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Introduction

The surprisingly excellent stiffness and toughness properties of nacre (mother-ofpearl, the internal layer of many mollusc shells (see for example Fig. 1) comprised of 95% aragonite, a mineral form of CaCO 3 , with only a few percent of biological macromolecules) have been known since the experimental work of [START_REF] Currey | Mechanical properties of Mother of pearls in tension[END_REF][START_REF] Currey | The mechanical properties of biological materials[END_REF]. The fact that these mechanical characteristics remain unchallenged by the current ceramic materials has further stimulated research. Nacre has a peculiar 'brick-mortar' microstructure (the so-called 'Stretcher bond' in masonry nomenclature, see Figs. crystals, the 'bricks' (0.2-0.9 µm thick and with a mean transversal dimension ranging between 5 and 8 µm), are connected and separated by nanoscale organic interlayers (20-30 nm, see Table 1), the 'mortar' [START_REF] Schaffer | Does Abalone nacre form by heteroepitaxial nucleation or by growth trough mineral bridges?[END_REF]; [START_REF] Song | Structural and mechanical properties of the organic layers of nacre[END_REF]. While this microstructure may at least partially explain nacre's high Figure 2: A rough fracture surface of the South African Abalone shell shown in Fig. 1 [micrographs taken with a Jeol 5500 scanning electron microscope (JEOL Inc., Peabody, Mass.) at the University of Trento].

fracture toughness, it does not seem compatible with its high stiffness. The high fracture toughness could be related to crack blunting/branching, as suggested by [START_REF] Almqvist | Methods for fabricating and characterizing a new generation of biomimetic materials[END_REF], where it is however concluded that ceramics with a microstructure mimicking mother-of-pearl, though superior to other ceramics, do not attain the fracture toughness of nacre. Damage and fracture mechanisms in nacre are however not completely understood. For instance, inelastic deformations have been considered by [START_REF] Wang | Deformation mechanisms in nacre[END_REF], whereas [START_REF] Sarikaya | Mechanical properties-microstructural relationship in abalone shell[END_REF] advocate several micromechanisms to explain the outstanding strength of nacre:

(a) crack blunting/branching, (b) micro-crack formation, (c) plate pullout, (d) crack bridging (ligament formation) and (e) sliding of layers. On the other hand, from available experimental data (reported in Table 1), it is difficult to understand how a composite with a highly compliant organic matrix may exhibit such a high stiffness. Therefore, [START_REF] Schaffer | Does Abalone nacre form by heteroepitaxial nucleation or by growth trough mineral bridges?[END_REF] and [START_REF] Song | Structural and mechanical properties of the organic layers of nacre[END_REF] advocate the presence of mineral bridges, joining the aragonite platelets through the organic matrix. However, the existence of such mineral bridges has been disproved or at least not confirmed by [START_REF] Bruet | Nanoscale morphology and indentation of individual nacre tablets from the gastropod mollusc Trochus niloticus[END_REF] and [START_REF] Lin | Growth and structure in abalone shell[END_REF]. Prior to the present work, mechanical models were incapable of explaining the high stiffness of nacre and, additionally, the anisotropy of the material (which appears evident from consideration of the microstructure) has apparently not been modeled. [START_REF] Nukala | Statistical physics models for nacre fracture simulation[END_REF] employ a discrete lattice where the aragonite platelets are rigid, and use the shear-transmission hypothesis for the organic matrix. The latter hypothesis has been advocated by Ji and Gao (2004), through the so-called 'tension-shear chain model', originally proposed by [START_REF] Jäger | Mineralized collagen fibrils: A mechanical model with staggered arrangemen of mineral particles[END_REF]. This is a simple model in which the organic matrix is assumed on the one hand not to resist tension, but to resist shear on the other. We will derive an improved version of this model and employ it for tensile response parallel to the aragonite lamellae, for which we will show it to be quite accurate. [START_REF] Ji | Mechanical properties of nanostructures of biological material[END_REF] also note that the microstructure of nacre should imply anisotropic overall behavior, but they do not model it. [START_REF] Katti | 3D finite element modelling of mechanical response in nacre-based hybrid nanocomposites[END_REF][START_REF] Katti | Modeling mechanical response in a laminated biocomposite. Part II: Nonlinear responses and nuances of nanostructures[END_REF] measure and predict (with a finite element method) a stiffness of 20 GPa for the organic matrix and conclude that the mineral bridges have no effect on the nacre averaged stiffness. Moreover, the fact that the material should be bimodular (namely, to have a Young's modulus lower in tension than in compression) has passed completely unnoticed [although this behaviour should be inferred from the [START_REF] Jäger | Mineralized collagen fibrils: A mechanical model with staggered arrangemen of mineral particles[END_REF] model; see, e.g., Fig. 2b of [START_REF] Ji | Mechanical properties of nanostructures of biological material[END_REF]] and is still awaiting quantification. The goal of the present article is to provide a micromechanical model capable of explaining and quantifying all the above-mentioned mechanical features. Employing the detailed description of [START_REF] Lin | Growth and structure in abalone shell[END_REF] allows us to formulate a micromechanical model, which through standard homogenization techniques yields the macroscopic mechanical behaviour of nacre1 . This turns out to be:

• orthotropic, with a strong difference between normal stiffnesses and shear stiffness; in particular, nacre is much less stiff under shear than under uniaxial tension (in the two directions parallel and perpendicular to the aragonite platelets);

• bimodular, i.e. having a Young's modulus in tension smaller than in compression, in the direction parallel to the lamellae long boundaries.

