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 Nacre: an orthotropic and bimodular elastic material
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Abstract

A new micromechanical model for nacre (mother-of-pearl) is proposed,
based on an accurate description of the actual microstructure of the ma-
terial. In the small-strain regime (where damage and fracture are ex-
cluded), it is shown via homogenization techniques that the mechanical
behaviour of nacre is: i) orthotropic, with a strong difference in directional
stiffnesses; ii) bimodular (different Young’s moduli in tension and com-
pression). A simple closed-form analytical solution, and a highly-accurate
boundary-elements-based numerical analysis, are developed to evaluate the
macroscopic behaviour of nacre from the mechanical properties of its con-
stituents. It is shown that the predictions of our simple analytical model
are in excellent agreement with the highly-accurate numerical analysis and
with existing experimental data, and it is explained how our model can be
further verified through new experiments. Importantly, we show that it is
essential to account for nacre’s bimodularity and anisotropy for the correct
interpretation of published (and future) experimental data.

Keywords: Nacre, Mother-of-pearl, biological composites, masonry, homogeniza-
tion theory, elasticity

1 Introduction

The surprisingly excellent stiffness and toughness properties of nacre (mother-of-
pearl, the internal layer of many mollusc shells (see for example Fig. 1) comprised
of 95% aragonite, a mineral form of CaCO3, with only a few percent of biological
macromolecules) have been known since the experimental work of Currey (1977,
1980). The fact that these mechanical characteristics remain unchallenged by the
current ceramic materials has further stimulated research. Nacre has a peculiar
‘brick-mortar’ microstructure (the so-called ‘Stretcher bond’ in masonry nomen-
clature, see Figs. 2-3 and compare to Fig. 4), where stiff and flat aragonite

0Correspondence to: Davide Bigoni, Dipartimento di Ingegneria Meccanica e Strutturale,
Università di Trento, Via Mesiano 77, I-38050 Trento, Italia.
Fax: +39 0461 882599; Tel. +39 0461 882507; e-mail: bigoni@ing.unitn.it
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Figure 1: South African Abalone shell (Haliotis midae, purchased in dry condition at ‘Ori-
entimport’, Torrepedrera, Italy; photos taken with a Nikon D200 digital camera at the Univer-
sity of Trento). Left: inner part; right: outer part.

crystals, the ‘bricks’ (0.2-0.9 µm thick and with a mean transversal dimension
ranging between 5 and 8 µm), are connected and separated by nanoscale organic
interlayers (20-30 nm, see Table 1), the ‘mortar’ (Schaffer at al. 1997; Song et
al. 2003). While this microstructure may at least partially explain nacre’s high

Figure 2: A rough fracture surface of the South African Abalone shell shown in Fig. 1
[micrographs taken with a Jeol 5500 scanning electron microscope (JEOL Inc., Peabody, Mass.)
at the University of Trento].

fracture toughness, it does not seem compatible with its high stiffness. The high
fracture toughness could be related to crack blunting/branching, as suggested
by Almqvist et al. (1999), where it is however concluded that ceramics with a
microstructure mimicking mother-of-pearl, though superior to other ceramics, do
not attain the fracture toughness of nacre. Damage and fracture mechanisms in
nacre are however not completely understood. For instance, inelastic deforma-
tions have been considered by Wang et al. (2001), whereas Sarikaya et al. (1990)
advocate several micromechanisms to explain the outstanding strength of nacre:
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 (a) crack blunting/branching, (b) micro-crack formation, (c) plate pullout, (d)
crack bridging (ligament formation) and (e) sliding of layers. On the other hand,
from available experimental data (reported in Table 1), it is difficult to under-
stand how a composite with a highly compliant organic matrix may exhibit such
a high stiffness. Therefore, Schaffer at al. (1997) and Song et al. (2003) advocate
the presence of mineral bridges, joining the aragonite platelets through the or-
ganic matrix. However, the existence of such mineral bridges has been disproved
or at least not confirmed by Bruet et al. (2005) and Lin and Meyers (2005).

Figure 3: A rough fracture surface of the South African Abalone shell shown in Fig. 1, etched
by immersion in a 60% solution of HNO3 for 1 hour. Lower parts: two details of the upper
figure, showing the ‘brick-mortar’ structure of nacre. Note that separations where bricks abut
are evident [micrographs taken with a Jeol 5500 scanning electron microscope (JEOL Inc.,
Peabody, Mass.) at the University of Trento].

Figure 4: An example of Roman masonry (Anfiteatro Flavio, built in the second half of the
first century A.D. under Emperor Vespasiano at Pozzuoli, Naples. Photo by D. Bigoni). A
detail is shown at right of the masonry in the upper left part of the figure at left.

