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Nonuniform transformation field analysis of
elastic-viscoplastic composites

S. Roussette a,b, J.C. Michel b,∗, P. Suquet b

aCEA Cadarache, LLCC, Bât. 151, 13108 St Paul lez Durance Cedex, France
bLaboratoire de Mécanique et d’Acoustique, CNRS, 31 Chemin Joseph Aiguier,

13402 Marseille Cedex 20, France

Abstract

To exactly describe the macroscopic behaviour of composites with non linear dis-
sipative constituents, it is necessary to take an infinitely large number of internal
variables into account. Simplifying assumptions are usually adopted to reduce this
number. A new method has been proposed [5], based on the transformation fields
approach [1], but not taking transformation fields to be necessarily uniform. The
interest of this new method has been shown in the case of composites with elastic-
plastic constituents. Here we deal with composites having elastic-viscoplastic and
porous elastic-viscoplastic constituents. In the latter case, the viscoplastic strain has
a dilatational part.

Key words: B. Mechanical properties, Modelling, Non-linear behaviour, Plastic
deformation, Porosity.

1 Introduction

To exactly describe the macroscopic behaviour of composites with non linear
dissipative constituents, it is necessary to take an infinitely large number of
internal variables into account. Simplifying assumptions are usually adopted
to reduce this number. The transformation field analysis (TFA) method ini-
tially proposed by [1] for elastic-plastic composites and subsequently extended
by other authors (e.g. [2–4]) to composites with more complex behaviour, in-
cluding damage, provides an elegant means of reducing the number of internal
variables by assuming uniform fields of internal variables in individual phases

∗ Corresponding author. Tel: +33 4 9116 4478; fax: +33 4 9116 4481.
Email address: michel@lma.cnrs-mrs.fr (J.C. Michel).
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 or sub-domains. Applications of this method to two-phase composites have

shown, however, that it is necessary to subdivide the phases into many sub-
domains to obtain a satisfactory description of the overall behaviour. This
subdivision is necessary because of the strong nonlinearity of the constitu-
tive laws involved, which can generate highly heterogeneous mechanical fields
within a single phase. In view of these findings, a new method was therefore
proposed [5], which consists in decomposing the fields of internal variables into
a small number of not necessarily uniform shape functions. Comparisons with
the classical transformation field analysis approach have shown the interest of
this method in the case of elastic-plastic composite structures [6]. The present
study focuses on the case of elastic-viscoplastic and porous elastic-viscoplastic
composites. In the latter case, the viscoplastic strain has a dilatational part.

2 Constitutive relations for the individual constituents

The constituents on which we focus in the present study are of the elastic-
viscoplastic and porous elastic-viscoplastic type. These constituents show gen-
eralised standard behaviour, defined by the free energy w and the force po-
tential ψ. In what follows, only the dissipative mechanisms described by the
viscoplastic strain εvp will be taken into account:

w(ε, εvp) =
1

2
(ε − εvp) : L : (ε − εvp),σ =

∂w

∂ε
(ε, εvp), ε̇vp =

∂ψ

∂σ
(σ). (1)

In addition, we will assume the constituents to be isotropic. In this framework,
the elastic tensor L is characterised by a bulk modulus k and a shear modulus
G, and the force potential ψ depends on the stress σ only through its second
invariant σeq in the case of classical viscoplastic materials. In the case of porous
viscoplastic materials, the force potential also depends on the first invariant
σm. Equation (1c) can therefore be written as follows:

ε̇vp =
3

2

∂ψ

∂σeq
(σeq, σm)

σdev

σeq
+

1

3

∂ψ

∂σm
(σeq, σm) δ, (2)

where δ denotes Kronecker’s symbol, σdev the deviatoric part of σ, σeq =
(3

2
σdev : σdev)1/2 and σm = tr(σ)/3. Let us now consider a representative

volume element V of a composite material composed of N constituents. The
generalised standard structure of the laws in question is known to be preserved
in the change of scales. In other words, the composite itself shows generalised

2
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 standard behaviour, but there is an infinitely large number of internal vari-

ables involved in its description. The state variables of the system are the
macroscopic strain E and the viscoplastic strains εvp(x) occurring at all the
points x of V . Because of the linearity of the local problem (under prescribed
state variables), the strain field ε(x) can be decomposed into the following
sum:

ε(x) = A(x) : E+
1

|V |
∫

V
D(x,x′) : εvp(x′)dx′ = A(x) : E+D∗εvp(x), (3)

where A(x) is the elastic strain-localisation tensor and D(x,x′) the non local
operator giving the strain at point x resulting from a transformation strain
εvp(x′) at point x′ when the average strain is zero.