These results are obtained by developing a two-dimensional, plane strain, micromechanical model of nacre (Fig. 5), yielding averaged properties through a simple analytical approach and a standard numerical procedure (based on a boundary element technique developed by us). The simple approach yields closed-form so-Figure 5: Sketch of the model for the mechanical behaviour of nacre, where aragonite platelets are modeled as 'bricks' glued by a 'mortar' of organic matrix along the basal planes, but in unbonded unilateral contact along lateral surfaces . lutions to directly determine the four parameters defining the averaged properties of nacre from knowledge of the mechanical properties of the micro-constituents.

The predictions of the simple approach are found to be in excellent agreement with the numerical results obtained from a much more refined model. We note finally that although our model is based on hypotheses obtained from the very recent paper by [START_REF] Lin | Growth and structure in abalone shell[END_REF], our strategy of solution can be easily modified to account for new features, should these be found in the future. Predictions of our model are shown to agree with existing experimental data, and simple formulae are provided to extract two of the four parameters defining our model from three (or four) point macroscopic bending experiments (without knowledge of the micromechanical properties). Importantly, we show that it is essential to account for nacre's bimodularity and anisotropy for correct interpretation of the experimental data.

Mechanical model for nacre

Our model is built on the very accurate and recent observations and data reported by [START_REF] Lin | Growth and structure in abalone shell[END_REF] and is sketched in Fig. 5. In particular, the aragonite platelets are idealized as rectangular elastic isotropic blocks (with Lamé moduli λ p and µ p ) joined along the lamellar 'long' boundaries by the organic matrix, also taken to be linearly elastic and isotropic (with Lamé moduli λ o and µ o ). This system is deformed under plane strain conditions. It is important to note that, along the short edges of the aragonite platelets (where these abut), Lin and Meyers (2005) find a simple contact without any organic glue. We have idealized this as a unilateral contact (so that, along the short edges, the platelets behave as perfectly jointed in compression, whereas these are completely disconnected under tension). This idealization is supported by: (i) direct observations by Lin and Meyers; (ii) the fact that fracture surfaces do not cross aragonite platelets, which are seen simply to slide one with respect to the other [START_REF] Sarikaya | An introduction to biomimetics -a structural viewpoint[END_REF][START_REF] Evans | Model for the robust mechanical behavior of nacre[END_REF]); (iii) the fact that the compressive strength was found to be 1.5 times the tensile strength by [START_REF] Menig | Quasi-static and dynamic mechanical response of haliotis rufescens (abalone) shells[END_REF]; (iv) the fact that strains much larger at the tensile than at the compressive surface have been found in three-point bending by [START_REF] Wang | Deformation mechanisms in nacre[END_REF]. Clearly, the unilaterality of contact introduces a nonlinearity in the model. We will see that this can be easily handled at the cost of some approximations.

Homogenization

The above-introduced model of nacre is periodic and is very similar to typical models for masonry [START_REF] Pietruszczak | A mathematical description of macroscopic behaviour of brick masonry[END_REF][START_REF] Anthoine | Derivation of the in-plane elastic characteristics of masonry through homogenization theory[END_REF][START_REF] Cecchi | A multi-parameter homogenization study for modeling elastic masonry[END_REF]. The goal of homogenization theory (which has been thoroughly developed for periodic elastic media, see for instance Sanchez-Palencia, 1980) is to derive from a microstructure a macroscopic response valid for an effective continuous equivalent medium. To this purpose, a representative volume element is considered, which, due to the symmetry of our structure, is selected as sketched in the detail of Fig. 5. The homogenization is performed in the following steps.

• The representative volume element (of volume V and external surface S having outward unit normal vector n i ) is to be subjected to prescribed mean strain ij . To this purpose, the average strain theorem (e.g., [START_REF] Gurtin | The linear theory of Elasticity[END_REF])

ij = 1 V V ij dV = 1 2 V S (u i n j + u j n i )dS, (1) 
(where u i is the displacement vector, ij the related strain) allows us to prescribe the mean strain in terms of an appropriate displacement on the boundary.

• The mean stress σ ij produced by the application of the mean strain must be (numerically or analytically) evaluated on the representative volume element. The average stress theorem (e.g., [START_REF] Gurtin | The linear theory of Elasticity[END_REF])

σ ij = 1 V V σ ij dV = 1 V S σ ik n k x j dS, (2) 
(where x j is the position vector and σ ij the stress tensor) allows us to work in terms of tractions on the boundary.