Prior to the present work, mechanical models were incapable of explaining the
high stiffness of nacre and, additionally, the anisotropy of the material (which
appears evident from consideration of the microstructure) has apparently not
been modeled. Nukala and Simunovic (2005) employ a discrete lattice where
the aragonite platelets are rigid, and use the shear-transmission hypothesis for
the organic matrix. The latter hypothesis has been advocated by Ji and Gao
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Table 1: Available experimental data: Young’s moduli parallel and orthogonal to the lamellae,
E1 and E2, of the aragonite platelets, Ep, and of the organic matrix, Eo; thickness of the organic
layer, ho.

Authors Material E1 E2 Ep Eo ho

[GPa] [GPa] [GPa] [GPa] [nm]
Jackson et al. 1988 Pinctada nacre 73 70 100 4 –

Katti et al. 2001 Red abalone – – 99.5 20 30

Wang et al. 2001 Abalone 69 ± 7 66±2 – – 20

Pearl oyster 77 ± 12 81±4 – – 20

Bruet et al. 2005 Trochus niloticus – – 92–79 – 30-300

Barthelat et al. 2006 Red abalone – – 79 ± 15 2.84 ± 0.27 20-40

(2004), through the so-called ‘tension-shear chain model’, originally proposed by
Jäger and Fratzl (2000). This is a simple model in which the organic matrix
is assumed on the one hand not to resist tension, but to resist shear on the
other. We will derive an improved version of this model and employ it for tensile
response parallel to the aragonite lamellae, for which we will show it to be quite
accurate. Ji and Gao (2004) also note that the microstructure of nacre should
imply anisotropic overall behavior, but they do not model it. Katti at al. (2001,
2005) measure and predict (with a finite element method) a stiffness of 20 GPa
for the organic matrix and conclude that the mineral bridges have no effect on the
nacre averaged stiffness. Moreover, the fact that the material should be bimodular
(namely, to have a Young’s modulus lower in tension than in compression) has
passed completely unnoticed [although this behaviour should be inferred from
the Jäger and Fratzl (2000) model; see, e.g., Fig. 2b of Ji and Gao (2004)] and
is still awaiting quantification.

The goal of the present article is to provide a micromechanical model capable
of explaining and quantifying all the above-mentioned mechanical features. Em-
ploying the detailed description of Lin and Meyers (2005) allows us to formulate
a micromechanical model, which through standard homogenization techniques
yields the macroscopic mechanical behaviour of nacre1. This turns out to be:

• orthotropic, with a strong difference between normal stiffnesses and shear
stiffness; in particular, nacre is much less stiff under shear than under uniax-
ial tension (in the two directions parallel and perpendicular to the aragonite
platelets);

1We consider in this paper mechanical behaviour at small strains, so that damage leading
to final failure will not be investigated here.
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 • bimodular, i.e. having a Young’s modulus in tension smaller than in com-
pression, in the direction parallel to the lamellae long boundaries.

These results are obtained by developing a two-dimensional, plane strain, micro-
mechanical model of nacre (Fig. 5), yielding averaged properties through a simple
analytical approach and a standard numerical procedure (based on a boundary
element technique developed by us). The simple approach yields closed-form so-

Figure 5: Sketch of the model for the mechanical behaviour of nacre, where aragonite platelets
are modeled as ‘bricks’ glued by a ‘mortar’ of organic matrix along the basal planes, but in
unbonded unilateral contact along lateral surfaces

.

lutions to directly determine the four parameters defining the averaged properties
of nacre from knowledge of the mechanical properties of the micro-constituents.
The predictions of the simple approach are found to be in excellent agreement
with the numerical results obtained from a much more refined model. We note
finally that although our model is based on hypotheses obtained from the very
recent paper by Lin and Meyers (2005), our strategy of solution can be easily
modified to account for new features, should these be found in the future.

Predictions of our model are shown to agree with existing experimental data,
and simple formulae are provided to extract two of the four parameters defining
our model from three (or four) point macroscopic bending experiments (without
knowledge of the micromechanical properties). Importantly, we show that it is
essential to account for nacre’s bimodularity and anisotropy for correct interpre-
tation of the experimental data.

2 Mechanical model for nacre

Our model is built on the very accurate and recent observations and data reported
by Lin and Meyers (2005) and is sketched in Fig. 5. In particular, the aragonite
platelets are idealized as rectangular elastic isotropic blocks (with Lamé moduli
λp and µp) joined along the lamellar ‘long’ boundaries by the organic matrix,
also taken to be linearly elastic and isotropic (with Lamé moduli λo and µo).
This system is deformed under plane strain conditions. It is important to note
that, along the short edges of the aragonite platelets (where these abut), Lin and
Meyers (2005) find a simple contact without any organic glue. We have idealized
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 this as a unilateral contact (so that, along the short edges, the platelets behave
as perfectly jointed in compression, whereas these are completely disconnected
under tension). This idealization is supported by: (i) direct observations by Lin
and Meyers; (ii) the fact that fracture surfaces do not cross aragonite platelets,
which are seen simply to slide one with respect to the other (Sarikaya, 1994;
Evans et al. 2001); (iii) the fact that the compressive strength was found to be
1.5 times the tensile strength by Menig et al. (2000); (iv) the fact that strains
much larger at the tensile than at the compressive surface have been found in
three-point bending by Wang et al. (2001). Clearly, the unilaterality of contact
introduces a nonlinearity in the model. We will see that this can be easily handled
at the cost of some approximations.