3 Incompressible viscoplasticity

3.1 Non uniform transformation fields

To reduce the number of internal variables and improve the classical transfor-
mation field analysis, Michel and Suquet [5] have described a method focusing
on the non uniformity of the local fields of internal variables, taking the trans-
formation fields to be non uniform. The viscoplastic strain field is decomposed
into a set of fields called plastic modes, µk:

εvp(x, t) =
M∑

k=1

εvp
k (t) µk(x). (4)

By contrast with what occurs with the classical transformation field analysis,
the modes µk are taken here to be non uniform and tensorial, which means
that εvp

k is scalar. The total number of modes M can differ from the number
N of constituents. Other assumptions are adopted to simplify the theory: (i)
The support of each mode is entirely contained in a single phase. (ii) Under in-
compressible viscoplastic conditions, the modes are traceless tensor fields. (iii)
The modes are orthogonal. This prerequisite is met when the modes have their
support in different phases, but it has to be imposed when they involve a sin-
gle phase. (iv) Lastly, to make the reduced internal variables εvp

k homogeneous
with a strain, the modes are normalised : 〈µk

eq〉 = 1, where µk
eq = (2

3
µk : µk)1/2.

3



ACCEPTED MANUSCRIPT 
 3.2 Reduced variables and influence factors

Upon multiplying (3) by µk and averaging over V , given (4), we obtain:

ek = ak : E +
M∑
�=1

Dk�ε
vp
� , (5)

where the reduced strain ek, the reduced strain-localisation tensor ak and the
influence factors Dk� are defined by:

ek = 〈µk : ε〉, ak = 〈µk : A〉, Dk� = 〈µk : (D ∗ µ�)〉. (6)

By analogy with the equation for the reduced strain ek in (6), we define the
reduced viscoplastic strain evpk and the reduced stress τk as follows:

evpk = 〈µk : εvp〉, τk = 〈µk : σ〉. (7)

Note that the whole set of εvp
k can be replaced by the whole set of evpk , since:

evpk = 〈µk : µk〉 εvp
k . (8)

3.3 Constitutive relations for the reduced variables

Since the phase elasticity is isotropic and the modes are traceless fields sup-
ported in a single phase, the reduced stress τk can be written:

τk = 2Gr(ek − evpk ), (9)

where Gr is the shear modulus of the phase r involved in mode k. The evolution
of the reduced viscoplastic strain evpk still remains to be described. Using (1c)
and the definition (7a) of evpk , we obtain:

ėvpk = 〈µk : ε̇vp〉 =
3

2
〈 ∂ψ
∂σeq

(σeq)
µk : σ

σeq
〉. (10)

At this stage, an approximation is required to obtain a relation between the
ėvpk ’s and the τk’s. This is done in [5] by substituting τ r

eq = [
∑M(r)

k=1 (τk)
2]1/2 for

σeq in (10), taking M(r) to denote the number of modes involved in phase r:

4
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ėvpk =
3

2

∂ψr

∂σeq
(τ r

eq)
τk
τ r
eq
, τ r

eq =

⎡⎣M(r)∑
k=1

(τk)
2

⎤⎦1/2

. (11)

The system of equations (5), (8), (9), (11) provides the set of reduced con-
stitutive relations for the composite. This system is solved along a prescribed
loading path, in either the space of macroscopic stresses or that of macroscopic
strains [7], where the macroscopic stress is obtained by averaging the stress
field which results from (1b), (3) and (4):

Σ = 〈L : A〉 : E +
M∑

k=1

( 〈L : D ∗ µk〉 − 〈L : µk〉 ) εvp
k . (12)