• With the two steps above, an average strain/average stress relation is found, which, when compared to a effective stress/strain relation of the type

σ ij = E ijhk hk , ij = E -1 ijhk σ hk , (3) 
yields the determination of all independent material constants defining the composite modulus tensor E ijhk .

Due to the peculiar microstructural geometry, it is well-known that masonry loaded in-plane follows an anisotropic elastic description. Surprisingly, the fact that the microstructure of nacre (which is almost identical to masonry) implies an anisotropic elastic macroscopic response appears never to have been modelled. For the microstructure of nacre, the effective elastic tensor E ijhk is orthotropic, which in a two-dimensional setting has only the following non-null components

E 1111 = E 1 1 -ν 12 ν 21 , E 2222 = E 2 1 -ν 12 ν 21 , E 1122 = E 1 ν 21 1 -ν 12 ν 21 , E 2211 = E 2 ν 12 1 -ν 12 ν 21 , E 1212 = E 1221 = E 2121 = E 2112 = G 12 . ( 4 
)
The inverse tensor E -1

ijhk has the following non-null components

E -1 1111 = 1 E 1 , E -1 2222 = 1 E 2 , E -1 1122 = - ν 21 E 2 , E -1 2211 = - ν 12 E 1 , E -1 1212 = E -1 1221 = E -1 2121 = E -1 2112 = 1 4G 12 , (5) 
where ν 12 , ν 21 are the two plane strain Poisson ratios, and E 1 , E 2 , G 12 are the two plane strain elastic tensile moduli and the plane strain shear modulus, subject to the symmetry condition

ν 12 E 1 = ν 21 E 2 , ( 6 
)
so that through the homogenization technique we must identify four independent material constants. Note that in the particular case of isotropy, the four constants reduce to the two plane strain constants

E 1 = E 2 = E 1 -ν 2 , ν 21 = ν 12 = ν 1 -ν , ( 7 
)
in which E and ν are the usual (three-dimensional) elastic constants (Young's modulus and Poisson's ratio).

The above four constants can be identified by subjecting the representative volume element to three independent deformation components (which, employing the symmetries present, can be reduced to the three boundary displacements illustrated in Fig. 6), calculating the corresponding averaged stress components and comparing to eqn. (3). 

A simple, closed-form homogenization model for nacre

To develop simple, closed-form formulae for the anisotropic and bimodular elastic response of nacre, we begin by observing that simple mechanical considerations suggest that the unilateral contact between aragonite platelets plays an important role only under tension aligned parallel to the x 1 axis. On the other hand, when subject to compression along the x 1 axis, tension/compression parallel to the x 2 axis, and shear parallel to the axes, the unilaterality of the contact plays a negligible role and the material behaves as a laminated medium composed of aragonite and organic matrix layers. The accuracy of these assumptions was confirmed by use of a more refined numerical model.

Unilateral model: determination of E t 1 for tensile loadings

The response to a tensile loading parallel to the x 1 axis, where the aragonite platelets are disconnected where these abut, can be obtained by borrowing and improving results from [START_REF] Jäger | Mineralized collagen fibrils: A mechanical model with staggered arrangemen of mineral particles[END_REF] [see [START_REF] Ji | Mechanical properties of nanostructures of biological material[END_REF], their eqn. [START_REF] Cecchi | A multi-parameter homogenization study for modeling elastic masonry[END_REF]]. This simple model is based on the fact that under such an applied tensile stress, the mineral plates carry most of the tensile load, while the organic matrix transfers the load between the plates via shear. The effective modulus of the composite for tensile loading along axis x 1 , E t 1 , can be expressed in our notation (see Fig. 5) as [START_REF] Ji | Mechanical properties of nanostructures of biological material[END_REF])

E t 1 = E p h o h p + 1 4 E p h p h o G o L 2 p + 1 , ( 8 
)
where G o denotes the shear modulus of the organic matrix, E p the Young's modulus of the aragonite platelets, h p and h o the thicknesses of the aragonite platelets and of the organic layer, and L p the aragonite platelets' length.

With the goal of generalizing (8) so that its improvement agrees more closely with our accurate numerical calculations, we derive it as follows. First, we consider the limiting case in which the composite material is considered to be made up of infinitely rigid (aragonite) platelets and soft (organic) layers. When pulled in tension, the material deforms as sketched in Fig. 7, left. Since the only defor- mation is the shearing of the soft layers, assuming uniform shearing of the soft layers 2 yields the elastic modulus as

E t 1 = (L p -β)L p G o 4h o (h o + h p ) . ( 9 
)
where Lp ≥ β ≥ 0 is a length parameter, accounting for the fact that the uniform shearing solution violates moment equilibrium of the shearing stresses where the soft layers are separated. Therefore, parameter β allows us to account for the fact that there is a small transition zone where σ 12 increases from zero to its full value, so β << L p . Second, we consider now the other limiting case, in which the soft (organic) layers are absent (Fig. 7, right) and the (aragonite) platelets are elastic and perfectly bonded to each other. Subjecting this structure to longitudinal loading 2 It can be shown using the theorem of minimum potential energy that the assumption of uniform shearing yields an upper bound to E and neglecting deformation of the layer near the detachment zones we obtain

