
- 46. Krause F., Scheckhuber C.Q., Werner A., Rexroth S., Reifschneider N.H., Dencher N.A., Osiewacz H.D. (2004) Supramolecular organization of cytochrome c oxidase- and alternative oxidase-dependent respiratory chains in the filamentous fungus Podospora anserina. J Biol Chem *279*, 26453-26461
- 47. Kraytsberg Y., Kudryavtseva E., McKee A.C., Geula C., Kowall N.W., Khrapko K. (2006) Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons. Nat Genet *38*, 518-520
- 48. Kück, U., Stahl, U., and Esser, K. (1981). Plasmid-like DNA is part of mitochondrial DNA in *Podospora anserina*. Curr. Genet. *3*, 151-156
- Kujoth, G. C., Hiona, A., Pugh, T. D., Someya, S., Panzer, K., Wohlgemuth, S.
 E., Hofer, T., Seo, A. Y., Sullivan, R., Jobling, W. A., *et al.* (2005). Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian ageing. Science *309*, 481-484
- 50. Laun, P., Pichova, A., Madeo, F., Fuchs, J., Ellinger, A., Kohlwein, S., Dawes, I., Frohlich, K. U., and Breitenbach, M. (2001). Aged mother cells of

Saccharomyces cerevisiae show markers of oxidative stress and apoptosis. Mol Microbiol *39*, 1166-1173

- Lesnefsky E.J., Hoppel C.L. (2006) Oxidative phosphorylation and ageing.
 Ageing Res Rev 5, 402-433
- 52. Marin-Garcia J., Pi Y., Goldenthal M.J. (2006) Mitochondrial-nuclear Cross-talk in the Ageing and Failing Heart. Cardiovasc Drugs Ther. *20*, 477-91
- Marley K., Mooney D.T., Clark-Scannell G., Tong T.T., Watson J., Hagen T.M., Stevens J.F., Maier C.S. (2005) Mass tagging approach for mitochondrial thiol proteins. J Proteome Res 4, 1403-1412
- McMahon K.A., Zhu M., Kwon S.W., Liu P., Zhao Y., Anderson R.G. (2006) Detergent-free caveolae proteome suggests an interaction with ER and mitochondria. Proteomics *6*, 143-152
- 55. Miquel, J. (1991). An integrated theory of ageing as the result of mitochondrial-DNA mutation in differentiated cells. Arch Gerontol Geriatr *12*, 99-117
- Miquel, J., Binnard, R., and Fleming, J. E. (1983). Role of metabolic rate and DNA-repair in Drosophila ageing: implications for the mitochondrial mutation theory of ageing. Exp Gerontol *18*, 167-171
- Neubauer H., Clare S.E., Kurek R., Fehm T., Wallwiener D., Sotlar K., Nordheim A., Wozny W., Schwall G.P., Poznanovic S., Sastri C., Hunzinger C., Stegmann W., Schrattenholz A., Cahill M.A. (2006) Breast cancer proteomics by laser capture microdissection, sample pooling, 54-cm IPG IEF, and differential iodine radioisotope detection. Electrophoresis *27*, 1840-1852

- Osiewacz H.D. (2002) Ageing in fungi: role of mitochondria in Podospora anserina. Mech Ageing Dev 123, 755-764
- Osiewacz H.D., Scheckhuber C.Q. (2006) Impact of ROS on ageing of two fungal model systems: Saccharomyces cerevisiae and Podospora anserina.
 Free Radic Res 40, 1350-1358
- 60. Osiewacz, H.D. (2002). Mitochondrial functions and ageing. Gene 286, 65-71
- Osiewacz, H.D. and Esser, K. (1984). The mitochondrial plasmid of *Podospora* anserina: A mobile intron of a mitochondrial gene. Curr. Genet. *8*, 299-305
- Osiewacz, H.D. and Hermanns, J. (1992). The role of mitochondrial DNA rearrangements in ageing and human diseases [see comments]. Ageing (Milano) *4*, 273-286
- 63. Piec I., Listrat A., Alliot J., Chambon C., Taylor R.G., Bechet D. (2005)
 Differential proteome analysis of ageing in rat skeletal muscle. FASEB J *19*, 1143-1145
- 64. Poon H.F., Calabrese V., Calvani M., Butterfield D.A. (2006a) Proteomics analyses of specific protein oxidation and protein expression in aged rat brain and its modulation by L-acetylcarnitine: insights into the mechanisms of action of this proposed therapeutic agent for CNS disorders associated with oxidative stress. Antioxid Redox Signal *8*, 381-394
- 65. Poon H.F., Shepherd H.M., Reed T.T., Calabrese V., Stella A.M., Pennisi G., Cai J., Pierce W.M., Klein J.B., Butterfield D.A. (2006b) Proteomics analysis provides insight into caloric restriction mediated oxidation and expression of brain proteins associated with age-related impaired cellular processes:

Mitochondrial dysfunction, glutamate dysregulation and impaired protein synthesis. Neurobiol Ageing *27*, 1020-1034

- Poon H.F., Vaishnav R.A., Butterfield D.A., Getchell M.L., Getchell T.V. (2005) Proteomic identification of differentially expressed proteins in the ageing murine olfactory system and transcriptional analysis of the associated genes. J Neurochem *94*, 380-392
- 67. Poon H.F., Vaishnav R.A., Getchell T.V., Getchell M.L., Butterfield D.A. (2006c)
 Quantitative proteomics analysis of differential protein expression and oxidative modification of specific proteins in the brains of old mice. Neurobiol Ageing *27*, 1010-1019
- Poznanovic S., Wozny W., Schwall G.P., Sastri C., Hunzinger C., Stegmann W., Schrattenholz A., Buchner A., Gangnus R., Burgemeister R., Cahill M.A. (2005)
 Differential radioactive proteomic analysis of microdissected renal cell carcinoma tissue by 54 cm isoelectric focusing in serial immobilized pH gradient gels. J Proteome Res *4*, 2117-2125
- Prokisch H., Andreoli C., Ahting U., Heiss K., Ruepp A., Scharfe C., Meitinger T. (2006) MitoP2: the mitochondrial proteome database--now including mouse data. Nucleic Acids Res *34*, D705-D711
- 70. Reifschneider N.H., Goto S., Nakamoto H., Takahashi R., Sugawa M., Dencher N.A., Krause F. (2006) Defining the mitochondrial proteomes from five rat organs in a physiologically significant context using 2D blue-native/SDS-PAGE. J Proteome Res *5*, 1117-1132

- Reinders J., Zahedi R.P., Pfanner N., Meisinger C., Sickmann A. (2006) Toward the complete yeast mitochondrial proteome: multidimensional separation techniques for mitochondrial proteomics. J Proteome Res *5*, 1543-1554
- 72. Rickwood D., Hayes A. (1984) An evaluation of methods used to prepare yeast mitochondria for transcriptional studies. Prep Biochem *14*, 163-171
- 73. Rottenberg H. (2006) Longevity and the evolution of the mitochondrial DNAcoded proteins in mammals. Mech Ageing Dev *127*, 748-760
- Ruiz-Romero C., Lopez-Armada M.J., Blanco F.J. (2006) Mitochondrial proteomic characterization of human normal articular chondrocytes.
 Osteoarthritis Cartilage *14*, 507-518
- 75. Sanz A., Pamplona R., Barja G. (2006) Is the mitochondrial free radical theory of ageing intact? Antioxid Redox Signal *8*, 582-599
- 76. Scheckhuber C.Q., Erjavec N., Tinazli A., Hamann A, Nystrom T., Osiewacz
 H.D. (2007) Reducing mitochondrial fission results in increased life span and fitness of two fungal ageing models. Nat Cell Biol *9*, 99-105
- 77. Schieke S.M., Phillips D., McCoy J.P., Jr., Aponte A.M., Shen R.F., Balaban R.S., Finkel T. (2006) The mammalian target of rapamycin (mTOR) pathway regulates mitochondrial oxygen consumption and oxidative capacity. J Biol Chem 281, 27643-27652
- 78. Schrattenholz A., Groebe K. (2007) What does it need to be a biomarker? Relationships between resolution, differential quantification and statistical validation of protein surrogate biomarkers. Electrophoresis, May 22, Epub ahead of print

- 79. Schrattenholz A., Soskic V. (2006) NMDA receptors are not alone: dynamic regulation of NMDA receptor structure and function by neuregulins and transient cholesterol-rich membrane domains leads to disease-specific nuances of glutamate-signalling. Curr Top Med Chem *6*, 663-686
- Schulte, E., Kück, U., and Esser, K. (1988). Extrachromosomal mutants from *Podospora anserina*: Permanent vegetative growth in spite of multiple recombination events in the mitochondrial genome. Mol. Gen. Genet. *211*, 342-349
- Simat T.J., Steinhart H. (1998) Oxidation of Free Tryptophan and Tryptophan Residues in Peptides and Proteins. J Agric Food Chem *46*, 490-498
- 82. Singh K.K. (2006) Mitochondrial damage checkpoint, ageing, and cancer. Ann NY Acad Sci *1067*, 182-190
- 83. Soskic V., Klemm M., Proikas-Cezanne T., Schwall GP., Poznanovic S.,
 Stegmann W., Groebe K., Zengerling H., Schoepf R., Burnet M., Schrattenholz
 A. (2007) A connection between the mitochondrial permeability transition pore,
 autophagy and cerebral amyloidogenesis. submitted
- Soti C., Csermely P. (2007) Ageing cellular networks: Chaperones as major participants. Exp Gerontol. 42, 113-139
- Stahl, U., Lemke, P.A., Tudzynski, P., Kück, U. and Esser, K. (1978) Evidence for plasmid like DNA in a filamentous fungus, the ascomycete *Podospora anserina*. Mol. Gen. Genet. *162*, 341-343

- 85. Stockl, P., Hutter, E., Zwerschke, W., and Jansen-Durr, P. (2006). Sustained inhibition of oxidative phosphorylation impairs cell proliferation and induces premature senescence in human fibroblasts. Exp Gerontol *41*, 674-682
- 86. Stumpferl, S.W., Stephan, O. and Osiewacz, H.D. (2004). Impact of a disruption of a pathway delivering copper to mitochondria on *Podospora anserina* metabolism and life span. Eukaryotic Cell *3*, 200-211
- Sultana R., Boyd-Kimball D., Poon H.F., Cai J., Pierce W.M., Klein J.B., Merchant M., Markesbery W.R., Butterfield D.A. (2006) Redox proteomics identification of oxidized proteins in Alzheimer's disease hippocampus and cerebellum: an approach to understand pathological and biochemical alterations in AD. Neurobiol Ageing *27*, 1564-1576
- Takahashi R. and Goto S. (1987) Influence of dietary restriction on accumulation of heat-labile enzyme molecules in the liver and brain of mice, Arch. Biochem. Biophys. *257* 200–206
- Terman A., Brunk U.T. (2006) Oxidative stress, accumulation of biological 'garbage', and ageing. Antioxid Redox Signal *8*, 197-204
- Trifunovic, A., Hansson, A., Wredenberg, A., Rovio, A. T., Dufour, E., Khvorostov, I., Spelbrink, J. N., Wibom, R., Jacobs, H. T., and Larsson, N. G. (2005). Somatic mtDNA mutations cause ageing phenotypes without affecting reactive oxygen species production. Proc Natl Acad Sci U S A *102*, 17993-17998
- 91. Trifunovic, A., Wredenberg, A., Falkenberg, M., Spelbrink, J. N., Rovio, A. T., Bruder, C. E., Bohlooly, Y. M., Gidlof, S., Oldfors, A., Wibom, R., *et al.* (2004).

Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature *429*, 417-423

- Unterluggauer H., Hampel B., Zwerschke W., Jansen-Durr P. (2003)
 Senescence-associated cell death of human endothelial cells: the role of oxidative stress. Exp Gerontol *38*, 1149-1160
- Vijg, J. (2000). Somatic mutations and ageing: a re-evaluation. Mutat Res 447, 117-135
- Vo T.D., Palsson B. (2007) Building the power house: Recent advances in mitochondrial studies through proteomics and systems biology. Am J Physiol Cell Physiol *292*, C164-177
- 95. Vogt J.A., Hunzinger C., Schroer K., Holzer K., Bauer A., Schrattenholz A., Cahill M.A., Schillo S., Schwall G., Stegmann W., Albuszies G. (2005) Determination of fractional synthesis rates of mouse hepatic proteins via metabolic 13C-labeling, MALDI-TOF MS and analysis of relative isotopologue abundances using average masses. Anal Chem *77*, 2034-2042
- 96. Wallace, D. C. (2001). A mitochondrial paradigm for degenerative diseases and ageing. Novartis Found Symp *235*, 247-263; discussion 263-246
- Wang, W., Yang, X., Lopez De Silanes, I., Carling, D., and Gorospe, M. (2003).
 Increased AMP: ATP ratio and AMP-activated kinase activity during cellular senescence linked to reduced HuR function. J Biol Chem *278*, 27016-27023
- Weinreb O., Drigues N., Sagi Y., Reznick A.Z., Amit T., Youdim M.B. (2007) The Application of Proteomics and Genomics to the Study of Age-Related Neurodegeneration and Neuroprotection. Antioxid Redox Signal *9*, 169-179

- Wozny W., Schroer K., Schwall G., Poznanovic S., Stegmann W., Dietz K., Rogatsch H., Schaefer G., Huebl H., Klocker H., Schrattenholz A., Cahill M.A. (2007) Differential Radioactive Quantification of Protein Abundance Ratios Between Benign and Malignant Prostate Tissues: Cancer Association of Annexin A3. Proteomics *7*, 313-322
- 100. Yonally S.K., Capaldi R.A. (2006) The F(1)F(0) ATP synthase and mitochondrial respiratory chain complexes are present on the plasma membrane of an osteosarcoma cell line: An immunocytochemical study. Mitochondrion *6*, 305-314
- 101. Zwerschke, W., Mazurek, S., Stockl, P., Hutter, E., Eigenbrodt, E., and Jansen-Durr, P. (2003). Metabolic analysis of senescent human fibroblasts reveals a role for adenosine monophosphate in cellular senescence. Biochem J *376*, 403-411

Correction

Table 1: Redundant posttranslational age-related isoforms from the different models

in three species:

						v la
Species	Description	Theore	etical	Experi	ment	Spot ID
•	-	MW	pl	MW	pl	
Podospora	ATP synthase β chain,	60792	5.5	58000	4.6-4.7	904, 907, 917, 920,
anserina	mitochondrial precursor			14800	4.87	2249
	ATP synthase subunit 4,	26458	9.2	25000	5.6	1192
	mitochondrial precursor	55802				
	ATP synthase oligomycin sensitivity conferral protein- like protein	23573	9.6	24000	8.5	1555
	ATP synthase γ chain, mitochondrial precursor	33019	8.9	32000	6.8	1337
Rattus	ATP synthase, mitochondrial	56318	5.0	53000, 33000	4.9, 4.8	1436, 1470, 1685, 1694,
norvegicus	F1 complex, β subunit			59000, 43000	5.1, 5.1	1/15, 24/6,
• •						
Homo sapiens	ATP ase 5A1 protein ATP synthase, H+ transporting, mitochondrial F1 complex, α subunit, precursor	49119 61456	9.2 9.2	57500, 56500 56.500, 55000	6.8, 7.0 6.85, 6.6	760, 762, 1225, 1255
	$\overline{\mathcal{A}}$					
Podospora anserina	Putative SAM-dependent O- methyltransferase (PaMTH1)	27774	5.4	27000	5.2, 5.35	1079, 1092
Homo sapiens	Reticulocalbin 1, precursor Reticulocalbin 3 Reticulocalbin precursor	38866 37470 37401		47500	4.6-4.8	XXX

Table S1											
Juvenile versus senescent Podospora anserina (mitochondrial preparation)											
An accession numbers are nom Podospora ansenna in not stated otherwise											
	Identifica	tion						Quant	ificatior	n	
Protein	Accession Number	PMF score	Mass	pl	exp. mass	exp. pl	Juv (%)	Sen (%)	StdDev (%)	p-value	
SC_J_chrm5.seq:5588256	ps 27328	71	22181	9.6	16500	5.2	72.0	28.0	14.433	<0.0001	
3-hydroxyacyl-CoA dehydrogenase, NAD binding domain (SC_A_chrm2.seq:1878728. .1879998)	ps 22964	151	35136	9.2	31000	7.8	71.1	28.9	5.5467	<0.0001	
Isocitrate dehydrogenase subunit 1, mitochondrial precursor (SC_B_chrm1.seq:1727818. .1729170)	ps 20585	211	43057	9	44333	7.067	71.1	28.9	8.04	<0.0001	
Acetyl-CoA acetyltransferase (SC_A_chrm6.seq:563339 564758)	ps 27514	147	45657	8.9	44333	7.067					
Ubiquinol-cytochrome-c reductase complex core protein 2, mitochondrial precursor. (SC_B_chrm6.seq:411876 413451)	ps 27828	110	46451	7.8	44333	7.067					
Apotul CoA	po/07514	107	AECEZ	0.0	44000	7 1 6 7	70.4	20.6	6 0059	-0.0001	
acetyltransferase (SC_A_chrm6.seq:563339 564758)	ps 27514	197	45657	8.9	44333	7.167	70.4	29.6	6.0058	<0.0001	
Isocitrate dehydrogenase subunit 1, mitochondrial precursor (SC_B_chrm1.seq:1727818. .1729170)	ps 20585	135	43057	9	44333	7.167					
ATP synthase beta chain, mitochondrial precursor (SC_B_chrm6.seq:781183 783469)	ps 27916	122	60792	5.5	58333	4.6	67.8	32.2	7.945	<0.0001	
Malate dehydrogenase, mitochondrial precursor (SC_B_chrm3.seq:251337 251966)	ps 24151	124	22580	5.8	35000	7.5	67.2	32.8	7.2148	<0.0001	
Hypothetical protein	gi 32407475	110	36027	9.1	35000	7.5					
Hypothetical protein MG09367.4 [Magnaporthe grisea 70-15]	gi 39960255	110	35878	8.3	35000	7.5					
NADH-quinone	ps 20639	126	21865	5.4	24333	5.4	66.8	33.2	8.8648	<0.0001	
oxidoreductase (SC_B_chrm1.seq:1943172.											