3.4 Choosing the modes – the Karhunen-Loève decomposition

The accuracy of this method depends largely on the modes involved. In the
present study, the modes are determined according to the following procedure.
Let θk(x), k = 1, ...,MT (r) be the viscoplastic strain fields in a given phase r.
These fields are determined along certain specific loading paths in the space
of macroscopic stresses and at different levels of the macroscopic strain by
solving the complete non linear local problem numerically. In all the examples
of section 5, a numerical method based on fast Fourier transforms [8,9] was
used to determine these viscoplastic strain fields, but any other numerical
method as FEM could have been used. The Karhunen-Loève decomposition
(also known in the literature as the proper orthogonal decomposition or as the
principal component analysis) is then used to build a new set of modes µk(x),
k = 1, ...,MT (r):

µk(x) =
MT (r)∑
�=1

vk
� θ�(x), (13)

where vk are the eigenvectors and λk the eigenvalues of the correlation matrix:

MT (r)∑
j=1

gij v
k
j = λk v

k
i , gij = 〈θi : θj〉. (14)

It can be easily confirmed that the modes µk thus obtained are orthogo-
nal: 〈µk : µ�〉 = λk if k = �, otherwise 0. If we assume the eigenvalues λk

to be arranged in decreasing order of size, another advantage of using the
Karhunen-Loève decomposition lies in the fact that only the first M(r) modes

5



ACCEPTED MANUSCRIPT 
 corresponding to the largest eigenvalues need to be taken into account. In

the cases dealt with here, we chose the M(r) modes µk making it possible to
satisfy the following criterion:

⎛⎝M(r)∑
k=1

λk

⎞⎠ ≥ 0.9999

⎛⎝MT (r)∑
k=1

λk

⎞⎠ . (15)

In practice, this criterion is satisfied with M(r) = 2 or 3. As an example,
Figure 1 shows the quick decrease in the eigenvalues calculated in the case of
a composite with hexagonally distributed fibres, where the fibres and matrix
both show power-law elastic-viscoplastic behaviour.

4 Compressible viscoplasticity

4.1 Non uniform transformation fields

When the viscoplasticity is compressible (as in the case of composites with
porous viscoplastic constituents), the viscoplastic strain field can be decom-
posed as follows:

εvp(x, t) =
M̃∑

k=1

ε̃vp
k (t) µ̃k(x) +

M̂∑
�=1

ε̂vp
� (t) µ̂�(x) δ, (16)

where the modes µ̃k are traceless tensor fields and the modes µ̂� are scalar
fields. With (16), (3) becomes:

ε(x) = A(x) : E +
M̃∑

k=1

(D ∗ µ̃k)(x) ε̃vp
k +

M̂∑
�=1

(D ∗ µ̂� δ)(x) ε̂vp
� . (17)

4.2 Reduced variables and influence factors

For further purposes, we now introduce the following reduced variables:

ẽk = 〈µ̃k : ε〉, ẽvpk = 〈µ̃k : εvp〉, τ̃k = 〈µ̃k : σ〉, (18)

êk = 〈µ̂kδ : ε〉, êvpk = 〈µ̂kδ : εvp〉, σ̂k = 〈µ̂kδ : σ〉. (19)

6
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 From (17) and the definitions (18a) and (19a) for the reduced strains ẽk and

êk, the following equations can easily be deduced:

ẽk = ãk : E +
M̃∑
�=1

D̃k� ε̃
vp
� +

M̂∑
�=1

F̃k� ε̂
vp
� , (20)

êk = âk : E +
M̃∑
�=1

F̂k� ε̃
vp
� +

M̂∑
�=1

D̂k� ε̂
vp
� , (21)

where ãk = 〈µ̃k : A〉, D̃k� = 〈µ̃k : (D ∗ µ̃�)〉, F̃k� = 〈µ̃k : (D ∗ µ̂�δ)〉,
âk = 〈µ̂kδ : A〉, F̂k� = 〈µ̂kδ : (D ∗ µ̃�)〉 and D̂k� = 〈µ̂kδ : (D ∗ µ̂�δ)〉.