2.1 Homogenization

The above-introduced model of nacre is periodic and is very similar to typical
models for masonry (Pietruszczak and Niu, 1992; Anthoine, 1995; Cecchi and
Sab, 2002). The goal of homogenization theory (which has been thoroughly
developed for periodic elastic media, see for instance Sanchez-Palencia, 1980)
is to derive from a microstructure a macroscopic response valid for an effective
continuous equivalent medium. To this purpose, a representative volume element
is considered, which, due to the symmetry of our structure, is selected as sketched
in the detail of Fig. 5. The homogenization is performed in the following steps.

• The representative volume element (of volume V and external surface S
having outward unit normal vector ni) is to be subjected to prescribed
mean strain εij. To this purpose, the average strain theorem (e.g., Gurtin,
1972)

εij =
1

V

∫
V

εij dV =
1

2 V

∫
S

(uinj + ujni)dS, (1)

(where ui is the displacement vector, εij the related strain) allows us to
prescribe the mean strain in terms of an appropriate displacement on the
boundary.

• The mean stress σij produced by the application of the mean strain must
be (numerically or analytically) evaluated on the representative volume
element. The average stress theorem (e.g., Gurtin, 1972)

σij =
1

V

∫
V

σijdV =
1

V

∫
S

σiknkxjdS, (2)

(where xj is the position vector and σij the stress tensor) allows us to work
in terms of tractions on the boundary.
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 • With the two steps above, an average strain/average stress relation is found,
which, when compared to a effective stress/strain relation of the type

σij = Eijhkεhk, εij = E
−1

ijhkσhk, (3)

yields the determination of all independent material constants defining the
composite modulus tensor Eijhk.

Due to the peculiar microstructural geometry, it is well-known that masonry
loaded in-plane follows an anisotropic elastic description. Surprisingly, the fact
that the microstructure of nacre (which is almost identical to masonry) implies
an anisotropic elastic macroscopic response appears never to have been modelled.
For the microstructure of nacre, the effective elastic tensor Eijhk is orthotropic,
which in a two-dimensional setting has only the following non-null components

E1111 =
E1

1 − ν12ν21
, E2222 =

E2

1 − ν12ν21
,

E1122 =
E1 ν21

1 − ν12ν21
, E2211 =

E2 ν12

1 − ν12ν21
,

E1212 = E1221 = E2121 = E2112 = G12.

(4)

The inverse tensor E
−1

ijhk has the following non-null components

E
−1

1111 =
1

E1

, E
−1

2222 =
1

E2

, E
−1

1122 = −ν21

E2

, E
−1

2211 = −ν12

E1

,

E
−1

1212 = E
−1

1221 = E
−1

2121 = E
−1

2112 =
1

4G12

,

(5)

where ν12, ν21 are the two plane strain Poisson ratios, and E1, E2, G12 are the two
plane strain elastic tensile moduli and the plane strain shear modulus, subject to
the symmetry condition

ν12

E1

=
ν21

E2

, (6)

so that through the homogenization technique we must identify four independent
material constants. Note that in the particular case of isotropy, the four constants
reduce to the two plane strain constants

E1 = E2 =
E

1 − ν2 , ν21 = ν12 =
ν

1 − ν
, (7)

in which E and ν are the usual (three-dimensional) elastic constants (Young’s
modulus and Poisson’s ratio).

The above four constants can be identified by subjecting the representative
volume element to three independent deformation components (which, employing
the symmetries present, can be reduced to the three boundary displacements
illustrated in Fig. 6), calculating the corresponding averaged stress components
and comparing to eqn. (3).
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Figure 6: The three modes of deforming the representative volume element shown in Fig. 5
needed to determine the four constants comprising the effective constitutive tensor, eqn. (4).

2.2 A simple, closed-form homogenization model for nacre

To develop simple, closed-form formulae for the anisotropic and bimodular elastic
response of nacre, we begin by observing that simple mechanical considerations
suggest that the unilateral contact between aragonite platelets plays an important
role only under tension aligned parallel to the x1 axis. On the other hand, when
subject to compression along the x1 axis, tension/compression parallel to the
x2 axis, and shear parallel to the axes, the unilaterality of the contact plays a
negligible role and the material behaves as a laminated medium composed of
aragonite and organic matrix layers. The accuracy of these assumptions was
confirmed by use of a more refined numerical model.