. 1 3 4 3 0 4 1 /										
Methylmalonate- semialdehyde dehydrogenase, mitochondrial precursor (SC_B_chrm1.seq:2405475. 2407298)	ps 20766	151	63908	8.3	63333	5.9	66.7	33.3	8.2418	<0.0001
Acyl-CoA dehydrogenase (SC_D_chrm6.seq:109461 111164)	ps 28197	152	61265	8.2	50500	5.2	66.6	33.4	7.4067	<0.0001
Flavohémoglobin (SC_A_chrm5.seq:647906 649171)	ps 26217	113	46652	5.3	50500	5.2			Ó	
Hypothetical protein [Neurospora crassa OR74A]	gi 85106801	108	47942	7.9	50500	5.2		\mathcal{Q}		
Hypothetical protein MG09367.4 [Magnaporthe grisea 70-15]	gi 39960255	131	35878	8.3	35000	7.55	66.3	33.7	10.942	0.0020
Malate dehydrogenase, mitochondrial precursor [Chaetomium globosum CBS 148 51]	gi 88181085	120	35865	8.6	35000	7.55				
Malate dehydrogenase, mitochondrial precursor [Chaetomium globosum CBS 148.51]. (SC_B_chrm3.seq:251337	ps 24151	115	22580	5.8	35000	7.55				
251966)										
ATP synthase beta chain, mitochondrial precursor (SC_B_chrm6.seq:781183 783469)	ps 27916	249	60792	5.5	58000	4.633	66.2	33.8	6.0773	<0.0001
ATP synthase beta chain, mitochondrial precursor (SC_B_chrm6.seq:781183 783469) Electron transfer flavoprotein subunit alpha (SC_A_chrm6.seq:473832	ps 27916 ps 27491	249 213	60792 36424	5.5 5.8	58000 34000	4.633 5.1	66.2 65.8	33.8 34.2	6.0773 7.0367	<0.0001 <0.0001
ATP synthase beta chain, mitochondrial precursor (SC_B_chrm6.seq:781183 783469) Electron transfer flavoprotein subunit alpha (SC_A_chrm6.seq:473832 474884) Glycine cleavage system H protein	ps 27916 ps 27491 ps 23086	249 213 98	60792 36424 18719	5.5 5.8 4.8	58000 34000 18000	4.633 5.1 4.4	66.2 65.8 65.7	33.8 34.2 34.3	6.0773 7.0367 7.1411	<0.0001 <0.0001 <0.0001
ATP synthase beta chain, mitochondrial precursor (SC_B_chrm6.seq:781183 783469) Electron transfer flavoprotein subunit alpha (SC_A_chrm6.seq:473832 474884) Glycine cleavage system H protein (SC_A_chrm2.seq:2279444. .2280030) Glycine cleavage system H	ps 27916 ps 27491 ps 23086 ps 23086	249 213 98 84	60792 36424 18719 18719	5.55.84.84.8	58000 34000 18000 17500	4.633 5.1 4.4 4.4	66.2 65.8 65.7 65.2	33.8 34.2 34.3 34.8	6.0773 7.0367 7.1411 7.15	<0.0001 <0.0001 <0.0001
ATP synthase beta chain, mitochondrial precursor (SC_B_chrm6.seq:781183 783469) Electron transfer flavoprotein subunit alpha (SC_A_chrm6.seq:473832 474884) Glycine cleavage system H protein (SC_A_chrm2.seq:2279444. .2280030) Glycine cleavage system H protein (SC_A_chrm2.seq:2279444. .2280030) David do potential sectors and s	ps 27916 ps 27491 ps 23086 ps 23086	249 213 98 84	60792 36424 18719 18719	5.55.84.84.8	58000 34000 18000 17500	4.633 5.1 4.4 4.4	66.2 65.8 65.7 65.2	33.8 34.2 34.3 34.8	6.0773 7.0367 7.1411 7.15	<0.0001 <0.0001 <0.0001
ATP synthase beta chain, mitochondrial precursor (SC_B_chrm6.seq:781183 783469) Electron transfer flavoprotein subunit alpha (SC_A_chrm6.seq:473832 474884) Glycine cleavage system H protein (SC_A_chrm2.seq:2279444. .2280030) Glycine cleavage system H protein (SC_A_chrm2.seq:2279444. .2280030) Peptidylprolyl isomerase (SC_A_chrm2.seq:1458028. .1458541)	ps 27916 ps 27491 ps 23086 ps 23086 ps 22843	249 213 98 84 121	60792 36424 18719 18719 15688	 5.5 5.8 4.8 4.8 9.3 	58000 34000 18000 17500 16666	4.633 5.1 4.4 4.4 5.367	 66.2 65.8 65.7 65.2 64.9 	33.8 34.2 34.3 34.8 35.1	6.0773 7.0367 7.1411 7.15 6.2908	<0.0001 <0.0001 <0.0001 <0.0001
ATP synthase beta chain, mitochondrial precursor (SC_B_chrm6.seq:781183 783469) Electron transfer flavoprotein subunit alpha (SC_A_chrm6.seq:473832 474884) Glycine cleavage system H protein (SC_A_chrm2.seq:2279444. .2280030) Glycine cleavage system H protein (SC_A_chrm2.seq:2279444. .2280030) Peptidylprolyl isomerase (SC_A_chrm2.seq:1458028. .1458541) ATP synthase beta chain, mitochondrial precursor (SC_B_chrm6.seq:781183 783469)	ps 27916 ps 27491 ps 23086 ps 23086 ps 22843 ps 27916	249 213 98 84 121 282	60792 36424 18719 18719 15688 60792	 5.5 5.8 4.8 4.8 9.3 5.5 	58000 34000 18000 17500 16666 57666	4.633 5.1 4.4 4.4 5.367 4.7	 66.2 65.8 65.7 65.2 64.9 64.2 	33.8 34.2 34.3 34.8 35.1 35.8	6.0773 7.0367 7.1411 7.15 6.2908 6.8307	<0.0001 <0.0001 <0.0001 <0.0001 <0.0001
ATP synthase beta chain, mitochondrial precursor (SC_B_chrm6.seq:781183 783469) Electron transfer flavoprotein subunit alpha (SC_A_chrm6.seq:473832 474884) Glycine cleavage system H protein (SC_A_chrm2.seq:2279444. .2280030) Glycine cleavage system H protein (SC_A_chrm2.seq:2279444. .2280030) Peptidylprolyl isomerase (SC_A_chrm2.seq:1458028. .1458541) ATP synthase beta chain, mitochondrial precursor (SC_B_chrm6.seq:781183 783469) Putative peroxiredoxin (SC_F_chrm5.seq:280296 280916)	ps 27916 ps 27491 ps 23086 ps 23086 ps 22843 ps 27916 ps 26871	249 213 98 84 121 282 125	60792 36424 18719 18719 15688 60792 20204	 5.5 5.8 4.8 4.8 9.3 5.5 7.8 	58000 34000 18000 17500 16666 57666 16666	4.633 5.1 4.4 4.4 5.367 4.7 5.367	 66.2 65.8 65.7 65.2 64.9 64.2 63.9 	33.8 34.2 34.3 34.8 35.1 35.8 36.1	6.0773 7.0367 7.1411 7.15 6.2908 6.8307 5.4021	<0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

Enoyl-CoA hydratase, putative	ps 29563	152	20387	6.2	28666	6.567	63.2	36.8	6.3754	0.0003
(SC_C_chrm7.seq:1806496. .1807056)										
Glycine cleavage system H	ps 23086	81	18719	4.8	18000	4.25	63.2	36.8	8.1601	<0.0001
(SC_A_chrm2.seq:2279444.										
.2280030)	pp/21762	160	06459	0.2	24000	5.6	62.0	27.0	7 0000	-0.0001
mitochondrial precursor	ps 21763	102	20400	9.2	24000	5.0	63.0	37.0	7.9239	<0.0001
(SC_E_chrm1.seq:1244142.										$\langle \rangle$
Cytochrome c oxidase	ps 28599	107	20630	6.2	19666	4.967	62.8	37.2	7.1631	<0.0001
polypeptide IV,									\sim	
(SC A chrm7.seg:191738								\square		
192859)								\sim		
Ubiquinol-cytochrome-c	ps 27828	202	46451	7.8	44666	6.967	61.5	38.5	9.166	0.0054
protein 2, mitochondrial							CA			
precursor.										
413451)										
Isocitrate dehydrogenase	ps 20585	170	43057	9	44666	6.967				
precursor										
(SC_B_chrm1.seq:1727818.										
.1729170) Acetvl-CoA	ps 27514	96	45657	8.9	44666	6.967				
acetyltransferase										
(SC_A_chrm6.seq:563339 564758)										
	<u> </u>									
Mitochondrial import	ps 27547	81	20350	4.8	18000	4.8	61.4	38.6	6.209	<0.0001
(MOM19 protein)		$ \land $	Ÿ							
(SC_A_chrm6.seq:652966										
653662)		•			10000					0.0004
Cytochrome c subunit Vb (SC A chrm7.seg:191738	ps 28599	111	20630	6.2	18333	4.967	59.8	40.2	6.8626	<0.0001
192859)										
ATP synthase beta chain,	ps 27916	310	60792	5.5	57333	4.7	59.4	40.6	9.493	0.0013
(SC_B_chrm6.seq:781183										
783469)	mal07010	100	70000	5.0	00000	4.0	40.0	FO 1	10.000	0.0407
mitochondrial precursor	ps 27612	106	72862	5.9	33333	4.9	40.9	59.1	16.392	0.0427
(SC_A_chrm6.seq:904733										
906927) Vacuolar-ATPase	ns 21700	85	37859	Q 1	22000	6.6	37 7	623	6 6932	0 0006
(SC_E_chrm1.seq:962729	p3/21700	00	57055	5.1	22000	0.0	57.7	02.0	0.0352	0.0000
963867)		054	40004	4.0	50000	F 007	07.0	<u> </u>	10.405	0.0005
reductase complex core	ps 20652	251	48004	4.9	52666	5.067	37.2	62.8	10.405	0.0005
protein I										
(SC_B_chrm1.seq:1974671.										
Heat shock protein SSC1,	ps 27612	74	72862	5.9	52666	5.067				
mitochondrial precursor										
(30_A_00000.5eq:904733 906927)										

Elongation factor 1-beta [Aspergillus terreus	ps 26538	67	25342	4.3	37000	4.3	36.5	63.5	8.0793	<0.0001
NIH2624]. (SC_C_chrm5.seq:162845 163892)										
ATP synthase oligomycin sensitivity conferral protein-	ps 24700	194	23573	9.6	22666	8.5	35.2	64.8	7.0871	0.0002
like protein (SC_B_chrm3.seq:2193212.										
.2194235) ATP synthase beta chain,	ps 27916	75	60792	5.5	15000	4.8	35.1	64.9	6.8754	<0.0001
mitochondrial precursor (SC_B_chrm6.seq:781183									\mathcal{A}	Ť
Vacuolar-ATPase	ps 21700	73	37859	9.1	22000	6.9	32.8	67.2	7.7993	0.0002
963867) ATP synthase gamma chain,	ps 20945	119	33019	8.9	31000	6.85	32.4	67.6	6.7909	<0.0001
mitochondrial precursor (SC_C_chrm1.seq:218135		-				4	6			
SC_D_chrm4.seq:6046016	ps 25644	184	42440	9.4	39666	6.4	32.0	68.0	4.4705	<0.0001
Hypothetical protein CHGG 09308 [Chaetomium	gi 88177826	117	33545	9	39666	6.4				
globosum CBS 148.51]										
SC_A_chrm2.seq:4588577 4589920	ps 23766	67	42347	4.7	67500	4.6				
Aspartate aminotransferase, mitochondrial precursor (SC_C_chrm3.seq:293121 294666)	ps 25020	202	43289	8.3	41333	6.933	29.5	70.5	19.133	0.0123
Vacuolar protease A precursor	ps 26947	113	43599	5	46666	4.5	28.9	71.1	7.4027	<0.0001
(SC_F_chrm5.seq:579358 580684)										
SC_A_chrm2.seq:4588577 4589920	ps 23766	72	42347	4.7	70000	4.6	28.9	71.1	7.0036	<0.0001
Nucleoside diphosphate kinase (SC A chrm2 seq:3204186	ps 23368	153	17062	7.8	15666	7.167	28.6	71.4	6.0651	<0.0001
.3204993) Putativo mitochondrial	pc/20492	100	26116	86	18333	56	23.5	76 5	6 5778	-0.0001
cyclophilin 1 (SC_B_chrm1.seq:1416610.	p3/20432	122	20110	0.0	10000	0.0	20.0	70.0	0.0770	<0.0001
Putative SAM-dependent O- methyltranferase	gi 9968599	140	27774	5.2	26666	5.333	18.4	81.6	8.41	<0.0001
Putative SAM-dependent O-	ps 23254	90	28975	7	26666	5.333				
(SC_A_chrm2.seq:2823633. .2824514)										
Putative SAM-dependent O- methyltranferase	gi 9968599	131	27774	5.2	26666	5.2	17.6	82.4	7.084	<0.0001
Putative SAM-dependent O- methyltranferase.	ps 23254	102	28975	7	26666	5.2				
(SC_A_chrm2.seq:2823633. .2824514)										

										I
Disulfide isomerase	ps 21020	271	56166	4.8	66333	4.7	11.1	88.9	7.3024	<0.0001
(SC_C_chrm1.seq:492241 493831)										
Disulfide isomerase	ps 21020	113	56166	4.8	68333	4.633	10.9	89.1	6.1069	<0.0001
493831)	100700		400.47			4 0 0 0				
SC_A_chrm2.seq:4588577 4589920	ps 23766	66	42347	4.7	68333	4.633				
		07	44.400		40000					0.0004
Pyruvate denydrogenase E1 subunit beta	ps 21580	87	41423	6.1	16000	5.4	8.2	91.8	2.512	<0.0001
(SC_E_chrm1.seq:550743 552061)									\mathcal{O}	Ť
	I	I	I		I	I				I
								\sim		
							(
							6			
						4				
						15				
					5					
					$V_{\rm b}$					
)						
			$\langle \rangle$							
		$\boldsymbol{\wedge}$								
) `								
	\mathcal{O}									
)									

Table S2Rat brain 5 months versus 17 months (mitochondrial preparation)All accession numbers are from Rattus norvegicus if not stated otherwise