3 E t 1 = E p 4 α Lp + 1 , ( 10 
)
where the length parameter α (L p /4 ≥ α ≥ 0) has been introduced. This is similar to the parameter β and permits us to account for the fact that there is a small transizion zone, at the unbonded platelet end, in which σ 11 increases from zero to its full value, so α << L p . When the transition zone length is zero (i.e. α = 0) the elastic modulus is that of the intact material. Clearly the behaviour of the actual composite lies between these limiting cases. Combining therefore the two limiting cases as springs in series (i.e. summing the compliances) in proportion to the volume fraction of each material, where the platelet volume fraction is

Φ = h p h o + h p , ( 11 
)
(Φ = 1 corresponds to the limiting case shown at Fig. 7 right, while Φ = 0 to the limiting case shown at Fig. 7 left) we obtain

1 E t 1 = 4h 2 p (1 -Φ) L p (L p -β) G o Φ 2 + 4 α L p + 1 Φ E p . ( 12 
)
Eqn. ( 12) can be rewritten as

E t 1 = E p h o h p + 1 4 E p h p h o G o L p (L p -β) + 4 α L p + 1 , ( 13 
)
which is a generalization of the Jäger-Fratzl-Ji-Gao model, in the sense that this model is retrieved when α = β = 0. Since parameter β/L p is small, we can define a new parameter γ as

γ L p = E p h p h o G o L 2 p 4β L p + 4α L p , ( 14 
)
so that a Taylor series expansion of eqn. (13) in β/L p and then use of eqn. ( 14) yields

E t 1 = E p h o h p + 1 4 E p h p h o G o L 2 p + γ L p + 1 , ( 15 
)
again reducing to the Jäger-Fratzl-Ji-Gao model, when γ = 0. Eqn. (15) will be shown to yield a more accurate approximation than eqn. (8).

3 It can be shown using the theorem of minimum potential energy that the assumption of uniform longitudinal strain yields an upper bound to E t 1 , given by eqn. [START_REF] Jackson | The Mechanical Design of Nacre[END_REF] with α = 0.

Layered model: determination of E c

1 , E 2 , ν 12 and ν 21 for compressive loadings When loaded in compression or under shear, nacre behaves (following our simplifying assumptions) as a monolithic laminate material, composed of uniform isotropic laminae of thickness h p and h o (see Fig. 5). Homogenization of this type of material is standard and can be found for instance in [START_REF] Willis | Mechanics of composites[END_REF]. However, for completeness, we provide a sketch of the approach here. We assume 22 = 12 = 0 and 11 = 11 = constant in all laminae (so that compatibility is satisfied). Uniform σ 11 and σ 22 are generated, the former different in each lamina (but trivially satisfying equilibrium) and the latter be required to be equal in each lamina (and equal to the mean value σ 22 ) by equilibrium considerations at the interface. It follows that in a generic layer (having elastic constants E and ν)

σ 11 = 11 E + σ 22 ν(1 + ν) 1 -ν 2 . ( 16 
)
Using eqn. ( 16) in the condition 22 = 0, valid for the unit cell, we obtain

E 2211 = σ 22 11 = ν 1 -ν (1 + ν)(1 -2ν) E(1 -ν) -1 , ( 17 
)
where the bracket is used to denote the mean value of a generic function ψ as follows

ψ(E, ν) = h o ψ(E o , ν o ) + h p ψ(E p , ν p ) h o + h p . ( 18 
)
Using eqn. [START_REF] Menig | Quasi-static and dynamic mechanical response of haliotis rufescens (abalone) shells[END_REF] in eqn. [START_REF] Lin | Growth and structure in abalone shell[END_REF] and averaging, we obtain

E 1111 = σ 11 11 = E 1 -ν 2 + ν 1 -ν 2 (1 + ν)(1 -2ν) E(1 -ν) -1 . ( 19 
)
Finally, we impose a mean strain whose only non-zero component is 22 . Analogously to the previous case, we obtain for a generic layer (defined by E and ν)

σ 11 = σ 22 ν 1 -ν , ( 20 
)
so that

E 2222 = σ 22 22 = 1 -ν -2ν 2 E(1 -ν) -1 . ( 21 
)
Hence, the effective elastic constants E c 1 , E 2 , ν 12 and ν 21 can be determined by employing eqn. (4) as:

E c 1 = E o h o (1 -ν 2 p ) + E p h p (1 -ν 2 o ) (h o + h p )(1 -ν 2 p )(1 -ν 2 o ) , E 2 = E o E p (h o + h p ) E o h o (1 -ν 2 p ) + E p h p (1 -ν 2 o ) Γ , ν 21 = E o E p (h o + h p )(1 + ν p )(1 + ν o ) [ν o h o (1 -ν p ) + ν p h p (1 -ν o )] Γ , ν 12 = ν o h o (1 -ν p ) + ν p h p (1 -ν o ) (h o + h p )(1 -ν p )(1 -ν o ) , (22) 
where