2.2.1 Unilateral model: determination of E
t

1 for tensile loadings

The response to a tensile loading parallel to the x1 axis, where the aragonite
platelets are disconnected where these abut, can be obtained by borrowing and
improving results from Jäger and Fratzl (2000) [see Ji and Gao (2004), their eqn.
(5)]. This simple model is based on the fact that under such an applied tensile
stress, the mineral plates carry most of the tensile load, while the organic matrix
transfers the load between the plates via shear. The effective modulus of the

composite for tensile loading along axis x1, E
t

1, can be expressed in our notation
(see Fig. 5) as (Ji and Gao, 2004)

E
t

1 =
Ep(

ho

hp
+ 1

) (
4
Ep hp ho

Go L2
p

+ 1

) , (8)

where Go denotes the shear modulus of the organic matrix, Ep the Young’s mod-
ulus of the aragonite platelets, hp and ho the thicknesses of the aragonite platelets
and of the organic layer, and Lp the aragonite platelets’ length.

With the goal of generalizing (8) so that its improvement agrees more closely
with our accurate numerical calculations, we derive it as follows. First, we con-
sider the limiting case in which the composite material is considered to be made
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 up of infinitely rigid (aragonite) platelets and soft (organic) layers. When pulled
in tension, the material deforms as sketched in Fig. 7, left. Since the only defor-

Lp

ho

hp

Lp

hp

��

���

Figure 7: The Jäger-Fratzl-Ji-Gao model in the limit cases of rigid platelets (left) and null
thickness of the organic layers (right). Transition zones of lengths α and β have been introduced
into the models (shown dashed) .

mation is the shearing of the soft layers, assuming uniform shearing of the soft
layers2 yields the elastic modulus as

E
t

1 =
(Lp − β)Lp Go

4ho(ho + hp)
. (9)

where Lp ≥ β ≥ 0 is a length parameter, accounting for the fact that the uniform
shearing solution violates moment equilibrium of the shearing stresses where the
soft layers are separated. Therefore, parameter β allows us to account for the
fact that there is a small transition zone where σ12 increases from zero to its full
value, so β << Lp.

Second, we consider now the other limiting case, in which the soft (organic)
layers are absent (Fig. 7, right) and the (aragonite) platelets are elastic and
perfectly bonded to each other. Subjecting this structure to longitudinal loading

2It can be shown using the theorem of minimum potential energy that the assumption of
uniform shearing yields an upper bound to E

t

1 , given by eqn. (9) with β = 0.
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 and neglecting deformation of the layer near the detachment zones we obtain3

E
t

1 =
Ep

4 α
Lp

+ 1
, (10)

where the length parameter α (Lp/4 ≥ α ≥ 0) has been introduced. This is simi-
lar to the parameter β and permits us to account for the fact that there is a small
transizion zone, at the unbonded platelet end, in which σ11 increases from zero
to its full value, so α << Lp. When the transition zone length is zero (i.e. α = 0)
the elastic modulus is that of the intact material. Clearly the behaviour of the
actual composite lies between these limiting cases. Combining therefore the two
limiting cases as springs in series (i.e. summing the compliances) in proportion
to the volume fraction of each material, where the platelet volume fraction is

Φ =
hp

ho + hp
, (11)

(Φ = 1 corresponds to the limiting case shown at Fig. 7 right, while Φ = 0 to
the limiting case shown at Fig. 7 left) we obtain

1

E
t

1

=
4h2

p(1 − Φ)

Lp(Lp − β)Go Φ2
+

4
α

Lp

+ 1

ΦEp

. (12)

Eqn. (12) can be rewritten as

E
t

1 =
Ep(

ho

hp
+ 1

)(
4

Ep hp ho

GoLp(Lp − β)
+

4α

Lp
+ 1

) , (13)

which is a generalization of the Jäger-Fratzl-Ji-Gao model, in the sense that this
model is retrieved when α = β = 0.

Since parameter β/Lp is small, we can define a new parameter γ as

γ

Lp
=
Ep hp ho

Go L2
p

4β

Lp
+

4α

Lp
, (14)

so that a Taylor series expansion of eqn. (13) in β/Lp and then use of eqn. (14)
yields

E
t

1 =
Ep(

ho

hp
+ 1

) (
4
Ep hp ho

Go L2
p

+
γ

Lp
+ 1

) , (15)

again reducing to the Jäger-Fratzl-Ji-Gao model, when γ = 0. Eqn. (15) will be
shown to yield a more accurate approximation than eqn. (8).