Identification								Quantification			
Protein	Accession	PMF	Mass	pl	exp.	exp.	5Mo	17Mo	StdDev	p-value	
	Number	score			mass	pl	(%)	(%)	(%)		
ATP synthase, H+	gi 54792127	275	56318	5	53000	4.9	63.2	36.8	6.3252	0.0006	
transporting, mitochondrial									\square		
F1 complex, beta subunit										/	
Tubb5 protein	gi 38014544	117	24787	4.7	36000	4.95	37.2	62.8	2.5173	<0.0001	
Tubb2 protein [Mus	gi 13097483	87	34688	4.5	36000	4.95		\bigcirc			
musculus]			F1000	4 5	00000	4.05					
Tubulin beta chain 15 - rat	gi 92930	11	51322	4.5	36000	4.95					
Calretinin [Mus musculus]	gi 393387	116	22406	4.6	29000	4.8	40.1	59.9	5.8426	0.0020	
Calbindin 2	gi 16758892	100	31739	4.7	29000	4.8	(\land)				
Neurofilament, light	gi 13929098	164	61475	4.3	61000	5.2 <	57.3	42.7	6.6337	0.0168	
polypeptide Tubulin alpha	ail223556	130	52335	17	61000	52					
		100	J2005	4.7 E.C	50000	5.2	50.0	40.0	0.0500	0.0105	
musculus]	gil909201	139	42000	0.0	50000	5.5	59.6	40.2	0.3000	0.0125	
Actin beta - rat	gi 71620	138	42786	5.2	50000	5.5					
COP9 signalosome subunit	gi 6753490	109	47141	5.6	48000	5.5	39.2	60.8	7.7569	0.0056	
4 [Mus musculus]				Alterna							
Guanine nucleotide-binding	gi 204444	77	37040	5.3	38000	5.1	56.3	43.7	3.882	0.0026	
protein alpha subunit											
GTP-binding protein alpha o	gi 8394152	75	41814	5.2	38000	5.1					
Tubulin beta chain 15 - rat	gi 92930	99	51322	4.5	39500	5.3	59.7	40.3	5.1443	0.0011	
Crystallin, mu	gi 56789444	98	34064	5.2	39500	5.3					
Tubulin alpha	gi 223556	71	52335	4.7	39500	5.3					
Eno1 protein	gi 50926833	83	48161	6.5	56000	6.1	57.4	42.6	1.6752	<0.0001	
Malate dehydrogenase,	gi 42476181	185	37077	8.9	36000	7.6	43.1	56.9	5.2035	0.0072	
mitochondrial											
Similar to hemoglobin alpha	gi 34870607	77	15806	8.5	15000	7.3	41.6	58.4	6.5707	0.0084	
chain											
(
N N											

Table S3Rat brain 5 months versus 31 months (mitochondrial preparation)All accession numbers are from Rattus norvegicus if not stated otherwise

						Quantification				
Protein	Accession	PMF	Mass	pl	exp.	exp.	5Mo	31Mo	StdDev	p-value
	Number	score			Mass	pl	(%)	(%)	(%)	/
Ubiquilin 1	gi 48675852	84	61975	4.6	74000	4.7	63.1	36.9	6.5456	0.0110
Tubulin alpha	gi 223556	90	52335	4.7	63000	5	57.7	42.3	8.556	0.0378
Rab GDP dissociation	gi 1707888	73	52275	4.8	63000	5				
inhibitor alpha (Rab GDI										
alpha) (GDI-1)										
Tubulin beta chain 15 - rat	gi 92930	71	51322	4.5	63000	5				
Unknown (protein for	gi 50926985	89	48314	4.5	61500	4.7	64.4	35.6	6.3856	0.0004
MGC:94172)			47000	10	04500	47				
Type II CAMP-dependent	gi 206671	/5	47202	4.6	61500	4.7	()			
subunit										
ATP synthase H+	ail54792127	275	56318	5	53000	49	62.8	37.2	7 8943	0 0025
transporting, mitochondrial	gijo <i>41 02 121</i>	210	00010	0	00000	1.5	02.0	07.2	1.00+0	0.0020
F1 complex, beta subunit										
Tubb2 protein [Mus	gi 13097483	103	34688	4.5	38000	4.8	58.8	41.2	10.578	0.0499
musculus]					$\langle V \rangle$					
Tubulin beta chain 15 - rat	gi 92930	92	51322	4.5	38000	4.8				
Tubb5 protein	gi 38014544	117	24787	4.7	36000	4.95	55.9	44.1	5.4041	0.0175
Tubb2 protein [Mus	gi 13097483	87	34688	4.5	36000	4.95				
musculus])						
tubulin beta chain 15 - rat	gi 92930	77	51322	4.5	36000	4.95				
Tyrosine 3/tryptophan 5 -	gi 6981710	82	28725	4.5	30000	4.8	64.9	35.1	3.7409	<0.0001
monooxygenase activation										
protein, eta polypeptide		00	74500	5.0	00000	-	04.0	00.0	E 4040	0.0004
Hsc/0-ps1	gi 56385	86	/1593	5.2	80000	5	64.0	36.0	5.1318	0.0001
Heat shock protein 8 [Mus	gi 55250073	86	/1536	5.2	80000	5				
Intornovin alpha	ail0506811	281	56613	10	73000	5.2	67 1	32.0	15 202	0.0161
	gij9300011	140	52225	4.5	63000	5.2	60.4	30.6	6 248	0.0101
	gij223356	160	52000	4.7	62000	5.1	57.0	42.1	6 7756	0.0022
	gij223556	102	52335	4.7	62000	5.1	57.9	42.1	7 5 5 5 1	0.0132
Tubulin alpha	gij223556	150	52335	4.7	63000	5.1	57.9	42.1		0.0208
Tubulin alpha	gi 223556	159	52335	4.7	64000	5.1	59.2	40.8	7.151	0.0082
Tubulin beta chain 15 - rat	gi 92930	106	51322	4.5	64000	5.1	= 0 /			
I ubulin alpha	gi 223556	142	52335	4.7	64000	5.1	59.1	40.9	5.5095	0.0023
l ubulin beta chain 15 - rat	gi 92930	84	51322	4.5	64000	5.1				
Neurofilament, light	gi 13929098	164	614/5	4.3	61000	5.2	63.3	36.7	6.9854	0.0010
	01222556	120	50005	47	61000	5.2				
	gij223000	150	52335	4.7	60000	5.2	61.2	20 7	1 5 4 2 2	0 0002
	91223000 ail07905000	100	10050	4.7	51000	5.1	50.0	30.7	4.0432	0.0002
Enolase 2, gamma	gij37805239	143	48350	4.8	51000	5	59.9	40.1	9.9273	0.0257
	gil80956 i	139	42055	5.6	50000	5.5	61.0	39.0	7.4007	0.0039
Actin beta - rat	ail71620	138	42786	52	50000	55				
Gamma-actin [Mus	gil71020	157	42055	5.6	19500	51	68.3	317	5 564	~0.0001
musculus	91000001		72000	0.0	+5500	0.4	00.0	01.7	5.504	\U.UUU
Actin beta - rat	gi 71620	155	42786	5.2	49500	5.4				
Gamma-actin Mus	ail809561	187	42055	5.6	51000	5.2	60.4	39.6	11.566	0.0382
musculus]							50.1			

Actin beta - rat	gi 71620	186	42786	5.2	51000	5.2				
COP9 signalosome subunit	gi 6753490	109	47141	5.6	48000	5.5	30.0	70.0	7.2891	0.0001
4 [Mus musculus] Gamma-actin [Mus musculus]	gi 809561	80	42055	5.6	48000	5.3	65.4	34.6	5.5958	0.0001
Actin beta - rat	gi 71620	79	42786	5.2	48000	5.3				
lsocitrate dehydrogenase 3 (NAD+) alpha	gi 16758446	171	41005	6.9	45000	5.5	57.9	42.1	8.619	0.0352
ATP synthase, H+ transporting, mitochondrial F1 complex, beta subunit	gi 54792127	80	56318	5	43000	5.1	58.2	41.8	7.2202	0.0145
Guanine nucleotide-binding protein alpha subunit	gi 204444	77	37040	5.3	38000	5.1	65.7	34.3	5.1981	<0.0001
GTP-binding protein alpha o	gi 8394152	75	41814	5.2	38000	5.1			$\langle \langle \rangle$	
Acidic ribosomal protein P0	gi 450370	73	34725	6.2	40000	5.6	60.0	40.0	6.9207	0.0046
Similar to Beta-soluble NSF	gi 34859344	120	40357	6.1	37000	5.3	59.5	40.5	9.7324	0.0286
beta) (N-ethylmaleimide- sensitive factor attachment										
protein, beta)	~ii04959549	07	01465	5 1	25000	50	571	40.0	7.00	0.0070
protein	yi 34656543	97	21400	5.1	25000	5.2	57.1	42.9	7.20	0.0279
Ubiquitin-conjugating	gi 58477429	105	17290	6.5	16000	5.7	61.9	38.1	6.8741	0.0017
enzyme E2N (homologous to yeast UBC13)					5					
Cytochrome c oxidase subunit Va preprotein	gi 55971	89	16828	6.5	15000	5.2	59.9	40.1	7.2557	0.0061
Cytochrome c oxidase, subunit Va [Mus musculus]	gi 21707954	89	16800	6.5	15000	5.2				
Eno1 protein	gi 50926833	83	48161	6.5	56000	6.1	57.8	42.2	6.3626	0.0103
Malate dehydrogenase, mitochondrial	gi 42476181	185	37077	8.9	36000	7.6	55.8	44.2	5.6511	0.0236
	I			I	1 1			I		
		\sim								
(-0									
~										
N N										

Table S4Rat brain 17 months versus 31 months(mitochondrial preparation)All accession numbers are from Rattus norvegicus if not stated otherwise

Identification								Quant	ification	
Protein	Accession	PMF	Mass	pl	exp.	exp.	17Mo	31Mo	StdDev	p-value
	Number	score			Mass	pl	(%)	(%)	(%)	
Tubulin alpha	gi 223556	90	52335	4.7	63000	5	58.9	41.1	9.0029	0.0272
Rab GDP dissociation	gi 1707888	73	52275	4.8	63000	5			\cap	~
inhibitor alpha (Rab GDI										
alpha) (GDI-1)			54000			_				
Tubulin beta chain 15 - rat	gi 92930	/1	51322	4.5	63000	5				
Unknown (protein for	gi 50926985	89	48314	4.5	61500	4.7	63.6	36.4	5.551	0.0002
MGC:94172)	ail206671	75	47000	16	61500	47		Ĵ		
rotein kinase regulatory	gij20667 i	75	47202	4.0	01000	4.7				
subunit							\mathcal{O}			
Tubb2 protein [Mus	ai 13097483	103	34688	4.5	38000	4.8	58.1	41.9	5.872	0.0060
musculus]	9.1									
Tubulin beta chain 15 - rat	gi 92930	92	51322	4.5	38000	4.8				
Tubb5 protein	gi 38014544	117	24787	4.7	36000	4.95	68.1	31.9	4.5623	<0.0001
Tubb2 protein [Mus	gi 13097483	87	34688	4.5	36000	4.95				
musculus]										
Tubulin beta chain 15 - rat	gi 92930	77	51322	4.5	36000	4.95				
Tyrosine 3/tryptophan 5 -	gi 6981710	82	28725	4.5	30000	4.8	62.3	37.7	4.6227	0.0001
monooxygenase activation										
protein, eta polypeptide		110	00400		00000	4.0	01.0	00.0	5 0500	0 0000
	gi 393387	116	22406	4.6	29000	4.8	61.0	39.0	5.6596	0.0009
	gi 16758892	100	31739	4.7	29000	4.8	= 1 0			
Vacuolar adenosine	gi 1184661	106	57788	5.5	69000	5.6	54.9	45.1	5.612	0.0418
tripnosphatase subunit B	~:!00000050	07	50004	C 1	0000	FC				
Sa kDa	gi 38382858	87	58004	6.1	69000	5.6				
Tubulin alpha	ail223556	140	52335	47	63000	51	58.4	41.6	3 9629	0 0005
Tubulin alpha	gil223556	162	52335	47	63000	51	55.7	44.3	5 1568	0.0170
Tubulin alpha	gil223556	156	52335	47	63000	5.1	56.5	43.5	6 9693	0.0341
Tubulin alpha	gil223556	159	52335	47	64000	5.1	59.0	40.9	5 2161	0.0017
Tubulin beta chain 15 - rat	ail92930	106	51322	4.7	64000	5.1	55.1	+0.5	5.2101	0.0017
Tubulin alpha	gij323556	1/2	52335	4.5	64000	5.1	55.8	11 2	6 6018	0.0444
Tubulin bota obain 15 rat	gi 220000	0/	51200	4.7	64000	5.1	55.0	44.2	0.0310	0.0444
Nourofilomont light	gil92930	164	61475	4.5	61000	5.1	56.4	12.6	2 2626	0 0000
	gi 13929096	104	01475	4.3	61000	5.2	56.4	43.0	3.2020	0.0009
Tubulin alpha	ail223556	130	52335	4.7	61000	5.2				
Tubulin alpha	gil223556	155	52335	47	60000	5.1	57.6	42.4	5 1025	0 0040
Gamma-actin [Mus	gi 220000	157	42055	5.6	49500	54	67.0	32.6	6 1202	<0.001
musculus	gilococor	107	42000	0.0	+0000	0.4	07.4	02.0	0.1202	<0.0001
Actin beta - rat	gi 71620	155	42786	5.2	49500	5.4				
Gamma-actin [Mus	ail809561	187	42055	5.6	51000	5.2	59.8	40.2	8.5599	0.0143
musculus]	31	_				-		-		
Actin beta - rat	gi 71620	186	42786	5.2	51000	5.2				
COP9 signalosome subunit	gi 6753490	109	47141	5.6	48000	5.5	39.8	60.2	4.1461	0.0002
4 [Mus musculus]										
Gamma-actin [Mus	gi 809561	80	42055	5.6	48000	5.3	62.4	37.6	6.2746	0.0008
musculus]			10-0-							
Actin beta - rat	gi 71620	79	42786	5.2	48000	5.3				

gi 16758446	171	41005	6.9	45000	5.5	57.6	42.4	8.1177	0.0339
gi 54792127	80	56318	5	43000	5.1	60.0	40.0	8.1932	0.0105
gi∣8394152 gi∣54792127	99 73	41814 56318	5.2 5	42000 42000	5 5	57.6	42.4	6.0174	0.0093
gi 204444	77	37040	5.3	38000	5.1	59.9	40.1	5.7678	0.0019
gi 8394152	75	41814	5.2	38000	5.1			0	
gi 450370	73	34725	6.2	40000	5.6	56.3	43.7	7.246	0.0447
gi 92930	99	51322	4.5	39500	5.3	43.2	56.8	5.3885	0.0089
gi 56789444	98	34064	5.2	39500	5.3		\square		
gi 223556	71	52335	4.7	39500	5.3				
gi 34859344	120	40357	6.1	37000	5.3	60.5	39.5	7.8568	0.0070
gi 809561	73	42055	5.6	34000	5.5	55.0	45.0	2.7393	0.0013
gi 71620	72	42786	5.2	34000	5.5				
gi 58477429	105	17290	6.5	16000	5.7	59.7	40.3	5.0217	0.0009
gi 55971	89	16828	6.5	15000	5.2	62.3	37.7	6.2369	0.0008
gi 21707954	89	16800	6.5	15000	5.2				
gi 42476181	185	37077	8.9	36000	7.6	62.7	37.3	5.0763	0.0002
gi 34870607	77	15806	8.5	15000	7.3	62.7	37.3	4.3678	<0.0001
			ı	ı	ı				
	gi 16758446 gi 54792127 gi 8394152 gi 54792127 gi 204444 gi 8394152 gi 450370 gi 92930 gi 56789444 gi 223556 gi 34859344 gi 809561 gi 71620 gi 58477429 gi 55971 gi 21707954 gi 42476181 gi 34870607	gi 16758446171gi 5479212780gi 839415299gi 5479212773gi 20444477gi 839415275gi 45037073gi 9293099gi 5678944498gi 22355671gi 80956173gi 7162072gi 5597189gi 2170795489gi 3487060777	gi 1675844617141005gi 547921278056318gi 83941529941814gi 2044447737040gi 83941527541814gi 4503707334725gi 929309951322gi 567894449834064gi 2235567152335gi 8095617342055gi 716207242786gi 5847742910517290gi 559718916828gi 217079548916800gi 348706077715806	gi 16758446171410056.9gi 5479212780563185gi 839415299418145.2gi 20444477370405.3gi 839415275418145.2gi 45037073347256.2gi 9293099513224.5gi 5678944498340645.2gi 2355671523354.7gi 34859344120403576.1gi 7162072427865.2gi 5597189168286.5gi 2170795489168006.5gi 3487060777158068.5	gi 16758446171410056.945000gi 547921278056318543000gi 839415299418145.242000gi 20444477370405.338000gi 839415275418145.238000gi 80915275418145.238000gi 20444477370405.338000gi 809415275418145.238000gi 6578944498340645.239500gi 5678944498340645.239500gi 22355671523354.739500gi 34859344120403576.137000gi 34859344120403576.137000gi 5597189168286.515000gi 2170795489168006.515000gi 3487060777158068.515000	gi 16758446171410056.9450005.5gi 5479212780563185430005.1gi 839415299418145.2420005gi 20444477370405.3380005.1gi 839415275418145.2380005.1gi 839415275418145.2380005.1gi 82030099513224.5395005.3gi 5678944498340645.2395005.3gi 22355671523354.7395005.3gi 34859344120403576.1370005.5gi 58477429105172906.5160005.7gi 5597189168286.5150005.2gi 2170795489168006.5150005.2gi 3487060777158068.5150007.3	gi 16758446 171 41005 6.9 45000 5.5 57.6 gi 54792127 80 56318 5 43000 5.1 60.0 gi 8394152 99 41814 5.2 42000 5 57.6 gi 204444 77 37040 5.3 38000 5.1 59.9 gi 8394152 75 41814 5.2 38000 5.1 59.9 gi 8394152 75 41814 5.2 38000 5.1 59.9 gi 80930 99 51322 4.5 39500 5.3 43.2 gi 2930 99 51322 4.5 39500 5.3 43.2 gi 29356 71 5235 4.7 39500 5.3 60.5 gi 34859344 120 40357 6.1 37000 5.5 55.0 gi 55971 89 16828 6.5 15000 5.2 62.3 gi 21707954 89 16800 6.5 15000 5.2 62.7 gi 34870607 77 15806 8.	gi 16758446 171 41005 6.9 45000 5.5 57.6 42.4 gi 54792127 80 56318 5 43000 5.1 60.0 40.0 gi 8394152 99 41814 5.2 42000 5 57.6 42.4 gi 204444 77 37040 5.3 38000 5.1 59.9 40.1 gi 8094152 75 41814 5.2 38000 5.1 59.9 40.1 gi 8094152 75 41814 5.2 38000 5.1 59.9 40.1 gi 809501 73 34725 6.2 40000 5.6 56.3 43.2 56.8 gi 809561 73 42055 5.6 34000 5.5 59.7 40.3 gi 58477429 105 17290 6.5 16000 5.7 59.7 40.3 gi 21707954 89 16828 6.5 15000 5.2 62.7 37.3 gi 34870607 77 15806 8.5 15000 7.3 62.7 37.3	gi 16758446 171 41005 6.9 45000 5.5 57.6 42.4 8.1177 gi 8394152 99 41814 5.2 42000 5 57.6 42.4 6.0174 gi 8394152 99 41814 5.2 42000 5 57.6 42.4 6.0174 gi 8394152 99 41814 5.2 42000 5 57.6 42.4 6.0174 gi 8394152 75 41814 5.2 38000 5.1 59.9 40.1 5.7678 gi 80370 73 34725 6.2 40000 5.6 56.3 43.7 7.246 gi 22300 99 51322 4.5 39500 5.3 43.2 56.8 5.3885 gi 223556 71 5235 4.7 39500 5.3 6.5 55.0 45.0 2.7393 gi 809561 73 42055 5.6 34000 5.5 59.7 40.3 5.0217 gi 58477429 105 17290 6.5 15000 5.2 62.3 37.7 <