Γ = h o h p E 2 p (1 + ν o ) 2 (1 -2ν o ) + E 2 o (1 + ν p ) 2 (1 -2ν p ) + 2E o E p ν o ν p (1 + ν p )(1 + ν o ) +E o E p (h 2 o + h 2 p )(1 -ν 2 p )(1 -ν 2 o ). ( 23 
)

Layered model: determination of G 12

In order to determine the effective shear modulus of the composite, we consider again the monolithic layered model considered before and we prescribe a mean strain 12 , requiring σ 12 = σ 12 in all layers. We obtain

G 12 = E 1212 = σ 12 12 = 1 2 1 + ν E -1 , (24) 
which becomes

G 12 = E o E p (h o + h p ) 2 [E p h o (1 + ν o ) + E o h p (1 + ν p )] . ( 25 
)
Formulae ( 15), [START_REF] Sarikaya | Mechanical properties-microstructural relationship in abalone shell[END_REF], and [START_REF] Timoshenko | History of strength of materials[END_REF] represent the results of our simple homogenization approach; these allow a relation between the micromechanical geometry and properties and the macroscopic, effective behaviour. As a simple check, note that in the special case E o = E p = E and ν o = ν p = ν, eqns. ( 22) and ( 25) yield the correct plane strain isotropic constants:

E 1 = E 2 = E/(1 -ν 2 ), ν 12 = ν 21 = ν/(1 -ν 2 ), and G 12 = E/(2 + 2ν).
It should be noted that in order to use the bimodular model that we propose for stress states different from uniaxial tension or compression, a criterion for dividing strain space into compression and tension subdomains is needed (something analogous to a yield criterion in strain space plasticity), and continuity of the stress/strain law should be enforced (see [START_REF] Curnier | Conewise linear elastic materials[END_REF] for details). We do not pursue this subject further here.

Results from a boundary elements-based numerical technique

Since via the averaging theorems we can work with displacements and tractions on the surface of the representative volume element, a numerical boundary element technique seems to be particularly appropriate. We have used a general-purpose Fortran 90 code for two-dimensional analysis4 . In the code, linear (constant) shape functions for the displacements (tractions) at the boundary are assumed, and the material has been taken to be linear elastic, with Lamé moduli λ and µ.

The unit cell (see Fig. 5) has been discretized along boundaries parallel to the x 1 axis employing 50 elements and along the boundaries parallel to the x 2 axis using 20 elements for the aragonite platelets and 10 elements for the organic matrix layer. Following Sarikaya el al. (1990), the thickness of the aragonite plates and of the interlayers have been chosen respectively as h p = 0.5 µm and h o = 20 nm, while the length of the plates has been selected as L p = 5 µm.

In the numerical analyses, both the aragonite plates and the organic interphase have been modelled as linear elastic materials, having Young's moduli E p = 100 GPa and E o ranging between 0 and 10 GPa to cover the range of values experimentally measured (see Table 1)(the Poisson ratio has been taken equal to 0.33 for both materials). The unilaterality of the contact has been accounted for by using a small gap where platelets abut and confirming that this gap opens under tensile applied loading, while no gap was used under compressive loading.

Results of the analysis are reported in Figs. 8 and9, together with the predictions of the simple analytical formulae, eqns. [START_REF] Sarikaya | Mechanical properties-microstructural relationship in abalone shell[END_REF], and ( 25) and the Jäger-Fratzl-Ji-Gao model, eqn. ( 8), and our improved version, eqn. [START_REF] Katti | Modeling mechanical response in a laminated biocomposite. Part II: Nonlinear responses and nuances of nanostructures[END_REF], with γ = 0.26 L p and labelled 'Proposed model'. In Fig. 8 the effective moduli (normalized by E p ) are reported versus the normalized Young's modulus of the organic matrix, E o /E p , while the same effective moduli are reported versus the thicknesses ratio h 0 /h p (see Fig. 5) in Fig. 9. The numerical simulations reported in Figs. 8 and9 have been performed under both the assumptions of disconnection (tensile loading) and perfect contact (compressive loading) at the unilateral contact between aragonite platelets. The results show clearly that the unilaterality of the contact only plays a significant role for tension parallel to x 1 axis (there is a small effect in the shear case). Moreover, it is clear from Figs. 8 and9 that the agreement with the simple theory, eqns. ( 15), [START_REF] Sarikaya | Mechanical properties-microstructural relationship in abalone shell[END_REF], and ( 25), is excellent.

Note also that formula [START_REF] Katti | Modeling mechanical response in a laminated biocomposite. Part II: Nonlinear responses and nuances of nanostructures[END_REF], employed with γ = 0.26 L p , clearly improves upon that of [START_REF] Ji | Mechanical properties of nanostructures of biological material[END_REF], eqn. ( 8), based on the Jäger and Fratzl (2000) model.