3It can be shown using the theorem of minimum potential energy that the assumption of
uniform longitudinal strain yields an upper bound to E

t

1 , given by eqn. (10) with α = 0.
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 2.2.2 Layered model: determination of E
c

1, E2, ν12 and ν21 for com-
pressive loadings

When loaded in compression or under shear, nacre behaves (following our sim-
plifying assumptions) as a monolithic laminate material, composed of uniform
isotropic laminae of thickness hp and ho (see Fig. 5). Homogenization of this
type of material is standard and can be found for instance in Willis (2003). How-
ever, for completeness, we provide a sketch of the approach here. We assume
ε22 = ε12 = 0 and ε11 = ε11 = constant in all laminae (so that compatibility is
satisfied). Uniform σ11 and σ22 are generated, the former different in each lamina
(but trivially satisfying equilibrium) and the latter must be required to be equal
in each lamina (and equal to the mean value σ22) by equilibrium considerations
at the interface. It follows that in a generic layer (having elastic constants E and
ν)

σ11 =
ε11E + σ22ν(1 + ν)

1 − ν2
. (16)

Using eqn. (16) in the condition ε22 = 0, valid for the unit cell, we obtain

E2211 =
σ22

ε11
=

〈
ν

1 − ν

〉〈
(1 + ν)(1 − 2ν)

E(1 − ν)

〉−1

, (17)

where the bracket 〈 〉 is used to denote the mean value of a generic function ψ as
follows

〈ψ(E, ν)〉 =
hoψ(Eo, νo) + hpψ(Ep, νp)

ho + hp

. (18)

Using eqn. (17) in eqn. (16) and averaging, we obtain

E1111 =
σ11

ε11
=

〈
E

1 − ν2

〉
+

〈
ν

1 − ν

〉2 〈
(1 + ν)(1 − 2ν)

E(1 − ν)

〉−1

. (19)

Finally, we impose a mean strain whose only non-zero component is ε22. Anal-
ogously to the previous case, we obtain for a generic layer (defined by E and ν)

σ11 =
σ22ν

1 − ν
, (20)

so that

E2222 =
σ22

ε22
=

〈
1 − ν − 2ν2

E(1 − ν)

〉−1

. (21)

Hence, the effective elastic constants E
c

1, E2, ν12 and ν21 can be determined by

11



 

 

 

ACCEPTED MANUSCRIPT 

 employing eqn. (4) as:

E
c

1 =
Eo ho(1 − ν2

p) + Ep hp(1 − ν2
o)

(ho + hp)(1 − ν2
p)(1 − ν2

o )
,

E2 =
EoEp(ho + hp)

[
Eo ho(1 − ν2

p) + Ep hp(1 − ν2
o )

]
Γ

,

ν21 =
EoEp(ho + hp)(1 + νp)(1 + νo) [νo ho(1 − νp) + νp hp(1 − νo)]

Γ
,

ν12 =
νo ho(1 − νp) + νp hp(1 − νo)

(ho + hp)(1 − νp)(1 − νo)
,

(22)

where

Γ = ho hp

[
E2

p(1 + νo)
2(1 − 2νo) + E2

o(1 + νp)
2(1 − 2νp) + 2EoEpνoνp(1 + νp)(1 + νo)

]
+EoEp (h2

o + h2
p)(1 − ν2

p)(1 − ν2
o ).

(23)

2.2.3 Layered model: determination of G12

In order to determine the effective shear modulus of the composite, we consider
again the monolithic layered model considered before and we prescribe a mean
strain ε12, requiring σ12 = σ12 in all layers. We obtain

G12 = E1212 =
σ12

ε12
=

1

2

〈
1 + ν

E

〉−1

, (24)

which becomes

G12 =
EoEp(ho + hp)

2 [Ep ho(1 + νo) + Eo hp(1 + νp)]
. (25)

Formulae (15), (22), and (25) represent the results of our simple homoge-
nization approach; these allow a relation between the micromechanical geome-
try and properties and the macroscopic, effective behaviour. As a simple check,
note that in the special case Eo = Ep = E and νo = νp = ν, eqns. (22) and
(25) yield the correct plane strain isotropic constants: E1 = E2 = E/(1 − ν2),
ν12 = ν21 = ν/(1 − ν2), and G12 = E/(2 + 2ν).

It should be noted that in order to use the bimodular model that we propose
for stress states different from uniaxial tension or compression, a criterion for
dividing strain space into compression and tension subdomains is needed (some-
thing analogous to a yield criterion in strain space plasticity), and continuity of
the stress/strain law should be enforced (see Curnier et al. 1995 for details). We
do not pursue this subject further here.