Table S5Juvenile versus senescent HUVEC (mitochondrial preparation)All accession numbers are from Homo sapiens if not stated otherwise

	Identifica	tion				Quantification				า
Protein	Accession	PMF	Mass	pl	exp.	exp.	Juv	Sen	StdDev	p-value
	Number	score			Mass	pl	(%)	(%)	(%)	
Tubulin, beta 6	gi 14210536	203	51242	4.5	60333	4.933	55.6	44.4	7.4303	0.0024
Tubulin, beta polypeptide	gi 57209813	159	48976	4.4	60333	4.933			\cap	W
Tubulin, beta, 2	gi 23958133	150	51225	4.6	60333	4.933				
Tubulin, beta polypeptide	gi 57209813	181	47736	4.4	63000	4.9	57.2	42.8	8.8069	0.0012
TUBB protein	gi 16198437	152	30340	4.5	63000	4.9			`	
Tubulin, beta 2	gi 4507729	146	49875	4.5	63000	4.9				
Protein disulfide isomerase- related protein 5	gi 1710248	167	46170	4.7	51333	5	64.4	35.6	8.6217	<0.0001
Calumenin precursor	gi 4502551	100	37084	4.2	48000	4.5	39.1	60.9	6.6477	<0.0001
Calumenin	gi 2809324	89	37404	4.2	48000	4.5				
Crocalbin-like protein	gi 8515718	79	34968	4.2	48000	4.5	2			
Reticulocalbin 3, EF-hand calcium binding domain	gi 28626510	164	37470	4.5	46500	4.6	33.8	66.2	8.6449	<0.0001
Reticulocabin precursor	ai 9963785	148	37401	4.5	46500	4.6				
RCN3 protein	gi 15488585	112	37470	4.5	46500	4.6				
Reticulocalbin 3, EF-hand	gi 28626510	146	37470	4.5	47333	4.6	34.1	65.9	7.7465	<0.0001
calcium binding domain					2					
RCN3 protein	gi 15488585	131	37470	4.5	47333	4.6				
Reticulocabin precursor	gi 9963785	130	37401	4.5	47333	4.6		Ì		
Reticulocalbin 3, EF-hand calcium binding domain	gi 28626510	238	37470	4.5	47000	4.633	35.1	64.9	7.1699	<0.0001
RCN3 protein	ai 15488585	189	37470	4.5	47000	4.633				
Reticulocabin precursor	ail9963785	172	37401	4.5	47000	4.633				
Reticulocalbin 1. precursor	ai 14603330	231	38866	4.6	47000	4.667	32.1	67.9	5.6503	<0.0001
Reticulocalbin 1 precursor	ai 4506455	178	38866	4.6	47000	4.667	-			
Proliferation-inducing gene 20 protein	gi 41350407	128	19549	4.2	47000	4.667				
Reticulocalbin 1 precursor	gi 4506455	172	38866	4.6	47333	4.7	35.7	64.3	5.9005	<0.0001
Reticulocalbin 1, precursor	gi 14603330	154	38866	4.6	47333	4.7				
Reticulocalbin 3, EF-hand calcium binding domain	gi 28626510	118	37470	4.5	47333	4.7				
Reticulocalbin 1, precursor	gi 14603330	92	38866	4.6	46000	4.7	34.7	65.3	8.6589	<0.0001
Reticulocalbin 1 precursor	gi 4506455	108	38866	4.6	48000	4.75	36.4	63.6	8.6692	<0.0001
Vimentin	gi 62414289	103	53619	4.8	48000	4.75				
Proliferation-inducing gene 20 protein	gi 41350407	87	19549	4.2	48000	4.75				
Laminin-binding protein	gi 34234	148	32128	4.6	45500	4.8	56.8	43.2	7.4033	0.0004
Ribosomal protein SA	gi 31419811	147	33188	4.5	45500	4.8				
Chain A, 14-3-3 Protein Epsilon (Human) Complexed To Peptide	gi 67464424	120	26740	4.9	34666	4.6	52.9	47.1	4.2196	0.0046
Tyrosine 3/tryptophan 5 - monooxygenase activation protein, epsilon polypeptide	gi 5803225	117	29155	4.4	34666	4.6				
14-3-3 protein epsilon isoform transcript variant 1	gi 62131678	104	27018	4.8	34666	4.6				

Tropomyosin 4	gi 4507651	137	28504	4.4	31000	4.6	59.4	40.6	5.0676	<0.0001
Tropomyosin 4	gi 12803959	99	28907	4.4	31000	4.6				
TPM4-ALK fusion	gi 10441386	98	27513	4.5	31000	4.6				
oncoprotein type 2									1	0.0477
Unknown	gi 62822279	100	22142	4	26000	4.3	52.8	47.2	4.8803	0.0177
HIRA interacting protein 5	gi 50593025	99	25907	4.3	26000	4.3				
BREDICTED: similar to	ail114670411	70	17001	4.0	10000	4 5	65.7	24.2	7 05 05	-0.0001
myosin'SUBLINIT_regulatory	gi 114072411	79	17091	4.2	19000	4.5	05.7	34.3	7.0525	<0.0001
light chain isoform 2 [Pan										
troglodytes]										
Human Complement	gi 515118	75	8081	6.9	19000	4.1	23.4	76.6	8.8621	<0.0001
Regulatory Protein Cd59									\mathcal{O}	
(Extracellular Region,									$\langle \langle \langle \rangle \rangle$	
Residues 1 - 70) (Nmr,								\cap		
Average Structure)										
Human Complement	ail515119	107	9851	69	18000	41	21.3	78.7	10 016	<0.0001
Regulatory Protein Cd59	gijororio	107	0001	0.0	10000	7.1	21.5	10.7	10.010	<0.0001
(Extracellular Region,							\mathcal{C}			
Residues 1 - 70) (Nmr, 10										
Structures)										
Cd59 Complexed With	gi 640301	105	10726	5	18000	4.1				
Gicnac-Beta-1,4-(Fuc-Alpha-										
1,6)- Gichac-Bela-T (INMI, 10 Structures)						•				
Transmembrane protein 4	ail7657176	100	21702	45	19000	48	63.9	36.1	6 0685	<0 0001
Human Complement	ail515119	105	9851	6.9	18000	4.0	16.3	83.7	14 212	<0.0001
Regulatory Protein Cd59	gijo i o i i o	100	0001	0.0	10000		10.0	00.7		CO.000
(Extracellular Region,										
Residues 1 - 70) (Nmr, 10										
Structures)										
Human Complement	gi 515118	112	8081	6.9	17333	4.5	66.4	33.6	7.037	<0.0001
Regulatory Protein Cd59		$\boldsymbol{\wedge}$								
Residues 1 - 70) (Nmr										
Restrained Minimized										
Average Structure)										
Human Complement	gi 515119	96	9851	6.9	17333	4.5				
Regulatory Protein Cd59										
(Extracellular Region,										
Residues 1 - 70) (Nmr, 10										
CD59 antigen n18-20	ail10835165	92	14168	65	17333	45				
Smooth muscle and non-	ail16924329	231	17450	4.3	16000	4 433	56.6	43.4	6 4376	0.0001
muscle myosin alkali light	9110024020	201	17400	4.0	10000	4.400	00.0	-10.7	0.4070	0.0001
chain, isoform 1										
Myosin, light polypeptide 6,	gi 62531190	217	17481	4.2	16000	4.433				
alkali, smooth muscle and										
non-muscle, isoform 2										
MYL6 protein	gi 113812151	120	15809	4.6	16000	4.433				0.000.4
MYL6 protein	gi 113812151	118	15809	4.6	16000	4.5	53.6	46.4	6.9544	0.0284
Myosin, light chain 6, alkali,	gi 1/986258	117	16919	4.3	16000	4.5				
smooth muscle and non-										
Motor protein	ail516764	262	80191	5.8	158000	5 733	53.5	46 5	5 9509	0.0132
Transmembrane protein	ail1160963	258	84856	64	158000	5 733	00.0	÷0.0	5.5505	0.0102
IMMT	ail48145703	246	83628	6.4	158000	5.733				
Heat shock 70kDa protein	gi 12653415	116	73682	6.2	111666	5.4				
9B (mortalin-2)		-								

Chaperonin Heat shock protein 60	gi 41399285 gi 77702086	387 377	61548 61706	5.5 5.7	99250 99250	5.2 5.2	52.5	47.5	4.4749	0.0198
Chaperonin Heat shock protein 60	gi 31542947 gi 77702086	324 418	61016 61706	5.5	99250 95000	5.2 5.225	52.6	47 4	5 6461	0.0459
Chaperonin	gi 41399285	414	61548	5.5	95000	5.225	02.0	77.7	0.0401	0.0400
Chaperonin	gi 31542947	316	61016	5.5	95000	5.225				
Chaperonin	gi 31542947	113	61016	5.5	93000	5.45	58.5	41.5	8.4936	0.0002
Heat shock protein 60	gi 77702086	113	61174	5.7	93000	5.45				
associated 3 precursor	gi 21361657	96	57986	6.3	93000	5.45				/
T-complex protein 1 isoform	ail57863257	166	61899	6	106000	5 75	56.8	43.2	12 932	0 0248
a	9.107 000207		0.000	Ū		0.70	00.0	.0.2		0.02.10
T-complex polypeptide 1	gi 36796	166	61949	6.3	106000	5.75			\mathbf{X}	
T-complex protein 1 isoform	gi 57863259	143	44920	7.8	106000	5.75		0		
D Vimentin	ail37852	/15	53830	18	85333	51	58.3	417	9 3182	0.0006
Vimentin variant	gil57652 gil62896523	397	53828	4.0 4.8	85333	5.1	56.5	41.7	9.3102	0.0000
VIM	gil47115317	290	53724	4.8	85333	5.1				
Unnamed protein product	gi 21748975	231	48428	5.4	91000	5.2	60.2	39.8	6,7373	< 0.0001
G-rich RNA sequence	gi 53759145	231	49544	5.4	91000	5.2				
binding factor 1										
G-rich sequence factor-1	gi 517196	214	49563	5.5	91000	5.2				
unnamed protein product	gi 21748975	164	48428	5.4	79250	5.2	61.3	38.7	7.3964	<0.0001
G-rich RNA sequence	gi 53759145	164	49544	5.4	79250	5.2				
Grich sequence factor 1 (GRSF-1)	gi 55977848	150	51732	5.8	79250	5.2				
Chain H, Human	gi 6137684	167	55475	5.8	82500	5.5	40.0	60.0	8.5166	<0.0001
mitochondrial aldehyde										
with NAD+ and Mn2+			/							
Chain A, Human	gi 6137677	167	53881	5.8	82500	5.5				
mitochondrial aldehyde		$\boldsymbol{\wedge}$								
dehydrogenase complexed										
With NAD+ and Mh2+ Chain H. Cyc302ser mutant	ail33357604	166	55811	58	82500	55				
of human mitochondrial	gij55557004	100	55011	5.0	02300	0.0				
aldehyde dehydrogenase										
complexed with NAD+ and	() ·									
Mg2+	ail6127677	207	E2001	50	77500	5 75	24.0	65.9	0 1 5 0	-0.0001
mitochondrial aldehyde	910137077	321	53001	5.0	77500	5.75	34.2	05.0	0.400	<0.0001
dehydrogenase complexed										
with NAD+ and Mn2+										
Chain A, Cys302ser mutant	gi 33357547	326	54394	5.8	77500	5.75				
aldebyde debydrogenase										
complexed with NAD+ and										
Mg2+										
Chain H, Human	gi 6137684	276	55475	5.8	77500	5.75				
mitochondrial aldehyde										
with NAD+ and Mn2+										
Chain A, Human	gi 6137677	273	53881	5.8	82000	5.9	36.7	63.3	9.6807	<0.0001
mitochondrial aldehyde										
dehydrogenase complexed										
										l

Chain A, Cys302ser mutant of human mitochondrial aldehyde dehydrogenase complexed with NAD+ and Ma2+	gi 33357547	272	54394	5.8	82000	5.9				
Chain H, Human mitochondrial aldehyde dehydrogenase complexed with NAD+ and Mn2+	gi 6137684	193	55475	5.8	82000	5.9				
Chain A, Human mitochondrial aldehyde	gi 6137677	302	53881	5.8	77500	5.75	39.6	60.4	8.0352	<0.0001
with NAD+ and Mn2+ Chain A, Cys302ser mutant of human mitochondrial aldehyde dehydrogenase complexed with NAD+ and	gi 33357547	301	54394	5.8	77500	5.75		2	R	
Chain H, human mitochondrial aldehyde dehydrogenase complexed with NAD+ and Mn2+	gi 6137684	234	55475	5.8	77500	5.75	9			
Putative protein STRF8	gi 41152530	125	42802	5.6	71000	5.35	59.8	40.2	6.4415	<0.0001
Putative protein STRF8	gi 41152530	175	42802	5.6	61333	5	59.8	40.2	11.523	0.0009
Solute carrier family 25	gi 55959506	289	54029	6.2	63666	5.733	40.0	60.0	5.7997	<0.0001
(mitochondrial carrier\; phosphate carrier), member 24					P					
Solute carrier family 25 member 24, isoform 1	gi 46249805	277	54013	6.2	63666	5.733				
Calcium-binding transporter	gi 6841066	240	46676	5.1	63666	5.733				
ACTB protein	gi 15277503	133	41257	5.6	72000	5.1	62.9	37.1	12.049	<0.0001
Actin, beta	gi 14250401	118	42041	5.6	72000	5.1				
Actin, gamma 1	gi 54696574	117	42828	5.2	72000	5.1				
Follistatin-like 1, precursor	gi 12652619	204	38504	5.2	52333	5.2	46.5	53.5	6.2261	0.0191
Follistatin-like 1 precursor	gi 5901956	184	34963	5.2	52333	5.2				
Follistatin-like 1 [Bos taurus]	gi 62988316	170	34834	5.3	52333	5.2				
ACTB protein	gi 15277503	73	41257	5.6	58000	5.9	55.7	44.3	8.716	0.0074
Actin, beta	gi 14250401	72	42041	5.6	58000	5.9		l I		
Actin, gamma 1	gi 54696574	/1	42828	5.2	58000	5.9	11.0		0.0705	0.0004
2 isoform 2 [Pan troglodytes]	gi 114660701	14/	32816	5.7	40000	5.4	41.9	58.1	6.3795	<0.0001
HMOX2	gi 48145637	144	35992	5.1	40000	5.4	45.0	54.0	5 7504	0.0000
Annexin A2	gi 18645167	124	38552	7.9	37000	5.4	45.8	54.2	5.7594	0.0032
Potassium channel tetramerisation domain	gi 15489330	78	36564	5.3	43500	5.3	43.9	56.1	6.9257	0.0007
ANXA2 protein	ail73909156	78	40503	8.4	43500	5.3				
Annexin A2	ai 18645167	63	38552	7.9	43500	5.3				
Protein phosphatase 1,	gi 50978728	195	37504	6.3	45666	5.833	62.7	37.3	10.087	<0.0001
catalytic subunit, alpha										
[Canis familiaris]	1450000	100	07400	~ ~	45000	5 000				
Protein phosphatase 1,	gi 4506003	192	37488	6.2	45666	5.833				
isoform 1										
Protein phosphatase 1,	gi 56790945	162	41085	6.6	45666	5.833				
catalytic subunit, alpha										