It is important at this point to quantify the degree of anisotropy and bimodularity of the material, since these two properties have not previously been mod-
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(with γ = 0.26 L p ), (15) 
elled for nacre. To this purpose, we report in Fig. 10 the tension/compression ratio of the effective Young's moduli E t 1 /E c 1 (equal to 1 when bimodularity is absent) and in Fig. 11 the ratios

E t 1 /E Av , E c 1 /E Av , E 2 /E Av , G 12 /G Av , where E Av = E t 1 + E c 1 + E 2 3 , ν Av = ν t 12 + ν c 12 + ν 21 3 , G Av = E Av 2(1 + ν Av ) , (26) 
so that the ratios are equal to 1 in the case of isotropy and equal behaviour in tension and compression.

To better quantify the anisotropy and bimodularity effects, we introduce a (unit norm) uniaxial stress in the direction of the unit vector n i as

σ ij = ±n i n j , (27) 
(taken positive for tension and negative for compression) so that the normal stress and strain components in the direction n i are

σ nn = ±1, nn = n i ij n j = ±n i n j E ijhk n h n k . ( 28 
)
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E /E Since in plane strain n i becomes a function of the inclination angle θ with respect to the x 1 axis, we can define the elastic moduli in tension and compression,
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G /G respectively, E t (θ) and E c (θ), as

E t (θ) = 1 t nn (θ) , E c (θ) = - 1 c nn (θ) . ( 29 
)
Therefore, a polar plot of eqns. (29), obtained by using eqns. ( 15), [START_REF] Sarikaya | Mechanical properties-microstructural relationship in abalone shell[END_REF], and (25) in eqn. ( 5), allows a visual quantification of the elastic anisotropy. This is reported in Fig. 12 unit circles in the case of isotropy and equal behaviour in tension and compression, the strong degrees of material anisotropy and bimodularity are evident.
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Although parametric investigations are reported in the graphs of Figs. 10 and 11, the ratio E o /E p usually (see Table 1) takes values between the two cases considered in Fig. 12, namely, 0.01 and 0.04. We can therefore conclude that:

• the ratio E t 1 /E c 1 ranges between 0.5 and 0.8, showing that bimodularity is an important effect (a fact previously not understood, and therefore not tested);

• both the ratios E c 1 /E Av and E 2 /E Av lie near 1, (a fact consistent with experimental results by [START_REF] Jackson | The Mechanical Design of Nacre[END_REF][START_REF] Wang | Deformation mechanisms in nacre[END_REF]);

• the ratio G 12 /G Av ranges between 0.3 and 0.6, showing a strong difference in degree of anisotropy between the shear and Young's moduli (a fact noticed also by [START_REF] Jackson | The Mechanical Design of Nacre[END_REF]).

Comparison with experimental data

To compare the predictions of our model with available experimental data, we refer to Table 1, where data taken from the literature are reported. Before discussing the model's predictions, we note that the experimental results reported in Table 1 have been mainly determined via three-point bending tests. These tests are usually interpreted by employing the linear theory of unimodular isotropic elasticity, but, in light of our findings, these should instead be interpreted with formulae valid for bimodular, orthotropic elasticity. These are derived in Appendix A, and summarized here:

• For three-point bending of a beam of span l, thickness h and loaded by a force per unit depth P , the deflected shape of the neutral axis is

u 2 (x 1 ) = (1 + √ c) 2 P x 1 (3l 2 -4x 2 1 ) 16E t 1 h 3 + 3P x 1 5G 12 h , x 1 ∈ [0, l/2], (30) 
(where c = E t 1 /E c 1 , and c = 1 corresponds to equal behaviour in tension and compression) so that the mid-span vertical displacement δ divided by the applied load P is

δ P = (1 + √ c) 2 16E t 1 l h 3 + 3 10G 12 l h . ( 31 
)
• For four-point bending of a beam of span l, thickness h and loaded at x 1 = l 0 by a force per unit depth P (neglecting shear deformation), the deflected shape of the neutral axis is

u 2 (x 1 ) = (1 + √ c) 2 P x 1 2 E t 1 h 3 3 l l 0 -3 l 2 0 -x 2 1 , x 1 ∈ [0, l 0 ] u 2 (x 1 ) = (1 + √ c) 2 P l 0 2 E t 1 h 3 3 x 1 (l -x 1 ) -l 2 0 , x 1 ∈ [l 0 , l/2]
(32) so that the vertical displacement δ at x 1 = l 0 , i.e. where the vertical force P is applied, is 

δ P = (1 + √ c) 2 8E t 1 l 0 (3l 2 -4l 2 0 ) h 3 . ( 33 
E 1 = 4 E t 1 (1 + √ c) 2 , ( 34 
)
where E 1 is the Young's modulus in the direction of the x 1 axis, assuming equal behaviour in tension and compression. It should be noted that there is no difference between the Young's modulus in the direction of the x 2 axis found by us and by Jackson et al., since bimodularity does not play a role in that case. Eqn. (34) is plotted in Fig. 13, for the three values c = {1, 0.8, 0.6}. The grey zone denotes the parameter range of interest. We observe that the correction is significant and that we find values of E 1 /E p in the range 0.7-0.8, in agreement with the experimental data reported in Table 1.