12



 

 

 

ACCEPTED MANUSCRIPT 

 2.3 Results from a boundary elements-based numerical
technique

Since via the averaging theorems we can work with displacements and tractions on
the surface of the representative volume element, a numerical boundary element
technique seems to be particularly appropriate. We have used a general-purpose
Fortran 90 code for two-dimensional analysis4. In the code, linear (constant)
shape functions for the displacements (tractions) at the boundary are assumed,
and the material has been taken to be linear elastic, with Lamé moduli λ and µ.
The unit cell (see Fig. 5) has been discretized along boundaries parallel to the x1

axis employing 50 elements and along the boundaries parallel to the x2 axis using
20 elements for the aragonite platelets and 10 elements for the organic matrix
layer. Following Sarikaya el al. (1990), the thickness of the aragonite plates and
of the interlayers have been chosen respectively as hp = 0.5 µm and ho = 20 nm,
while the length of the plates has been selected as Lp = 5 µm.

In the numerical analyses, both the aragonite plates and the organic inter-
phase have been modelled as linear elastic materials, having Young’s moduli
Ep = 100 GPa and Eo ranging between 0 and 10 GPa to cover the range of values
experimentally measured (see Table 1)(the Poisson ratio has been taken equal to
0.33 for both materials). The unilaterality of the contact has been accounted for
by using a small gap where platelets abut and confirming that this gap opens
under tensile applied loading, while no gap was used under compressive loading.

Results of the analysis are reported in Figs. 8 and 9, together with the predic-
tions of the simple analytical formulae, eqns. (22), and (25) and the Jäger-Fratzl-
Ji-Gao model, eqn. (8), and our improved version, eqn. (15), with γ = 0.26Lp

and labelled ‘Proposed model’. In Fig. 8 the effective moduli (normalized by
Ep) are reported versus the normalized Young’s modulus of the organic matrix,
Eo/Ep, while the same effective moduli are reported versus the thicknesses ratio
h0/hp (see Fig. 5) in Fig. 9. The numerical simulations reported in Figs. 8
and 9 have been performed under both the assumptions of disconnection (ten-
sile loading) and perfect contact (compressive loading) at the unilateral contact
between aragonite platelets. The results show clearly that the unilaterality of
the contact only plays a significant role for tension parallel to x1 axis (there is a
small effect in the shear case). Moreover, it is clear from Figs. 8 and 9 that the
agreement with the simple theory, eqns. (15), (22), and (25), is excellent.

Note also that formula (15), employed with γ = 0.26Lp, clearly improves
upon that of Ji and Gao (2004), eqn. (8), based on the Jäger and Fratzl (2000)
model.

It is important at this point to quantify the degree of anisotropy and bimod-
ularity of the material, since these two properties have not previously been mod-

4This code has been developed at the Computational Solids & Structural Mechanics Labo-
ratory of the University of Trento, whose executable is available at:
http://www.ing.unitn.it/dims/laboratories/comp solids structures.php.
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Figure 8: Effective elastic moduli calculated numerically and from the simple formulae (8),
(15) (with γ = 0.26 Lp), (22), and (25).

elled for nacre. To this purpose, we report in Fig. 10 the tension/compression

ratio of the effective Young’s moduli E
t

1/E
c

1 (equal to 1 when bimodularity is

absent) and in Fig. 11 the ratios E
t

1/EAv, E
c

1/EAv, E2/EAv, G12/GAv, where

EAv =
E

t

1 + E
c

1 + E2

3
, νAv =

ν t
12 + ν c

12 + ν21

3
, GAv =

EAv

2(1 + νAv)
, (26)

so that the ratios are equal to 1 in the case of isotropy and equal behaviour in
tension and compression.

To better quantify the anisotropy and bimodularity effects, we introduce a
(unit norm) uniaxial stress in the direction of the unit vector ni as

σij = ±ni nj , (27)

(taken positive for tension and negative for compression) so that the normal stress
and strain components in the direction ni are

σnn = ±1, εnn = niεijnj = ±ninjEijhknhnk. (28)
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Figure 9: Effective elastic moduli calculated numerically and from the simple formulae (8),
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Figure 10: Bimodularity of the material, quantified by the tension/compression ratio of the
effective elastic moduli. A detail in the relevant range of parameters is given at right.

Since in plane strain ni becomes a function of the inclination angle θ with respect
to the x1 axis, we can define the elastic moduli in tension and compression,
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respectively, E
t
(θ) and E

c
(θ), as

E
t
(θ) =

1

ε t
nn(θ)

, E
c
(θ) = − 1

ε c
nn(θ)

. (29)

Therefore, a polar plot of eqns. (29), obtained by using eqns. (15), (22), and
(25) in eqn. (5), allows a visual quantification of the elastic anisotropy. This is
reported in Fig. 12, after normalization by E

c

1. Since the graphs would reduce to
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Figure 12: Polar graphs of the effective elastic moduli in tension and compression, normalized
by E

c

1, revealing the strong anisotropy and bimodularity of nacre. (In the case of isotropy and
in the absence of bimodularity, a single unit circle would be present in each case.)

unit circles in the case of isotropy and equal behaviour in tension and compression,
the strong degrees of material anisotropy and bimodularity are evident.