PREDICTED: similar to N- ethylmaleimide-sensitive factor attachment protein, alpha isoform 7 [Pan troglodytes]	gi 114678095	192	32179	5.4	42000	5.3	45.6	54.4	4.9095	0.0006
N-ethylmaleimide-sensitive factor attachment protein, alpha	gi 47933379	189	33211	5	42000	5.3				
N-ethylmaleimide-sensitive factor attachment protein, alpha	gi 54696006	167	34628	5	42000	5.3				
HSPC124	ai 6841470	156	36519	5.7	40500	5.8	30.6	69.4	10.659	<0.0001
Inorganic pyrophosphatase 2 isoform 1 precursor	gi 29171702	155	37896	7.5	40500	5.8			\mathcal{Q}	W
Pyrophosphatase	gi 5931600	73	32604	7.2	40500	5.8				
HSPC124	gi 6841470	151	36519	5.7	40000	5.933	40.1	59.9	7.3374	<0.0001
Inorganic pyrophosphatase 2 isoform 1 precursor	gi 29171702	137	37896	7.5	40000	5.933		7)		
PPA2 protein	gi 34980942	101	35875	8.6	40000	5.933	Ca			
Peroxisomal enoyl- coenzyme A hydratase-like	gi 70995211	163	35793	8.1	37333	5.933	31.6	68.4	11.699	<0.0001
Peroxisomal enoyl- coenzyme A hydratase-like	gi 15080016	150	36856	8.1	37333	5.933				
protein Enoyl Coenzyme A hydratase 1, peroxisomal	gi 16924265	146	35735	8.4	37333	5.933				
PREDICTED: similar to prohibitin isoform 4 [Macaca	gi 109114264	219	28047	5.5	32250	5.3	43.2	56.8	9.8958	0.0049
mulatta] PREDICTED: similar to prohibitin isoform 3 [Macaca	gi 109114262	216	29074	5.4	32250	5.3				
mulatta]										
Prohibitin	gi 46360168	204	29979	5.5	32250	5.3				
P2ECSL	gi 11275665	106	24298	5.7	32000	5.55	40.0	60.0	11.013	0.0005
Unnamed protein product	gi 28317	70	60200	4.9	32000	5.55				
Chloride intracellular channel 2	gi 66346733	163	28338	5.3	33500	5.4	29.1	70.9	13.388	<0.0001
PREDICTED: similar to Chloride intracellular channel 2 isoform 2 [Pan	gi 114690746	144	24360	5.8	33500	5.4				
troglodytesj	nil 40 45 00 70	00	00001		00500	E 4				
PHB DCI protoin	gi 49456373	107	29991	5.5 6.9	33500	5.4	26.2	62.7	0 5202	-0.0001
Chain A Crystal Structure	gi 10307101 gi 60593479	127	28571	0.0 63	32000	5 933	30.3	03.7	9.5505	<0.0001
Of Human Mitochondrial Delta3-Delta2- Enoyl-Coa	9100000470	120	20071	0.0	52000	0.000				
Dodecenoyl-Coenzyme A delta isomerase (3,2 trans- enoyl-Coenzyme A isomerase)	gi 12653937	118	32779	8.7	32000	5.933				
PREDICTED: apolipoprotein A-I binding protein isoform 2 [Pan troglodytes]	gi 114560275	144	20418	7	31500	5.3	40.5	59.5	8.839	<0.0001
APOA1BP protein	gi 71681685	126	21126	7	31500	5.3				
Apolipoprotein A-I binding	gi 91984773	124	31654	7.8	31500	5.3				
Chain B, Cathepsin B	gi 999909	127	22401	5	30500	5.1	22.1	77.9	14.079	<0.0001

(E.C.3.4.22.1)										
Cathepsin B	gi 741376	117	17143	5.5	30500	5.1				
Refined Crystal Structure Of	gi 2982152	75	37801	6.3	30500	5.1				
Human Procathepsin B At										
2.5 Angstrom Resolution										
Peroxiredoxin 3	gi 14250063	60	27705	7.6	25000	5.6	44.6	55.4	4.8576	<0.0001
Peroxiredoxin 3 isoform b	gi 32483377	180	26708	7.5	27000	5.85	46.6	53.4	6.7102	0.0300
Peroxiredoxin 3, isoform a	gi 14250063	178	28768	7.6	27000	5.85				
precursor										
Peroxiredoxin 3 isoform a	gi 62896877	166	28670	7.9	27000	5.85				
precursor variant										
SPRY domain containing 4	gi 46409324	172	23084	7	22000	5.2	44.0	56.0	5.3599	<0.0001
Mitochondrial ribosomal	gi 21265096	153	18845	8.1	16500	5.875	52.0	48.0	3.7915	0.0285
protein L50		01	10047	~ 1	10500	E 075				
Mitochondrial ribosomai	gi 21618939	81	18347	8.1	16500	5.875		\square		
PROTEIN LOU		160	67007	0.1	40500	47	22.0	67.0	10 725	0 0020
PREDICTED. yiulaninase C	91114302231	109	16010	0.1	49000	4.7	33.0	67.0	19.700	0.0020
Glutaminase isoform C	ail6002671	145	60239	6.5	49500	47				
Glutaminase isolorin C	ail5690372	143	67909	8	49500	<u> </u>	\mathcal{O}			
Succinate dehydrogenase	ail/750080	102	75831	71	45000	1 1 2 2	34.8	65.2	16 511	0.0011
complex subunit A	9147 33000	122	70001	/.4	40000	4.100) 04.0	05.2	10.511	0.0011
flavoprotein precursor										
Succinate dehvdrogenase	ail62087562	122	76317	7.3	45333	4.133				
complex, subunit A,	9.10-000	. –								
flavoprotein precursor										
variant										
Glutaminase isoform C	gi 6002671	73	60239	0	45333	4.133				
ATP synthase, H+	gi 24660110	285	61456	0	38000	4.533	40.2	59.8	11.233	0.0018
transporting, mitochondrial										
F1 complex, alpha subunit,										
precursor										
ATP synthase, H+	gi 4757810	282	60068	0	38000	4.533				
transporting, mitochondriai		\wedge	Ŵ							
F1 complex, alpha suburit										
$\Lambda T P 5 \Delta 1$ protoin	ail34782901	223	19119	95	28000	1 533		I		
Koratin type Lovtoskeletal 9	ail91175178	113	60800	5.5	12000	1 25	20 8	60.2	1/ 212	0.0076
(Cutokoratin-9) (CK-9)	gilo 175776	115	02000	5	42000	4.05	39.0	00.2	14.012	0.0070
$(K_{eratin-9})$ (K9)										
keratin 1	ail17318569	110	66558	0	42000	4.85				
ATP5A1 protein	ail34782901	82	49119	9.5	42000	4.85				
Chain A Latent Form Of	gil10835819	132	42742	0	31666	4 433	58.4	41.6	11 957	0 0084
Plasminogen Activator	ginococia	102		U U	01000	4.400	00.1	71.0	11.007	0.000.
Inhibitor-1 (Pai-1)										
Chain A, Human	ai 4699714	101	42800	7.2	31666	4.433				
Plasminogen Activator										
Inhibitor Type-1 In Complex										
With A Pentapeptide										
Plasminogen activator	gi 755747	83	43389	7.2	31666	4.433				
inhibitor		105			22050	0.075	40.0	50.0	10.477	2 2 2 4 7
ACTB protein	gi 15277503	105	41257	5.6	22250	3.975	40.8	59.2	10.4//	0.0017
ALDOA	gi 49456715	180	40840	8.4	28333	5.267	48.2	51.8	3.5515	0.0484
Flotillin	gi 6563242	62	28216	8.6	28333	5.267				
Annexin A2 (Annexin II)	gi 113950	193	39288	0	18000	3.4	40.6	59.4	15.065	0.0168
(Lipocortin II) (Calpactin I										
heavy chain) (Chromobingin-										
8) (p36) (Protein I)										