Conclusions

Within the framework of the small strain behaviour of nacre (mother-of-pearl), we have accounted for the first time for the facts that the material response is:

• orthotropic, with low shear stiffness;

• bimodular (lower Young's modulus in tension than in compression). To characterize this material from the knowledge of the microstructure, we have provided:

• a simple analytical model • and a highly-accurate numerical analysis, both based on a sound micromechanical approach. We have also provided simple, closed-form formulae to determine two of our four macroscopic moduli directly from macroscopic three and four point bending tests on the composite material. This provides a direct check of our constitutive model, since its macroscopic moduli are completely determined from the constituents material moduli and the composite microstructure. The comparison with available experimental data is excellent, and we expect that future experiments will further validate our model. For plane strain bending, it is assumed that the resultant force in the direction of the x 1 axis is null

h/2 -h/2 11 (x 2 ) E 1 dx 2 = 0, (A.2)
and that the applied bending moment per unit thickness M is given by

M = h/2 -h/2 11 (x 2 ) E 1 x 2 dx 2 , (A.3)
where h is the height of the beam. The strain component 11 is assumed to vary linearly along the direction of the x 2 axis, so that from eqns. (A.2) and (A.3) we obtain

11 (x 2 ) = 3M[h(1 -c) + 2x 2 (1 + √ c) 2 ] 2E t 1 h 3 , (A.4)
where c = E t 1 /E c 1 . Therefore, the neutral axis is defined by

x 2 = h 2 √ c -1 √ c + 1 , (A.5)
so that its position is independent of the applied moment. From the bimodular, two-dimensional stress-strain relationship for an orthotropic material, we find The displacement components of the neutral axis are given by

u 1 = 0 u 2 = 3M [-4(1 + √ c) 2 x 2 1 + (-1 + √ c) 2 h 2 ν t 12 ] 8E t 1 h 3 , (A.10)
so that the elastica is given by

∂ 2 u 2 ∂ x 2 1 = - 3M(1 + √ c) 2 E t 1 h 3 . (A.11)
For a simply-supported beam of span l loaded by two concentrated loads P per unit thickness (plane-strain four-point bending), integration of the elastica yields (neglecting shear deformation) eqn. (32) and thus eqn. (33).

For a simply-supported beam of span l loaded by a central concentrated load P per unit thickness (plane-strain three point bending), integration of the elastica yields (neglecting shear deformation)

u 2 (x 1 ) = (1 + √ c) 2 P x 1 (3l 2 -4x 2 1 ) 16E t 1 h 3 .
(A.12)

Since our material has a low shear modulus G 12 , it may be important to evaluate the contribution to the elastica of shear deformability. To this purpose, we follow Jourawski's analysis (which by the way originated to take into account the high compliance of wood under shearing, [START_REF] Timoshenko | History of strength of materials[END_REF], thus finding for the mean shear stresses in a bimodular (plane strain) beam

σ 12 (x 2 ) = 3T 8 h 3 c 4 h 2 c -( √ c -1)h -2( √ c + 1)x 2 2 H( 11 (x 2 ))- c ( √ c + 1)(h -2 x 2 ) [( √ c -3)h -2( √ c + 1)
x 2 ] H(-11 (x 2 ))} , (A.13) where T is the shear force per unit thickness.

Equating the strain energies in the beam calculated from external load and from internal stresses (or, in other words, using Clapeyron's theorem) we obtain for the shear deformability .14) so that (within the usual approximations) shear deformation is unaffected by bimodularity. Thus, accounting for shear deformation, integration of the elastica gives eqns. (30) and (31).

∂ u 2 ∂ x 1 = 6T 5 h G 12 , ( A 

Figure 1 :

 1 Figure 1: South African Abalone shell (Haliotis midae, purchased in dry condition at 'Orientimport', Torrepedrera, Italy; photos taken with a Nikon D200 digital camera at the University of Trento). Left: inner part; right: outer part.

Figure 3 :

 3 Figure 3: A rough fracture surface of the South African Abalone shell shown in Fig. 1, etched by immersion in a 60% solution of HNO 3 for 1 hour. Lower parts: two details of the upper figure, showing the 'brick-mortar' structure of nacre. Note that separations where bricks abut are evident [micrographs taken with a Jeol 5500 scanning electron microscope (JEOL Inc., Peabody, Mass.) at the University of Trento].

Figure 4 :

 4 Figure 4: An example of Roman masonry (Anfiteatro Flavio, built in the second half of the first century A.D. under Emperor Vespasiano at Pozzuoli, Naples. Photo by D. Bigoni). A detail is shown at right of the masonry in the upper left part of the figure at left.

Figure 6 :

 6 Figure 6: The three modes of deforming the representative volume element shown in Fig. 5 needed to determine the four constants comprising the effective constitutive tensor, eqn. (4).

Figure 7 :

 7 Figure 7: The Jäger-Fratzl-Ji-Gao model in the limit cases of rigid platelets (left) and null thickness of the organic layers (right). Transition zones of lengths α and β have been introduced into the models (shown dashed) .

t 1 ,

 1 given by eqn. (9) with β = 0.