Although parametric investigations are reported in the graphs of Figs. 10
and 11, the ratio Eo/Ep usually (see Table 1) takes values between the two cases
considered in Fig. 12, namely, 0.01 and 0.04. We can therefore conclude that:
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 • the ratio E
t

1/E
c

1 ranges between 0.5 and 0.8, showing that bimodularity is
an important effect (a fact previously not understood, and therefore not
tested);

• both the ratios E
c

1/EAv and E2/EAv lie near 1, (a fact consistent with
experimental results by Jackson et al. 1988 and Wang et al. 2001);

• the ratioG12/GAv ranges between 0.3 and 0.6, showing a strong difference in
degree of anisotropy between the shear and Young’s moduli (a fact noticed
also by Jackson et al. 1988).

3 Comparison with experimental data

To compare the predictions of our model with available experimental data, we
refer to Table 1, where data taken from the literature are reported.

Before discussing the model’s predictions, we note that the experimental re-
sults reported in Table 1 have been mainly determined via three-point bending
tests. These tests are usually interpreted by employing the linear theory of uni-
modular isotropic elasticity, but, in light of our findings, these should instead be
interpreted with formulae valid for bimodular, orthotropic elasticity. These are
derived in Appendix A, and summarized here:

• For three-point bending of a beam of span l, thickness h and loaded by a
force per unit depth P , the deflected shape of the neutral axis is

u2(x1) =
(1 +

√
c)2Px1(3l

2 − 4x2
1)

16E
t

1h
3

+
3Px1

5G12h
, x1 ∈ [0, l/2], (30)

(where c = E
t

1/E
c

1 , and c = 1 corresponds to equal behaviour in tension
and compression) so that the mid-span vertical displacement δ divided by
the applied load P is

δ

P
=

(1 +
√
c)2

16E
t

1

(
l

h

)3

+
3

10G12

l

h
. (31)

• For four-point bending of a beam of span l, thickness h and loaded at x1 = l0
by a force per unit depth P (neglecting shear deformation), the deflected
shape of the neutral axis is

u2(x1) =
(1 +

√
c)2P x1

2E
t

1 h
3

(
3 l l0 − 3 l20 − x2

1

)
, x1 ∈ [0, l0]

u2(x1) =
(1 +

√
c)2P l0

2E
t

1 h
3

(
3 x1(l − x1) − l20

)
, x1 ∈ [l0, l/2]

(32)
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 so that the vertical displacement δ at x1 = l0, i.e. where the vertical force
P is applied, is

δ

P
=

(1 +
√
c)2

8E
t

1

l0(3l
2 − 4l20)

h3
. (33)

It is clear from eqns. (31) and (33) that using three or four point bending
tests we can only identify two parameters

(1 +
√
c)2

E
t

1

, and G12,

so that the full exploration of bimodularity and orthotropy requires use of at least
one additional test (such as for instance a direct tension or compression test or,
perhaps, nanoindentation).

Moreover, the effect of low shear modulus G12 only plays a role for sufficiently
high values of h/l. The experiments performed by Jackson et al. (1988) refer to
very low values of h/l, so that shear deformation should be negligible. However,
bimodularity should play an important role in those experiments, and therefore
the Young’s modulus obtained by Jackson et al. must be corrected before com-
paring it to the prediction of our model. This correction can be obtained by
considering eqn. (31) without shear deformation, with c = 1, as used by Jackson
et al., and with c < 1, as found by us. The result is the relationship

E1 =
4E

t

1

(1 +
√
c)2

, (34)

where E1 is the Young’s modulus in the direction of the x1 axis, assuming equal
behaviour in tension and compression. It should be noted that there is no dif-
ference between the Young’s modulus in the direction of the x2 axis found by us
and by Jackson et al., since bimodularity does not play a role in that case.

Eqn. (34) is plotted in Fig. 13, for the three values c = {1, 0.8, 0.6}. The grey
zone denotes the parameter range of interest. We observe that the correction is
significant and that we find values of E1/Ep in the range 0.7–0.8, in agreement
with the experimental data reported in Table 1.

4 Conclusions

Within the framework of the small strain behaviour of nacre (mother-of-pearl),
we have accounted for the first time for the facts that the material response is:

• orthotropic, with low shear stiffness;

• bimodular (lower Young’s modulus in tension than in compression).
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Figure 13: Relation between the Young’s moduli in the direction of the x1 axis obtained by
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1 , and the gray region indicates
the parameter range of interest.