Chain A, Annexin A2: Does gills6966699 193 39346 0 18000 3.4 Aggregation By A New gills6966699 193 39346 0 18000 3.4 5.6 44.4 9.0574 0.0175 Mitchendräl ribosomal protein S22 gills16946661 112 31810 7.2 16500 3.7 44.9 55.1 8.5338 0.0212 Valtage-dependent anion channel V2-Cac Juman gills6964661 112 31810 7.1 16500 3.7 41.9 55.1 8.5338 0.0212 Valtage-dependent anion channel V2-Cac Juman gill59546611 112 31826 7.1 16500 3.7 Peroxisomal encyl- consryme A Nydratase-like protein gill5994265 76 36798 8.4 16250 3.25 38.7 61.3 11.703 0.0007 Derovisomal encyl- consryme A Nydratase-like protein Enclutum gill5924265 76 36798 8.4 16250 3.3 41.0 59.0 13.563 0.0119 Precurion gild701674 88 </th <th>Annexin A2</th> <th>gi 18645167</th> <th>193</th> <th>39260</th> <th>0</th> <th>18000</th> <th>3.4</th> <th></th> <th></th> <th></th> <th></th>	Annexin A2	gi 18645167	193	39260	0	18000	3.4				
Aggregation By A New Multimeric State Of The Protein S22 Sec.	Chain A, Annexin A2: Does	gi 56966699	193	39346	0	18000	3.4				
Multimerio Stale Of The Protein Protein Image: Constraint of the state of the	Aggregation By A New										
Protein gij910244 109 41786 0 2000 3.1 55.6 44.4 9.0574 0.0175 VDAC2 gij48146045 112 31810 7.2 16500 3.7 44.9 55.1 8.5338 0.0212 Voltage-dependent anion channel gij35664661 112 31923 7.9 16500 3.7 44.9 55.1 8.5338 0.0212 Voltage-dependent anion channel gij70995211 76 36856 8.1 16250 3.25 38.7 61.3 11.703 0.0007 Constryme A hydratase-like protein gij16924265 76 36798 8.4 16250 3.25 38.7 61.3 11.703 0.00179 Protein 29, stootom1 protein 29, stootom1 gij175517652 127 29152 7.5 13500 3.3 41.0 59.0 13.563 0.0119 Protein 29, stootom1 gij160200 68 26495 0 13500 3.3 41.4 58.6 9.3998 0.0012 X-raracrystr	Multimeric State Of The										
Mitochondrial ribosomal pil9910244 109 41786 0 2000 3.1 55.6 44.4 9.0574 0.0175 protein S22 VDAC2 yil48146045 112 31810 7.2 16500 3.7 44.9 55.1 8.5338 0.0212 VDA1264-Gependent anion gil55664661 112 31923 7.9 16500 3.7 44.9 55.1 8.5338 0.0212 VD1264-Gependent anion gil70995211 76 36856 8.1 16250 3.25 38.7 61.3 11.703 0.0007 contryme A hydratase-like protein Eroyl Coenzyme A hydratase 1, peroxisomal encyl-coenzyme A gil75517652 127 29152 7.5 13500 3.3 41.0 59.0 13.563 0.0119 precurso Dihydropteridine reductase) gil75517652 127 29152 7.5 13500 3.3 41.0 59.0 13.563 0.0119 precurso Dihydropteridine reductase) gil640447 68 26481 0 13500 3.3 41.0 59.0 13.563 0.0119 precurso Dihydropteridine reductase) (Dhpr) (E C 1 6 93.7) Complexed With Nadh Unnamed protein product X-Ray Crystal Structure Of gil3402185 88 15750 9.2 28000 7.6 41.4 58.6 9.3998 0.0012 X-Ray Crystal Structure Of The Human Galectin-3 Crate Recognition Demain (Crd) At 2.1 Angel Structure Of N-Acetyllacosamine Hydroxyacyl-Coenzyme A gil20336350 91 2109 8.1 16666 4.967 45.6 54.4 7.0474 0.0177 K-Ray Crystal Structure Of N-Acetyllacosamine Hydroxyacyl-Coenzyme A gil20336350 91 2109 8.1 16666 4.967 45.6 54.4 7.0474 0.0177 K-Ray Crystal Structure Of N-Acetyllacosamine Hydroxyacyl-Coenzyme A gil20336350 91 2109 8.1 16666 4.967 arc and the second to	Protein										
protein SS22 yolk gil 48146045 112 31810 7.2 16500 3.7 44.9 55.1 8.5338 0.0212 Voltage-dependent anion ochamel V2-cuman gil 55664661 112 31923 7.9 16500 3.7 44.9 55.1 8.5338 0.0212 Voltage-dependent anion ochamel V2AC2 - human gil 75664661 112 31923 7.9 16500 3.7 44.9 55.1 8.5338 0.0012 Adhamel V2AC2 - human gil 7517652 127 29152 7.5 13500 3.3 41.0 59.0 13.563 0.0119 Protein 29, storoman gil 75517652 127 29152 7.5 13500 3.3 41.0 59.0 13.563 0.0119 Protein 29, storoman gil 18000 68 26495 0 13500 3.3 41.0 59.0 13.563 0.0119 Protein 29, storoman gil 40447 68 26481 0 13500 3.3 41.4 58.6 9.3998 <td>Mitochondrial ribosomal</td> <td>gi 9910244</td> <td>109</td> <td>41786</td> <td>0</td> <td>20000</td> <td>3.1</td> <td>55.6</td> <td>44.4</td> <td>9.0574</td> <td>0.0175</td>	Mitochondrial ribosomal	gi 9910244	109	41786	0	20000	3.1	55.6	44.4	9.0574	0.0175
VDAC22 g 48146045 112 31810 / 2 16500 3.7 44.9 55.1 8.5338 0.0212 V01tage-dependent anion channel 2 V01tage-dependent anion g 5664661 112 31923 7.9 16500 3.7 44.9 55.1 8.5338 0.0212 V01tage-dependent anion g 246412 111 33168 7.7 16500 3.7 45.0 3.7 Pervisional enoy! coenzyme A hydratase-like protein Enoyl Coenzyme A hydratase 1, perxisonal g 16924265 76 36798 8.4 16250 3.25 Endoplasmic reticulum grecursor Dihydropteridine reductase (HDHPR) (clunoid dihydropteridine reductase) Ghain , Dihydropteridine g g 640447 68 26481 0 13500 3.3 41.0 59.0 13.563 0.0119 protein 29, isoform 1 grecursor Dihydropteridine reductase (Ghain , Dihydropteridine Reductase (Dhpr) (EC 1.6.99.7) Complexed With Nadh Unnamed protein product g 6300166 84 16518 9.4 28000 7.6 41.4 58.6 9.3968 0.0012 X-Ray Crystal Structure Of The Human Galectin-3 Carbotydrate Recognition Dangtrom Resolution Chain A, Crystal Structure Of The Human Galectin-3 Carbotydrate Recognition Dangtrom Resolution Chain A, Crystal Structure G 6360056 84 16518 9.4 28000 7.6 45.6 54.4 7.0474 0.0177 whydroxyacy-Coenzyme A dehydrogenase, type II isoform 1 Endoplasmic reticulum gi]1636350 91 21099 8.1 16666 4.967 Hydroxyacy-Coenzyme A gi]475855 101 26676 7.3 16666 4.967 Hydroxyacy-Coenzyme A gi]4758504 99 27614 7.9 16666 4.967 Hydroxyacy-Coenzyme A gi]439345 101 24176 0 11500 4.1 38.8 61.2 9.8909 0.0002 Rabc-like protein, similar to gi]508285 99 24261 0 11500 4.1 38.8 61.2 9.8909 0.0002 Canis familiaris RabC- consenter RAS gi]41393545 101 24176 0 11500 4.1 38.8 61.2 9.8909 0.0002 Canis familiaris RabC- Canis familiaris RabC- Structure, Gli, similaris gi]2803334 121 22549 7.3 10750 3.425 Superoxide Dismutase Glian Manganese gi]2780818 121 22549 7.4 10750 3.425	protein S22										
Voltage-dependent anion channel U gi[3664661 112 31923 7.9 16500 3.7 Voltage-dependent anion channel VDAC2 - human gi[36412 111 33188 7.7 16500 3.7 Peroxisomal encyl- coenzyme A hydratase-like protein gi[70995211 76 36656 8.1 16250 3.25 38.7 61.3 11.703 0.0007 Contryme A hydratase 1, peroxisomal Endoplasmic reticulum protein 29, isoform 1 gi[75517652 127 29152 7.5 13500 3.3 41.0 59.0 13.563 0.0119 Dihydropteridine reductase (HDHPR) (Quinoid dihydropteridine reductase) Chain J. Dihydropteridine reductase (DPn) gi[640447 68 26495 0 13500 3.3 41.4 58.6 9.3998 0.0012 Unamed protein product With Nadh gi[6630056 84 16518 9.7 28000 7.6 41.4 58.6 9.3998 0.0012 Crin Loomptex With A 3- Derivative Of N- Acetyltactosamine gi[66360056 84 16518 9.4 28000 7.6 41.4 58.4 7.047	VDAC2	gi 48146045	112	31810	7.2	16500	3.7	44.9	55.1	8.5338	0.0212
Charment gil 346412 111 33168 7.7 16500 3.7 Charmen Peroxisomal enoyl- coenzyme A hydratase-like protein gil 76 36856 8.1 16250 3.25 38.7 61.3 11.703 0.0007 Peroxisomal enoyl- coenzyme A hydratase-like protein gil 16924265 76 36798 8.4 16250 3.25 38.7 61.3 11.703 0.0007 Protein gil 16924265 76 36798 8.4 16250 3.25 11.0 59.0 13.563 0.0119 Protein 29, isoform 1 gil 175517652 127 29152 7.5 13500 3.3 41.0 59.0 13.563 0.0119 Protein 20, isoform 1 gil gil 16800 68 26495 0 13500 3.3 41.0 58.6 9.3986 0.0012 Unnamed protein product gil gil gil 16750 9.9 28000 7.6 41.4 58.6	Voltage-dependent anion	gi 55664661	112	31923	7.9	16500	3.7				
Changel VDAC2 - human gilonite Init Coros S.1 Coros S.1 Peroxisomal enoyl- coenzyme A hydratase 1, peroxisomal Enoyl Coenzyme A hydratase 1, peroxisomal Endpalsamic reticulum gilos24265 76 36798 8.4 16250 3.25 38.7 61.3 11.703 0.0007 Endpalsamic reticulum protein 29, isoform 1 proteursor gilos24265 76 36798 8.4 16250 3.25 38.7 61.3 11.703 0.0007 Dihydropteridine reductase (HDPIPR) (Quinoid dihydropteridine reductase) Chain J, Dihydropteridine Reductase (Dhpr) (E.C.1.6.99.7) Complexed With Nadh gil640447 68 26495 0 13500 3.3 41.0 58.6 9.3998 0.0012 X-Ray Crystal Structure Of The Human Galectin-3 Carbohydrate Recognition Domain (Cr01 At 2.1 gil6360056 84 16518 9.4 28000 7.6 41.4 58.6 54.4 7.0474 0.0177 Stoftm 2 gil63630056 84 16518 9.4 28000 7.6 41.4 58.6 54.4 7.0474 0.0177 Hydroxyacyl-Coenzyme A dehydrogenase,	Voltage-dependent anion	ail346412	111	33168	77	16500	37				
Peroxisomal encyl- conzyma A hydratase like protein gi 70995211 76 36856 8.1 16250 3.25 38.7 61.3 11.703 0.0007 Encyl Coenzyme A hydratase 1, peroxisomal Endoplasmic reticulum protein 29, isoform 1 protein 29, isoform 1 protein 29, isoform 1 protein 29, isoform 1 gi 16924265 76 36798 8.4 16250 3.25 38.7 61.3 11.703 0.0007 Dihydropterdine reductase (Dhan, Dihydropterdine reductase) Chan, Dihydropterdine reductase) Chan, Dihydropterdine reductase (Chan, Dihydropterdine Reductase (Dhyr) (E.C. 1.6.99.7) Complexed With Nach 118600 68 26491 0 13500 3.3 41.0 58.6 9.3998 0.0012 X Ray Crystal Structure Of The Human Galectin-3 Carbohydrate Recognition Damain (Crd) At 2.1 Angstrom Resolution Chan A, Crystal Structure Of The Human Galectin-3 Crd In Complex With A 3:- Derivative Of IN- Derivative Of IN- Bervative Of IN- Bradeylactosamine gi 8715985 101 26676 7.3 16666 4.967 45.6 54.4 7.0474 0.0177 Hydroxyacyl-Coenzyme A dehydrogenase, type II isoform 1 gi 4758504 99 27614 7.9 16666 4.967 RAB5C, member RAS oncogene family isoform b RAB5C, member RAS oncogene	channel VDAC2 - human	gijororiz		00100	1.1	10000	0.7			\cap	
coenzyme A hydratase-like protein gij16924265 76 36798 8.4 16250 3.25 Endoplasmic reticulum protein 29, isoform 1 protein 29, isoform 1 gij75517652 127 29152 7.5 13500 3.3 41.0 59.0 13.563 0.0119 precursor gij75517652 127 29152 7.5 13500 3.3 41.0 59.0 13.563 0.0119 precursor gij118600 68 26495 0 13500 3.3 41.0 59.0 13.563 0.0119 Reductase (Dhyr) gij1640447 68 26481 0 13500 3.3 41.4 58.6 9.3998 0.0012 X-Ray Crystal Structure Of Dhyr) gij28071074 88 14065 9.7 28000 7.6 41.4 58.6 9.3998 0.0012 Carbohydrate Recognition Domain (Crd) At 2.1 gij66360056 84 16518 9.4 28000 7.6 45.6 54.4 7.0474 0.0177 Grd hydrogrenese, type II isoform 2	Peroxisomal enoyl-	gi 70995211	76	36856	8.1	16250	3.25	38.7	61.3	11.703	0.0007
protein Enoyl Coenzyme A hydratase 1, peroxisomal gi 16924265 76 36798 8.4 16250 3.25 Endoplasmic reticulum protein 28, isoform 1 precursor gi 75517652 127 29152 7.5 13500 3.3 41.0 59.0 13.563 0.0119 Dibydropteridine reductase (HDHPR) (Quinoid dihydropteridine reductase) Chan gi 640447 68 26495 0 13500 3.3 41.0 59.0 13.563 0.0119 Inhydropteridine reductase (HDHPR) (Quinoid dihydropteridine reductase) Chan gi 604447 68 26481 0 13500 3.3 41.4 58.6 9.3998 0.0012 Cash objivotrage recognition Damain (Crd) At 2.1 gi 8071074 88 14065 9.7 28000 7.6 41.4 58.6 9.3998 0.0012 Charb Hydrage Recognition Damain (Crd) At 2.1 gi 6360056 84 16518 9.4 28000 7.6 41.4 58.6 54.4 7.0474 0.0177 Hydrayacy-Coenzyme A dehydrogenase, type II isoform 1 gi 4758504 99 27614 7.9	coenzyme A hydratase-like	51									
Encyl Coenzyme A hydratase 1, peroxisomal Endoplasmic reticulum protein 29, isoforn 1 precursor gi 16924265 76 36798 8.4 16250 3.25 Endoplasmic reticulum protein 29, isoforn 1 precursor gi 75517652 127 29152 7.5 13500 3.3 41.0 59.0 13.563 0.0119 Dihydropteridine reductase (hDHPR) (cuinoid dihydropteridine reductase) Chain , Dihydropteridine Reductase (Dhr) gi 640447 68 26495 0 13500 3.3 41.0 59.0 13.563 0.0119 IVIDHPR) (cuinoid dihydropteridine reductase) Chain A, Dihydropteridine Reductase (Dhr) gi 28071074 88 14065 9.7 28000 7.6 41.4 58.6 9.3998 0.0012 X-Ray Crystal Structure Of The Human Galectin-3 Crid In Complex With A3- Derivative Of N - Acetyllatosamine Hydroxyacyl-Coenzyme A dehydrogenase, type II isoform 1 gi 6360056 84 16518 9.4 28000 7.6 41.4 58.6 54.4 7.0474 0.0177 Hydroxyacyl-Coenzyme A dehydrogenase, type II isoform 1 gi 4758504 99 27614 7.9 16666 4.967 45.6 54.4 7.0474 0.0177 RAB5C, member RAS oncocgene family isoform b RAB5C,	protein									s ·	
hydratase 1, peroxisomal gi 75517652 127 29152 7.5 13500 3.3 41.0 59.0 13.563 0.0119 protein 29, isoform 1 gi 75517652 127 29152 7.5 13500 3.3 41.0 59.0 13.563 0.0119 protein 29, isoform 1 gi 75517652 127 29152 7.5 13500 3.3 41.0 59.0 13.563 0.0119 protein 29, isoform 1 gi 118600 68 26495 0 13500 3.3 41.4 58.6 9.0119 Chain , Dihydropteridine reductase gi 640447 68 26481 0 13500 3.3 41.4 58.6 9.3998 0.0012 Chain A, Drystal Structure Of gi 20071074 88 14065 9.7 28000 7.6 41.4 58.6 9.3998 0.0012 Carbohydrate Recognition gi 3402185 86 15750 9.9 28000 7.6 41.4 58.6 9.3998 0.00172 Charobrydrate Re	Enoyl Coenzyme A	gi 16924265	76	36798	8.4	16250	3.25				
Endoplasmic reticulum precursor gil75517652 127 29152 7.5 13500 3.3 41.0 59.0 13.563 0.0119 precursor gil118600 68 26495 0 13500 3.3 41.0 59.0 13.563 0.0119 ChDMpdropter/dine reductase (LDDHPR) (Quinoid dihydropter/dine reductase) gil640447 68 26481 0 13500 3.3 41.0 59.0 13.563 0.0119 Cic.1.6.99.7) Complexed gil28071074 88 14065 9.7 28000 7.6 41.4 58.6 9.3998 0.0012 X-Ray Crystal Structure Of The Human Galectin-3 Carbohydrate Recognition Domain (Cr) At 2.1 gil6306056 84 16518 9.4 28000 7.6 41.4 58.6 9.3998 0.0012 Vertarbohydrate Recognition Domain (Cr) At 2.1 Angstrom Resolution Chain A, Crystal Structure Of The Human Galectin-3 gil83715985 101 26676 7.3 16666 4.967 45.6 54.4 7.0474 0.0177 Adehydrogenase, type II isoform 1 gil2758504 99 27614 7.9 16666 4.967 45.6 54	hydratase 1, peroxisomal)		
protein 29, isoform 1 gi 118600 68 26495 0 13500 3,3 Precursor gi 10400pteridine reductase) gi 640447 68 26481 0 13500 3,3 Chain J. Dihydropteridine Reductase (Dhpr) gi 28071074 88 14065 9.7 28000 7.6 41.4 58.6 9.3998 0.0012 X.Ray Crystal Structure Of The Human Galectin-3 gi 26071074 88 14065 9.7 28000 7.6 41.4 58.6 9.3998 0.0012 X.Ray Crystal Structure Of The Human Galectin-3 gi 26360056 84 16518 9.4 28000 7.6 41.4 58.6 9.3998 0.0012 Changstrom Resolution Chain A, Crystal Structure Of The Human Galectin-3 gi 453504 9.4 28000 7.6 45.6 54.4 7.0474 0.0177 Acetyliatosamine gi 4758504 99 27614 7.9 16666 4.967 45.6 54.4 7.0474 0.0177 dehydrogenase, type II isoform 1 gi 20336350 91 21099 8.1 16666 4.967 45.6 54.4 7.0474 <td>Endoplasmic reticulum</td> <td>gi 75517652</td> <td>127</td> <td>29152</td> <td>7.5</td> <td>13500</td> <td>3.3</td> <td>41.0</td> <td>59.0</td> <td>13.563</td> <td>0.0119</td>	Endoplasmic reticulum	gi 75517652	127	29152	7.5	13500	3.3	41.0	59.0	13.563	0.0119
precursor Dihydropteridine reductase (HDHPR) (Quinoid dinydropteridine reductase) (Chan , Dihydropteridine reductase) (Chan , Dihydropteridine reductase) (Chan , Dihydropteridine reductase) (E. C. 1. 6. 9.7) Complexed With Nadh Unnamed protein product X-Ray Crystal Structure Of The Human Galectin-3 Carbohydrate Recognition Domain (Cr0) At 2.1 Angstrom Resolution Of The Human Galectin-3 Grid In Complex With A 3'- Derivative Of N- Acetyllactosamine Hydroxyacyl-Coenzyme A dehydrogenase, type II isoform 1 Endoplasmic reticulum- associated amyloid beta peptide-binding protein RABSC, member RAS oncogen family isoform b RABSC,	protein 29, isoform 1							\bigcirc			
Dhydropteridine reductase (HDHPF) (Quinoid dihydropteridine reductase) Chain , Dihydropteridine Reductase (Dhpr) (E.C.1.6.99.7) Complexed with Nadh Unnamed protein product X-Ray Crystal Structure Of protein Resolution Chain A, Crystal Structure Of The Human Galectin-3 Crd In Complex With A 3'- Derivative Of N- Acetyllactosamine Hydroxyacyl-Coenzyme A dehydrogenase, type II isoform 1 Endoplasmic reticulum- associated amyloid beta peptide-binding protein RAB5C, member RAS and Starts RabSC member RAS gijl41393545 (gijl8303334 (212) 22549 (gijl8303334 (212) 22549 (22549 (22549 (22549 (22530 (24) (2) (2530 (24) (2) (2) (2) (2) (2) (2) (2) (2	precursor										
(HDHPH) (Quinoid dihydropteridine reductase) gi[640447 68 26481 0 13500 3.3 Reductase (Dhpr) (E.C.16.97,7) Complexed gi[28071074 88 14065 9.7 28000 7.6 41.4 58.6 9.3998 0.0012 X-Ray Crystal Structure Of The Human Galectin-3 Carbohydrate Recognition Domain (Crd) At 2.1 gi[66360056 84 16518 9.4 28000 7.6 41.4 58.6 9.3998 0.0012 Chain A, Crystal Structure Of The Human Galectin-3 Carbohydrate Recognition Domain (Crd) At 2.1 gi[66360056 84 16518 9.4 28000 7.6 45.6 54.4 7.0474 0.0177 Acetyllactosamine Hydroxyacyl-Coenzyme A dehydrogenase, type II isoform 2 gi[4758504 99 27614 7.9 16666 4.967 RABSC, member RAS oncogene family isoform b gi[41393545 63 24176 0 12000 3.9 40.9 59.1 9.8391 0.0011 RABSC, member RAS oncogene family isoform b gi[41393545 101 24176 0 11500 4.1 38.8 61.2 9.8999 0.0002 oncogene family isoform b	Dihydropteridine reductase	gi 118600	68	26495	0	13500	3.3				