Figure 8 :

 8 Figure 8: Effective elastic moduli calculated numerically and from the simple formulae (8),

Figure 10 :

 10 Figure 10: Bimodularity of the material, quantified by the tension/compression ratio of the effective elastic moduli. A detail in the relevant range of parameters is given at right.

Figure 12 :c 1 ,

 121 Figure 12: Polar graphs of the effective elastic moduli in tension and compression, normalized by E c 1 , revealing the strong anisotropy and bimodularity of nacre. (In the case of isotropy and in the absence of bimodularity, a single unit circle would be present in each case.)

6 Figure 13 : 1 /E c 1 ,

 61311 Figure 13: Relation between the Young's moduli in the direction of the x 1 axis obtained by incorporating, and without incorporating, bimodularity, respectively E t 1 and E 1 , eqn. (34). Results are given for different values of bimodularity c = E t 1 /E c 1 , and the gray region indicates the parameter range of interest.

Figure 14 :

 14 Figure 14: Bending of a bimodular beam.

Table 1 :

 1 Available experimental data: Young's moduli parallel and orthogonal to the lamellae, E 1 and E 2 , of the aragonite platelets, E p , and of the organic matrix, E o ; thickness of the organic layer, h o .

	Authors	Material	E 1	E 2	E p	E o	h o
			[GPa] [GPa] [GPa]	[GPa]	[nm]
	Jackson et al. 1988	Pinctada nacre	73	70	100	4	-
	Katti et al. 2001	Red abalone	-	-	99.5	20	30
	Wang et al. 2001	Abalone	69 ± 7 66±2	-	-	20
		Pearl oyster	77 ± 12 81±4	-	-	20
	Bruet et al. 2005	Trochus niloticus	-	-	92-79	-	30-300
	Barthelat et al. 2006	Red abalone	-	-	79 ± 15 2.84 ± 0.27 20-40

  Anisotropy of the material, quantified by the effective elastic moduli normalized by the directionally-averaged moduli defined in eqn.[START_REF] Wang | Deformation mechanisms in nacre[END_REF].
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  so that the full exploration of bimodularity and orthotropy requires use of at least one additional test (such as for instance a direct tension or compression test or, perhaps, nanoindentation).Moreover, the effect of low shear modulus G 12 only plays a role for sufficiently high values of h/l. The experiments performed by[START_REF] Jackson | The Mechanical Design of Nacre[END_REF] refer to very low values of h/l, so that shear deformation should be negligible. However, bimodularity should play an important role in those experiments, and therefore the Young's modulus obtained by Jackson et al. must be corrected before comparing it to the prediction of our model. This correction can be obtained by considering eqn. (31) without shear deformation, with c = 1, as used by Jackson et al., and with c < 1, as found by us. The result is the relationship

			)
	It is clear from eqns. (31) and (33) that using three or four point bending
	tests we can only identify two parameters
	(1 + E √ 1 t	c) 2	, and G 12 ,

  Integration provides the displacement field in the formu 1 (x 1 , x 2 ) = 11 (x 2 )x 1 , u 2 (x 1 , x 2 ) = -3M z x 2 [h(1c) + x 2 (1 +where 11 (x 2 ) is given by eqn. (A.4). Since the shear strains must be zero, we find that , in order to have continuity of the displacement at the neutral axis, we get

	v 0 (x 1 ) = -	3(1 + E t √ 1 h 3 c) 2 M z	x 2 1 2	+ v 1 (x 1 ),	(A.8)
	v 1 (x 1 ) =	3M z (-1 + 8cE c √ c) 2 (ν t 12 -ν c 12 ) 1 h	H(-11 (x 2 )).	(A.9)
		11 =	σ 11 E 1	, and 22 = -	σ 11 ν12 E 1	.	(A.6)
				2E t 1 h 3	√	c) 2 ]	ν 12 + v 0 (x 1 ).	(A.7)

and

We consider in this paper mechanical behaviour at small strains, so that damage leading to final failure will not be investigated here.

This code has been developed at the Computational Solids & Structural Mechanics Laboratory of the University of Trento, whose executable is available at: http://www.ing.unitn.it/dims/laboratories/comp solids structures.php.
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Appendix A: Bending of an orthotropic, bimodular beam deformed in plane strain

Let us consider a bimodular beam in plane strain subjected to bending, for example, three-point bending as illustrated in Fig. 14. Since only normal strains are involved for bending, bimodularity reduces to switching between two possible behaviours as a function of the sign of the strain and stress. It is therefore expedient to introduce a piecewise nonlinearity for certain quantities. We denote, for instance, the elastic modulus in the direction parallel to the x 1 axis by Ẽ1 , meaning

where for conciseness bars over the symbols have been dropped, so that E t 1 and E c 1 are the two composite plane-strain Young's moduli in tension and compression, respectively, and H is the Heaviside step function. An analogous use of variables with a superposed tilda will be made in the following.