To characterize this material from the knowledge of the microstructure, we have
provided:

• a simple analytical model

• and a highly-accurate numerical analysis,

both based on a sound micromechanical approach. We have also provided simple,
closed-form formulae to determine two of our four macroscopic moduli directly
from macroscopic three and four point bending tests on the composite material.
This provides a direct check of our constitutive model, since its macroscopic
moduli are completely determined from the constituents material moduli and the
composite microstructure. The comparison with available experimental data is
excellent, and we expect that future experiments will further validate our model.
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Appendix A: Bending of an orthotropic, bimodular beam deformed
in plane strain

Let us consider a bimodular beam in plane strain subjected to bending, for
example, three-point bending as illustrated in Fig. 14. Since only normal strains
are involved for bending, bimodularity reduces to switching between two possible
behaviours as a function of the sign of the strain and stress. It is therefore
expedient to introduce a piecewise nonlinearity for certain quantities. We denote,
for instance, the elastic modulus in the direction parallel to the x1 axis by Ẽ1,
meaning

Ẽ1 = Et
1H(ε11) + Ec

1H(−ε11), (A.1)

where for conciseness bars over the symbols have been dropped, so that Et
1 and Ec

1

are the two composite plane-strain Young’s moduli in tension and compression,
respectively, and H is the Heaviside step function. An analogous use of variables
with a superposed tilda will be made in the following.

21



 

 

 

ACCEPTED MANUSCRIPT 

 

h

P
�11��

x1

x2

	11 1=E
c
�11

l

�11 �
 	11 1=E
t
�11

Figure 14: Bending of a bimodular beam.

For plane strain bending, it is assumed that the resultant force in the direction
of the x1 axis is null ∫ h/2

−h/2

ε11(x2)Ẽ1dx2 = 0, (A.2)

and that the applied bending moment per unit thickness M is given by

M =

∫ h/2

−h/2

ε11(x2)Ẽ1x2dx2, (A.3)

where h is the height of the beam. The strain component ε11 is assumed to vary
linearly along the direction of the x2 axis, so that from eqns. (A.2) and (A.3) we
obtain

ε11(x2) =
3M [h(1 − c) + 2x2(1 +

√
c)2]

2Et
1h

3
, (A.4)

where c = Et
1/E

c
1. Therefore, the neutral axis is defined by

x2 =
h

2

√
c− 1√
c+ 1

, (A.5)

so that its position is independent of the applied moment. From the bimodular,
two-dimensional stress-strain relationship for an orthotropic material, we find

ε11 =
σ11

Ẽ1

, and ε22 = −σ11ν̃12

Ẽ1

. (A.6)

Integration provides the displacement field in the form

u1(x1, x2) = ε11(x2)x1,

u2(x1, x2) = −3Mzx2[h(1 − c) + x2(1 +
√
c)2]

2Et
1h

3
ν̃12 + v0(x1).

(A.7)
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 where ε11(x2) is given by eqn. (A.4). Since the shear strains must be zero, we
find that

v0(x1) = −3(1 +
√
c)2Mz

Et
1h

3

x2
1

2
+ v1(x1), (A.8)

and, in order to have continuity of the displacement at the neutral axis, we get

v1(x1) =
3Mz(−1 +

√
c)2(νt

12 − νc
12)

8cEc
1h

H(−ε11(x2)). (A.9)

The displacement components of the neutral axis are given by

u1 = 0 u2 =
3M [−4(1 +

√
c)2x2

1 + (−1 +
√
c)2h2νt

12]

8Et
1h

3
, (A.10)

so that the elastica is given by

∂2 u2

∂ x2
1

= −3M(1 +
√
c)2

Et
1h

3
. (A.11)

For a simply-supported beam of span l loaded by two concentrated loads P
per unit thickness (plane-strain four-point bending), integration of the elastica
yields (neglecting shear deformation) eqn. (32) and thus eqn. (33).

For a simply-supported beam of span l loaded by a central concentrated load
P per unit thickness (plane-strain three point bending), integration of the elastica
yields (neglecting shear deformation)

u2(x1) =
(1 +

√
c)2Px1(3l

2 − 4x2
1)

16Et
1h

3
. (A.12)

Since our material has a low shear modulus G12, it may be important to
evaluate the contribution to the elastica of shear deformability. To this purpose,
we follow Jourawski’s analysis (which by the way originated to take into account
the high compliance of wood under shearing, Timoshenko, 1953), thus finding for
the mean shear stresses in a bimodular (plane strain) beam

σ12(x2) =
3T

8 h3 c

{
4 h2 c− [

(
√
c− 1)h− 2(

√
c+ 1)x2

]2
H(ε11(x2))−

c (
√
c+ 1)(h− 2 x2) [(

√
c− 3)h− 2(

√
c + 1)x2]H(−ε11(x2))} ,

(A.13)
where T is the shear force per unit thickness.

Equating the strain energies in the beam calculated from external load and
from internal stresses (or, in other words, using Clapeyron’s theorem) we obtain
for the shear deformability

∂ u2

∂ x1

=
6T

5 hG12

, (A.14)
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 so that (within the usual approximations) shear deformation is unaffected by
bimodularity.

Thus, accounting for shear deformation, integration of the elastica gives eqns.
(30) and (31).
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