Gright Chain, Diphydropterial enductase) gi[640447 68 26481 0 13500 3.3 Reductase (Dhpr) gi[28071074 88 14065 9.7 28000 7.6 41.4 58.6 9.3998 0.0012 X-Ray Crystal Structure Of The Human Galectin-3 Carbohydrate Recognition Domain (Crd) At 2.1 gi[66360056 84 16518 9.4 28000 7.6 41.4 58.6 9.3998 0.0012 Chi The Human Galectin-3 Carbohydrate Recognition Domain (Crd) At 2.1 gi[66360056 84 16518 9.4 28000 7.6 45.6 54.4 7.0474 0.0177 Gright Derivative Of N- Accetyliactosamine gi[83715985 101 26676 7.3 16666 4.967 Hydroxyacyl-Coenzyme A dehydrogenase, type II isoform 1 gi[20336350 91 21099 8.1 16666 4.967 RABSC, member RAS oncogene family isoform b RABSC, member RAS gi[41393545 63 24176 0 12000 3.9 40.9 59.1 9.8391 0.0011 RABSC, member RAS oncogene family isoform b RabSc-like protein, similar to gi[508285 99 24261 0 11500 4.1	(HDHPR) (Quinoid										
Chain P. Diffuencie gijleb0447 Ge 26481 O 1300 3.3 Reductase (Dpp) (E. C. 16.99.7) Complexed gijl28071074 88 14065 9.7 28000 7.6 41.4 58.6 9.3998 0.0012 X-Ray Crystal Structure Of The Human Galectin-3 gijl28071074 88 14065 9.7 28000 7.6 41.4 58.6 9.3998 0.0012 Argstrom Resolution Chain A, Crystal Structure Of The Human Galectin-3 gijl66360056 84 16518 9.4 28000 7.6 41.4 58.6 9.3998 0.0012 Yeinoplex With A 3'- Derivative Of N- Acetyllactosamine gijl6715985 101 26676 7.3 16666 4.967 45.6 54.4 7.0474 0.0177 Veforyacyl-Coenzyme A dehydrogenase, type II isoform 1 gijl20336350 91 21099 8.1 16666 4.967 RAB5C, member RAS oncogene family isoform b RAB5C, member RAS gijl41393545 101 24176 0 11500 4.1 38.8 61.2 9.8909 0.00002 </td <td>Chain Dibydrontoriding</td> <td>ail640447</td> <td>60</td> <td>06401</td> <td>0</td> <td>12500</td> <td>2.2</td> <td></td> <td></td> <td></td> <td></td>	Chain Dibydrontoriding	ail640447	60	06401	0	12500	2.2				
Inconcesses (JP) (2) Complexed With Nadh Unnamed protein product gij28071074 88 14065 9.7 28000 7.6 41.4 58.6 9.3998 0.0012 X-Ray Crystal Structure Of The Human Galectin-3 Carbohydrate Recognition Domain (Crd) At 2.1 gij66360056 84 16518 9.4 28000 7.6 41.4 58.6 9.3998 0.0012 Chain A, Crystal Structure Of The Human Galectin-3 Crd In Complex With A 3'- Derivative Of N- Acetyllactosamine gij66360056 84 16518 9.4 28000 7.6 45.6 54.4 7.0474 0.0177 Hydroxyacyl-Coenzyme A dehydrogenase, type II isoform 1 gij4758504 99 27614 7.9 16666 4.967 45.6 54.4 7.0474 0.0177 Hydroxyacyl-Coenzyme A dehydrogenase, type II isoform 1 gij20336350 91 21099 8.1 16666 4.967 45.6 54.4 7.0474 0.0011 RAB5C, member RAS oncogene family isoform b RAB5C, ike protein, similar to canis familiaris Rab5C protein, PIR Accession Number S38625 gij141393545 101 24176 0 <t< td=""><td>Beductase (Dhor)</td><td>91040447</td><td>00</td><td>20401</td><td>0</td><td>13500</td><td>3.3</td><td></td><td></td><td></td><td></td></t<>	Beductase (Dhor)	91040447	00	20401	0	13500	3.3				
Link House gill and the second s	(F C 1 6 99 7) Complexed					V					
Unnamed protein product X-Ray Crystal Structure Of The Human Galectin-3 Carbohydrate Recognition Domain (Crd) At 2.1 Angstrom Resolution Chain A, Crystal Structure Of The Human Galectin-3 Carbohydrate Recognition Domain (Crd) At 2.1 Angstrom Resolution Chain A, Crystal Structure Of The Human Galectin-3 Crd In Complex With A 3'- Derivative Of N- Acetyllactosamine Hydroxyacyl-Coenzyme A dehydrogenase, type II isoform 1 Endoplasmic reticulum- associated amyloid beta peptide-binding protein RAB5C, member RAS oncogene family isoform b RAB5C, member RAS gijl508285 gigl50	With Nadh					1 P					
X-Ray Crystal Structure Of The Human Galectin-3 Carbohydrate Recognition Domain (Crd) At 2.1 Angstrom Resolution Chain A, Crystal Structure Of The Human Galectin-3 Crd In Complex With A 3'- Derivative Of N- Acetyllactosamine gij66360056 84 16518 9.4 28000 7.6 Hydroxyacyl-Coenzyme A dehydrogenase, type II isoform 2 gij83715985 101 26676 7.3 16666 4.967 45.6 54.4 7.0474 0.0177 Hydroxyacyl-Coenzyme A dehydrogenase, type II isoform 2 gij83715985 101 26676 7.3 16666 4.967 45.6 54.4 7.0474 0.0177 Hydroxyacyl-Coenzyme A dehydrogenase, type II isoform 2 gij4758504 99 27614 7.9 16666 4.967 Hydroxyacyl-Coenzyme A dehydrogenase, type II isoform 5 gij20336350 91 21099 8.1 16666 4.967 RAB5C, member RAS oncogene family isoform b gij41393545 63 24176 0 12000 3.9 40.9 59.1 9.8999 0.0002 RAB5C, member RAS protein, PIR Accession Number S38625 gij3850334 121 24261 0 11500 4.1 38.8 61.2	Unnamed protein product	gi 28071074	88	14065	9.7	28000	7.6	41.4	58.6	9.3998	0.0012
The Human Galectin-3 Carbohydrate Recognition Domain (Crd) At 2.1 Angstrom Resolution Chain A, Crystal Structure of The Human Galectin-3 Crd In Complex With A 3'- Derivative Of N- Acetyllactosamine gi 66360056 84 16518 9.4 28000 7.6 Of The Human Galectin-3 Crd In Complex With A 3'- Derivative Of N- Acetyllactosamine gi 83715985 101 26676 7.3 16666 4.967 45.6 54.4 7.0474 0.0177 dehydrogenase, type II isoform 2 gi 20336350 91 21099 8.1 16666 4.967 Hydroxyacyl-Coenzyme A dehydrogenase, type II isoform 1 gi 20336350 91 21099 8.1 16666 4.967 RAB5C, member RAS oncogene family isoform b RAB5C, member RAS oncogene family isoform b Rab5c-like protein, similar to Canis familiaris Rab5c protein, PIR Accession Number S38625 gi 3850334 121 22549 7.3 10750 3.425 36.7 63.3 13.34 0.0006 Chain A, Human Manganese Superoxide Dismutase gi 2780818 121 22530 7.4 10750 3.425 36.7 63.3 13.34 0.0006	X-Ray Crystal Structure Of	gi 3402185	86	15750	9.9	28000	7.6				
Carbohydrate Recognition Domain (Crd) At 2.1 Angstrom Resolution Chain A, Crystal Structure Of The Human Galectin-3 Crd In Complex With A 3'- Derivative Of N- Acetyllactosamine gil66360056 84 16518 9.4 28000 7.6 45.6 54.4 7.0474 0.0177 Ord In Complex With A 3'- Derivative Of N- Acetyllactosamine gil83715985 101 26676 7.3 16666 4.967 45.6 54.4 7.0474 0.0177 Hydroxyacyl-Coenzyme A dehydrogenase, type II isoform 2 gil4758504 99 27614 7.9 16666 4.967 45.6 54.4 7.0474 0.0177 Hydroxyacyl-Coenzyme A dehydrogenase, type II isoform 1 gil20336350 91 21099 8.1 16666 4.967 45.6 54.4 7.0474 0.0117 RAB5C, member RAS oncogene family isoform b RAB5C, member RAS gil41393545 63 24176 0 12000 3.9 40.9 59.1 9.8391 0.0011 RAB5C, member RAS oncogene family isoform b Rab5c-like protein, similar to Canis familiaris Rab5c protein, PIR Accession Number S38625 gil3850334 121 22549 7.3 10750 3.425	The Human Galectin-3										
Domain (Crd) At 2.1 Angstrom Resolution gi 66360056 84 16518 9.4 28000 7.6 Figure 1	Carbohydrate Recognition			/							
Angstrom Resolution Chain A, Crystal Structure Of The Human Galectin-3 Crd In Complex With A 3'- Derivative Of N- Acetyllactosamine gi 66360056 84 16518 9.4 28000 7.6 Image: Complex	Domain (Crd) At 2.1										
Chain A, Crystal Structure Of The Human Galectin-3 Crd In Complex With A 3'- Derivative Of N- Acetyllactosamine gi 83715985 101 26676 7.3 16666 4.967 45.6 54.4 7.0474 0.0177 Hydroxyacyl-Coenzyme A dehydrogenase, type II isoform 2 gi 83715985 101 26676 7.3 16666 4.967 45.6 54.4 7.0474 0.0177 Hydroxyacyl-Coenzyme A dehydrogenase, type II isoform 1 gi 20336350 91 21099 8.1 16666 4.967 RAB5C, member RAS oncogene family isoform b RAB5C, member RAS oncogene family isoform b Rab5c-like protein, similar to Canis familiaris Rab5c protein, PIR Accession Number S38625 gi 3850334 121 22549 7.3 10750 3.425 36.7 63.3 13.34 0.0006 Ghain A, Human Manganese Superoxide Dismutase gi 2780818 121 22530 7.4 10750 3.425 36.7 63.3 13.34 0.0006	Angstrom Resolution									ļ	
Of The Human Galectin-3 Crd In Complex With A 3'- Derivative Of N- Acetyllactosamine gil83715985 101 26676 7.3 16666 4.967 45.6 54.4 7.0474 0.0177 Hydroxyacyl-Coenzyme A dehydrogenase, type II isoform 2 gil4758504 99 27614 7.9 16666 4.967 45.6 54.4 7.0474 0.0177 Hydroxyacyl-Coenzyme A dehydrogenase, type II isoform 1 gil20336350 91 21099 8.1 16666 4.967 Endoplasmic reticulum- associated amyloid beta peptide-binding protein gil41393545 63 24176 0 12000 3.9 40.9 59.1 9.8391 0.0011 RAB5C, member RAS oncogene family isoform b RAB5C-like protein, similar to Canis familiaris Rab5c protein, PIR Accession Number S38625 gil38503334 121 22549 7.3 10750 3.425 36.7 63.3 13.34 0.0006 Graited dismutase [Mn], mitochondrial gil2780818 121 22530 7.4 10750 3.425 36.7 63.3 13.34 0.0006	Chain A, Crystal Structure	gi 66360056	84	16518	9.4	28000	7.6				
Chu nu Complex With A 3- Derivative Of N- Acetyllactosamine gi 83715985 101 26676 7.3 16666 4.967 45.6 54.4 7.0474 0.0177 Hydroxyacyl-Coenzyme A dehydrogenase, type II isoform 2 gi 4758504 99 27614 7.9 16666 4.967 45.6 54.4 7.0474 0.0177 Hydroxyacyl-Coenzyme A dehydrogenase, type II isoform 1 gi 20336350 91 21099 8.1 16666 4.967 45.6 54.4 7.0474 0.0177 Endoplasmic reticulum- associated amyloid beta peptide-binding protein gi 20336350 91 21099 8.1 16666 4.967 40.9 59.1 9.8391 0.0011 Oncogene family isoform b RAB5C, member RAS oncogene family isoform b Rab5c-like protein, similar to Canis familiaris Rab5c protein, PIR Accession Number S38625 gi 3850334 121 22549 7.3 10750 3.425 36.7 63.3 13.34 0.0006 Mitcohondrial Chain A, Human Manganese Superoxide Dismutase gi 2780818 121 22530 7.4 10750 3.425 36.7 63.3 13.34 0.0006	Of The Human Galectin-3										
Description Description <thdescription< th=""> <thdescription< th=""></thdescription<></thdescription<>	Derivative Of N-										
Notify	Acetyllactosamine										
dehydrogenase, type II isoform 2 Hydroxyacyl-Coenzyme A gi 4758504 99 27614 7.9 16666 4.967 Hydroxyacyl-Coenzyme A gi 20336350 91 21099 8.1 16666 4.967 Endoplasmic reticulum- associated amyloid beta gi 20336350 91 21099 8.1 16666 4.967 RAB5C, member RAS gi 41393545 63 24176 0 12000 3.9 40.9 59.1 9.8391 0.0011 RAB5C, member RAS gi 41393545 101 24176 0 11500 4.1 38.8 61.2 9.8909 0.0002 oncogene family isoform b gi 508285 99 24261 0 11500 4.1 38.8 61.2 9.8909 0.0002 Rab5c-like protein, similar to Canis familiaris Rab5c protein, PIR Accession Number S38625 gi 38503334 121 22549 7.3 10750 3.425 36.7 63.3 13.34 0.0006 Mitochondrial Chain A, Human Manganese Superoxide Dismutase gi 2780818 121 22530 7.4 10750 3.425 36.7 63.3	Hydroxyacyl-Coenzyme A	ail83715985	101	26676	7.3	16666	4.967	45.6	54.4	7.0474	0.0177
isoform 2 gi 4758504 99 27614 7.9 16666 4.967 Hydroxyacyl-Coenzyme A dehydrogenase, type II isoform 1 gi 20336350 91 21099 8.1 16666 4.967 Endoplasmic reticulum- associated amyloid beta peptide-binding protein gi 20336350 91 21099 8.1 16666 4.967 RAB5C, member RAS oncogene family isoform b gi 41393545 63 24176 0 12000 3.9 40.9 59.1 9.8391 0.0011 RAB5C, member RAS oncogene family isoform b gi 41393545 101 24176 0 11500 4.1 38.8 61.2 9.8909 0.0002 RAB5C-like protein, similar to Canis familiaris Rab5c protein, PIR Accession Number S38625 gi 38503334 121 22549 7.3 10750 3.425 36.7 63.3 13.34 0.0006 Mitochondrial Chain A, Human Manganese gi 2780818 121 22530 7.4 10750 3.425 36.7 63.3 13.34 0.0006	dehydrogenase, type II	3							• • • •		
Hydroxyacyl-Coenzyme A dehydrogenase, type II isoform 1 gi 4758504 99 9 27614 7.9 7.9 16666 4.967 Endoplasmic reticulum- associated amyloid beta peptide-binding protein gi 20336350 91 21099 8.1 16666 4.967 RAB5C, member RAS oncogene family isoform b gi 41393545 63 24176 0 12000 3.9 40.9 59.1 9.8391 0.0011 RAB5C, member RAS oncogene family isoform b gi 41393545 101 24176 0 11500 4.1 38.8 61.2 9.8909 0.0002 RAB5C-like protein, similar to Canis familiaris Rab5c protein, PIR Accession Number S38625 gi 38503334 121 22549 7.3 10750 3.425 36.7 63.3 13.34 0.0006 Mitochondrial Chain A, Human Manganese Superoxide Dismutase gi 2780818 121 22530 7.4 10750 3.425 36.7 63.3 13.34 0.0006	isoform 2										
dehydrogenase, type II gi 20336350 91 21099 8.1 16666 4.967 Image: Second se	Hydroxyacyl-Coenzyme A	gi 4758504	99	27614	7.9	16666	4.967				
isoform 1 gi 20336350 91 21099 8.1 16666 4.967 .	dehydrogenase, type II										
Endoplasmic reticulum-inassociated amyloid beta peptide-binding protein gi 20336350 91 21099 8.1 16666 4.967 RAB5C, member RAS oncogene family isoform b gi 41393545 63 24176 0 12000 3.9 40.9 59.1 9.8391 0.0011 RAB5C, member RAS oncogene family isoform b gi 41393545 101 24176 0 11500 4.1 38.8 61.2 9.8909 0.0002 oncogene family isoform b gi 508285 99 24261 0 11500 4.1 38.8 61.2 9.8909 0.0002 Rab5c-like protein, similar to Canis familiaris Rab5c gi 508285 99 24261 0 11500 4.1	isoform 1										
associated amyloid beta peptide-binding proteingi 4139354563241760120003.940.959.19.83910.0011RAB5C, member RAS oncogene family isoform bgi 41393545101241760115004.138.861.29.89090.0002RAB5C, member RAS oncogene family isoform bgi 50828599242610115004.138.861.29.89090.0002Rab5c-like protein, similar to Canis familiaris Rab5c protein, PIR Accession Number S38625gi 3850334121225497.3107503.42536.763.313.340.0006gi 2780818121225307.4107503.42536.763.313.340.0006	Endoplasmic reticulum-	gi 20336350	91	21099	8.1	16666	4.967				
Depinde-binding protein gil41393545 63 24176 0 12000 3.9 40.9 59.1 9.8391 0.0011 RAB5C, member RAS oncogene family isoform b gil41393545 101 24176 0 11500 4.1 38.8 61.2 9.8909 0.0002 oncogene family isoform b gil508285 99 24261 0 11500 4.1 38.8 61.2 9.8909 0.0002 Rab5c-like protein, similar to Canis familiaris Rab5c protein, PIR Accession Number S38625 gil38503334 121 22549 7.3 10750 3.425 36.7 63.3 13.34 0.0006 Gil2780818 121 22530 7.4 10750 3.425 36.7 63.3 13.34 0.0006	associated amyloid beta										
NABSC, member NAS gi 41393545 03 24170 0 12000 3.3 40.9 39.1 9.8391 0.0011 oncogene family isoform b gi 41393545 101 24176 0 11500 4.1 38.8 61.2 9.8909 0.0002 oncogene family isoform b gi 508285 99 24261 0 11500 4.1 38.8 61.2 9.8909 0.0002 Rab5c-like protein, similar to Canis familiaris Rab5c protein, PIR Accession Number S38625 gi 38503334 121 22549 7.3 10750 3.425 36.7 63.3 13.34 0.0006 gi 2780818 121 22530 7.4 10750 3.425 36.7 63.3 13.34 0.0006	PARSC momber RAS	ail/12025/5	63	24176	0	12000	30	10.0	50.1	0.8201	0.0011
RAB5C, member RAS oncogene family isoform b gi 41393545 101 24176 0 11500 4.1 38.8 61.2 9.8909 0.0002 RAB5C-like protein, similar to Canis familiaris Rab5c protein, PIR Accession Number S38625 gi 508285 99 24261 0 11500 4.1 38.8 61.2 9.8909 0.0002 gi 38503334 121 22549 7.3 10750 3.425 36.7 63.3 13.34 0.0006 gi 2780818 121 22530 7.4 10750 3.425 36.7 63.3 13.34 0.0006	oncogene family isoform b	gij41393343	05	24170	0	12000	5.5	40.9	55.1	9.0091	0.0011
NABSC, member NAS gi 41393343 101 24176 0 11500 4.1 38.8 61.2 9.8909 0.0002 oncogene family isoform b gi 508285 99 24261 0 11500 4.1 38.8 61.2 9.8909 0.0002 Rab5c-like protein, similar to Canis familiaris Rab5c protein, PIR Accession Number S38625 gi 38503334 121 22549 7.3 10750 3.425 36.7 63.3 13.34 0.0006 mitochondrial Chain A, Human Manganese Superoxide Dismutase gi 2780818 121 22530 7.4 10750 3.425 36.7 63.3 13.34 0.0006	PARSC momber PAS	ail/12025/5	101	24176	0	11500	11	20 0	61.0	0 0000	0 0002
Rab5c-like protein, similar to Canis familiaris Rab5c protein, PIR Accession Number S38625 Superoxide dismutase [Mn], mitochondrial Chain A, Human Manganesegi 508285 gi 3850333499 2426124261 0 1150011500 4.1 4.14.1 5004.1 5004.1 5004.1 500500Superoxide dismutase [Mn], mitochondrial Chain A, Human Manganesegi 2780818121 22530225497.3 7.4107503.42536.7 50063.3 50013.340.0006	ancogono family isoform h	gij41393343	101	24170	0	11500	4.1	30.0	01.2	9.0909	0.0002
Nabscrike protein, similar to gi[306265 99 24261 0 11500 4.1 Canis familiaris Rab5c protein, PIR Accession gi[38503334 121 22549 7.3 10750 3.425 36.7 63.3 13.34 0.0006 Number S38625 gi[2780818 121 22530 7.4 10750 3.425 36.7 63.3 13.34 0.0006 Mitochondrial gi[2780818 121 22530 7.4 10750 3.425 36.7 63.3 13.34 0.0006	PabEa like protein aimilar to	ail509295	00	04061	0	11500	11				
vortein, PIR Accession protein, PIR Accession Number S38625 superoxide dismutase [Mn], gi 38503334 121 22549 7.3 10750 3.425 36.7 63.3 13.34 0.0006 mitochondrial gi 2780818 121 22530 7.4 10750 3.425 36.7 63.3 13.34 0.0006 Superoxide Dismutase gi 2780818 121 22530 7.4 10750 3.425 36.7 63.3 13.34 0.0006	Capie familiarie Rab5e	gi 506265	99	24201	0	11500	4.1				
Number S38625 Superoxide dismutase [Mn], gi 38503334 121 22549 7.3 10750 3.425 36.7 63.3 13.34 0.0006 mitochondrial gi 2780818 121 22530 7.4 10750 3.425 36.7 63.3 13.34 0.0006 Superoxide Dismutase gi 2780818 121 22530 7.4 10750 3.425 36.7 63.3 13.34 0.0006	protein PIR Accession										
Superoxide dismutase [Mn], gi 38503334 121 22549 7.3 10750 3.425 36.7 63.3 13.34 0.0006 mitochondrial Chain A, Human Manganese gi 2780818 121 22530 7.4 10750 3.425 36.7 63.3 13.34 0.0006 Superoxide Dismutase gi 2780818 121 22530 7.4 10750 3.425 5	Number S38625										
mitochondrial Chain A, Human Manganese gi 2780818 121 22530 7.4 10750 3.425 Superoxide Dismutase	Superoxide dismutase [Mn].	gi 38503334	121	22549	7.3	10750	3.425	36.7	63.3	13.34	0.0006
Chain A, Human Manganesegi 2780818121225307.4107503.425Superoxide Dismutase </td <td>mitochondrial</td> <td></td> <td></td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td></td>	mitochondrial			-	-				-	-	
Superoxide Dismutase	Chain A, Human Manganese	gi 2780818	121	22530	7.4	10750	3.425				
	Superoxide Dismutase										

Mutant Q143n										
Superoxide dismutase [Mn], mitochondrial	gi 38503339	121	22544	7.4	10750	3.425				
Fracture callus 1 homolog	gi 6912382	131	11579	7.5	15000	6.6	53.4	46.6	5.2589	0.0128
Cytochrome c oxidase subunit Vb precursor	gi 17017988	77	14395	9	8333	4.367	52.9	47.1	4.6937	0.0163
COX5B	ai 180937	77	14394	9.4	8333	4.367				
Thiopurine S-	gi 84029582	73	28100	6.4	8333	4.367				
methyltransferase										
(Thiopurine										
methyltransferase)										N
Beta-myosin heavy chain	gi 601916	66	7885	10.1	13000	8	41.1	58.9	4.2402	<0.0001
							5			

Identification							Quantification			
Protein	Accession	PMF	Mass	pl	exp.	exp.	Poolt	PoolY	StdDev	p-value
	Number	score			Mass	pĺ	BHP	(%)	(%)	
							(%)			
Tubulin, beta 6	gi 14210536	203	51242	4.5	60333	4.933	39.0	61.0	0.6173	0.0253
Tubulin, beta polypeptide	gi 57209813	159	48976	4.4	60333	4.933			\sim	
Tubulin, beta, 2	gi 23958133	150	51225	4.6	60333	4.933				
Tubulin, beta polypeptide	gi 57209813	181	47736	4.4	63000	4.9	33.0	67.0	1.5181	0.0402
TUBB protein	gi 16198437	152	30340	4.5	63000	4.9		X		
Tubulin, beta 2	gi 4507729	146	49875	4.5	63000	4.9) `		
Laminin-binding protein	gi 34234	148	32128	4.6	45500	4.8	40.5	59.5	0.6006	0.0284
Ribosomal protein SA	gi 31419811	147	33188	4.5	45500	4.8	\bigcirc			
Corneal endothelium	gi 20069113	80	25551	4.1	39000	4.2	31.3	68.7	1.9331	0.0465
specific protein 1										
Ovary-specific acidic protein	gi 12584947	77	28734	4.2	39000	4.2				
Tropomyosin 4	gi 4507651	137	28504	4.4	31000	4.6	34.7	65.3	0.3927	0.0116
Tropomyosin 4	gi 12803959	99	28907	4.4	31000	4.6				
TPM4-ALK fusion	gi 10441386	98	27513	4.5	31000	4.6				
oncoprotein type 2										
Unknown	gi 62822279	100	22142	4	26000	4.3	37.7	62.3	0.3273	0.0119
HIRA interacting protein 5	gi 50593025	99	25907	4.3	26000	4.3				
isoform 1										
Motor protein	gi 516764	262	80191	5.8	158000	5.733	37.5	62.5	1.1014	0.0397
Transmembrane protein	gi 1160963	258	84856	6.4	158000	5.733				
IMMT	gi 48145703	246	83628	6.4	158000	5.733				
Heat shock protein 60	gi 77702086	418	61706	5.7	95000	5.225	36.0	64.0	0.341	0.0109
Chaperonin	gi 41399285	414	61548	5.5	95000	5.225				
Chaperonin	gi 31542947	316	61016	5.5	95000	5.225				
Alpha-tubulin	gi 37492	211	52251	4.8	74500	5.1	33.2	66.8	0.8983	0.0241
PREDICTED: similar to	gi 73996530	203	46042	5	74500	5.1				
Tubulin alpha-6 chain										
(Alpha-tubulin 6) (Alpha-										
tubulin isotype M-alpha-6)	2									
PREDICTED: tubulin alpha	ail114644943	202	46028	5	74500	51				
6 isoform 2 [Pan troolodytes]	gij 1 14044943	202	40020	5	74300	5.1				
Unnamed protein product	ail21748975	231	48428	5.4	91000	5.2	32.2	67.8	1.4282	0.0362
G-rich RNA sequence	ail53759145	231	49544	5.4	91000	5.2	0			0.000-
binding factor 1	9.1007.001.10		10011	0	0.000	0.2				
G-rich sequence factor-1	gi 517196	214	49563	5.5	91000	5.2				
Acyl-Coenzyme A	gi 15559225	179	48490	7	52000	5.733	39.0	61.0	0.6147	0.0251
dehydrogenase,										
short/branched chain,										
precursor										
Hypothetical protein	gi 30268183	164	47975	7.2	52000	5.733				
Acyl-Coenzyme A	gi 4501859	159	4/455	7	52000	5.733				
uenyarogenase,										
SHOL/DIALICHEU CHAIH										
Glutathione peroxidase 1	ail49522058	105	22960	6.5	29000	58	40.5	59.5	0 3182	0.0151
isoform 1	3.1.2022000			5.5					0.0.02	0.0101
							-			

Glutathione peroxidase	ai 14717805	105	22818	6.5	29000	5.8				
Enolase 1	ai 4503571	121	48202	7.5	25000	3.3	39.2	60.8	0.7271	0.0304
Enolase 1 variant	gi 62897945	121	48230	7.5	25000	3.3			-	
Enolase 1 variant	gi 62896593	121	48174	7.5	25000	3.3				
Citrate synthase precursor,	gi 38327627	107	45206	7.2	22750	3.65	35.8	64.2	1.2985	0.0411
isoform b										
CS protein	gi 48257138	107	46118	7	22750	3.65				
Citrate synthase	gi 3288815	106	52559	8.2	22750	3.65				
ACTB protein	gi 15277503	65	41257	0	20750	3.475				
Chain A, Structure Of T255e, E376g Mutant Of Human Medium Chain Acyl- Coa Dehydrogenase	gi 2392312	70	44678	0	22500	3.35	41.6	58.4	0.3814	0.0203
Coenzyme A dehydrogenase, C-4 to C-12 straight chain [Pan troglodytes]	gi 114357331	00	51915	U	22500	3.35		-?		
Acyl-Coenzyme A dehydrogenase, C-4 to C-12 straight chain	gi 4557231	68	47975	0	22500	3.35	9			
Chain A, Human Mitochondrial Acetoacetyl- Coa Thiolase	gi 83755034	89	43347	7.8	21000	3.8	38.0	62.0	0.695	0.0260
Mitochondrial ribosomal protein S22	gi 9910244	109	41786	0	20000	3.1	33.8	66.2	0.5715	0.0159
Torsin A	gi 4557541	154	38847	7	17750	3.075	38.7	61.3	1.2518	0.0498
Mitochondrial malate dehydrogenase 2, NAD	gi 89574129	259	33365	0	20600	5.04	37.4	62.6	0.6478	0.0231
Unknown	gi 41472053	223	34624	0	20600	5.04				
mitochondrial malate dehydrogenase precursor	gi 21735621	219	36897	0	20600	5.04				
Porin 31HM [human, skeletal muscle membranes, Peptide, 282 aa]	gi 238427	235	30977	0	15250	3.925	34.2	65.8	0.1883	0.0054
Voltage-dependent anion channel 1	gi 4507879	235	31108	0	15250	3.925				
2,4-dienoyl CoA reductase 1 precursor	gi 4503301	110	36930	0	15250	3.925				
Fracture callus 1 homolog	gi 6912382	131	11579	7.5	15000	6.6	37.9	62.1	0.2034	0.0076
P)									

Table S7Senescent versus tBHP-treated HUVEC (mitochondrial preparation)All accession numbers are from Homo sapiens if not stated otherwise

Identification							Quantification			
Protein	Accession	PMF	Mass	pl	exp.	exp.	Poolt	PoolS	StdDev	p-value
	Number	score			Mass	pl	BHP	en	(%)	
							(%)	(%)		
Transmembrane protein 4	gi 7657176	100	21702	4.5	19000	4.8	67.8	32.2	1.0716	0.0271
Heat shock 70kDa protein	gi 12653415	116	73682	6.2	111666	5.4	63.3	36.7	0.0847	0.0029
9B (mortalin-2)										
Unnamed protein product	gi 21748975	231	48428	5.4	91000	5.2	52.5	47.5	0.1305	0.0237
G-rich RNA sequence	gi 53759145	231	49544	5.4	91000	5.2				
Grich sequence factor-1	ail517196	214	10563	55	01000	5.2				
ACTB protein	ail15277503	133	41257	5.5	72000	5.2	78.3	21.7	0 9677	0.0154
Actin beta	gi 13277303	118	41237	5.0	72000	5.1	70.5	21.7	0.3077	0.0134
Actin, denta	gi 14230401 gi 54696574	117	42828	5.0	72000	5.1				
ACTB protoin	gi 15277503	73	41257	5.6	58000	5.0	60.3	30.7	0 3588	0.0084
Actin beta	gi 13277303 gi 14250401	73	41237	5.0	58000	5.9	09.5	50.7	0.5500	0.0004
Actin, denta	gi 14230401 gi 54696574	71	42828	5.0	58000	5.9				
PREDICTED: apolinoprotein	gi 11/560275	1//	20/18	7	31500	53	/1 0	58.1	0 78/1	0.0437
A-I binding protein isoform 2	giji 14000270	177	20410	· '	01000	0.0	41.5	50.1	0.7041	0.0407
[Pan troglodytes]										
APOA1BP protein	gi 71681685	126	21126	7	31500	5.3				
Apolipoprotein A-I binding	gi 91984773	124	31654	7.8	31500	5.3				
protein precursor										
NADH dehydrogenase-	gi 10443631	372	30577	7.6	30000	5.475	42.7	57.3	0.4953	0.0305
ubiquinone 30 kDa subunit										
NADH-Ubiquinone	gi 5138999	372	30641	8.2	30000	5.475				
reductase	ail6000071	2000	20672	67	20000	E 47E				
(ubiquinone) Fe-S protein 3	gilo2090071	292	30673	0.7	30000	5.475				
30kDa (NADH-coenzyme Q										
reductase) variant										
Chain A, Structure Of	gi 2392312	70	44678	0	22500	3.35	34.8	65.2	0.3515	0.0104
T255e, E376g Mutant Of										
Human Medium Chain Acyl-										
Coa Dehydrogenase		<u></u>	E101E	0	00500	0.05				
PREDICTED: acyl-	gi 114557331	68	51915	0	22500	3.35				
dehydrogenase C-4 to C-12										
straight chain [Pan										
troglodytes]										
Acyl-Coenzyme A	gi 4557231	68	47975	0	22500	3.35				
dehydrogenase, C-4 to C-12										
straight chain										
VDAC2	gi 48146045	112	31810	7.2	16500	3.7	37.3	62.7	0.2604	0.0092
Voltage-dependent anion	gi 55664661	112	31923	7.9	16500	3.7				
channel 2 Voltago dependent origin	ail246410		00100	77	16500	07				
	gi 346412		33168	1.1	10000	3./				
Channel VDAG2 - numan										

Figure 1

HUVEC Sen. vs. Juv. Pool

senescent =orange

Juv. Pool =blue

pl range of gels, v	where ATP synthase subuni	it isoforms were found	
4-5	5-6	6-9	
, 1436 , 1437 , 1436 ,	-1685 -1685 1694 1694 ATP synthase β β	1470 1470 ATP synthase β	Rat Brain 31 Mo. vs. Pool
904 907 917 920 904 907 917 920 904 907 917 920 2249 2249 ATP synthase β	ATP synthase subunit 4	13371337ATP synthase γ15551555ATP synthase OSC protein	Podospora Sen. vs. Juv. Pool
		1255 1225 1255 1225 ΛΤΡ synthase α	HUVEC Sen. vs. Juv. Pool

A	•	6	7		4	5 7 J	Radioactive false colour pair of inve replicates of isotope qua differential	e rse of dual antitative 2D gels	
В	B						Tracer-cont preparative silver-stain 2D gel	Tracer-controlled preparative silver-stained 2D gel	
C									
	Experiment		PMF	Theoretical					
No	рІ	MW	Score	AccNo	рІ	MW	Description	Diff	
6	5.3	27000	140	gi 9968599	5.2	27774	Putative SAM- dependent O- methyltranferase [Podospora anserina]	juv./sen = 0,23 p<0,0001	
7	5.2	27000	131	gi 9968599	5.2	27774	Putative SAM- dependent O- methyltranferase [Podospora anserina]	juv./sen = 0,22 p<0,0001	

Figure 4