4.3 Constitutive relations for the reduced variables

Since the elasticity of the phases is isotropic and the modes supported in a
single phase, we have:

τ̃k = 2Gr (ẽk − ẽvpk ), σ̂k = 3kr (êk − êvpk ), (22)

where kr and Gr denote the bulk and shear moduli of the phase r with which
the mode k is associated. Using (2) and the definitions (18b) and (19b) for
the reduced viscoplastic strains ẽvpk and êvpk , we obtain:

˙̃e
vp
k = 〈3

2

∂ψ

∂σeq
(σeq, σm)

µ̃k : σ

σeq
〉, ˙̂e

vp
k = 〈1

3

∂ψ

∂σm
(σeq, σm)

µ̂kδ : σ

σm
〉. (23)

Here again, it is not possible in the non linear context to simply calculate
the average of these products, and simplifying assumptions have to be used.
In (23), σeq is replaced by τ̃ r

eq = [
∑M̃(r)

k=1 (τ̃k)
2]1/2 and σm is replaced by σ̂r

m =

[
∑M̂(r)

k=1 (σ̂k)
2]1/2, so that the evolution of the reduced internal variables is given

by:

˙̃e
vp
k =

3

2

∂ψr

∂σeq
(τ̃ r

eq, σ̂
r
m)

τ̃k
τ̃ r
eq
, ˙̂e

vp
k =

1

3

∂ψr

∂σm
(τ̃ r

eq, σ̂
r
m)

σ̂k

σ̂r
m
,

τ̃ r
eq =

⎡⎢⎣M̃(r)∑
k=1

(τ̃k)
2

⎤⎥⎦
1/2

, σ̂r
m =

⎡⎢⎣M̂(r)∑
k=1

(σ̂k)
2

⎤⎥⎦
1/2

, (24)

7
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 where M̃(r) (resp. M̂(r)) denotes the number of modes µ̃k (resp. µ̂k) having

their support in phase r. The macroscopic stress is obtained by averaging the
stress field resulting from (1b), (16) and (17):

Σ = 〈L : A〉 : E +
M̃∑

k=1

ρ̃kε̃
vp
k +

M̂∑
k=1

ρ̂kε̂
vp
k ,

ρ̃k = 〈(L : D ∗ µ̃k) − (L : µ̃k)〉, ρ̂k = 〈(L : D ∗ µ̂kδ) − (L : µ̂kδ)〉. (25)

4.4 Choosing the modes – the Karhunen-Loève decomposition

In the case of compressible viscoplastic constituents, the viscoplastic strain
fields θk(x) are decomposed into a purely deviatoric part and a purely spher-
ical part,

θk(x) = θ̃
k
(x) + θ̂k(x)δ, (26)

and the Karhunen-Loève decomposition is applied separately to each of these
parts.

5 Results and discussion

5.1 Configurations and material data

5.1.1 The case of incompressible viscoplasticity

The results in this case were obtained on a unidirectional fibre-matrix com-
posite with circular fibres which are regularly distributed at the nodes of a
hexagonal array. The volume fraction of the fibres is 0.25. The fibres and the
matrix are assumed to have a power-law elastic-viscoplastic behaviour defined
by a force potential of the form:

ψ(σeq) =
σ0ε̇0

n+ 1

(
σeq

σ0

)n+1

. (27)

Two different viscosity exponents, corresponding to a linear viscosity and a
strongly non-linear viscosity, are considered for the matrix: n = 1 and n = 8.
The other material properties used with each of these two viscosity exponents
are shown in Table 1.

8
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 5.1.2 The case of compressible viscoplasticity

The results obtained in this case involved first the same hexagonal configura-
tion as that studied above. The fibres are purely elastic and the matrix is a
porous elastic-viscoplastic matrix defined by the elliptical force potential:

ψ(σeq, σm) =
σ0ε̇0

n+ 1

[
9

4
A(f)

(
σm

σ0

)2

+B(f)
(
σeq

σ0

)2
]n+1

2

, (28)

where f denotes the porosity and where the expressions of A(f) and B(f)
result from [10] starting from an analytical self-consistent scheme and from a
bounding method, respectively. Here again, the viscosity exponents n = 1 and
n = 8 are considered for the matrix. The other material properties used here
are shown in Table 2.

In a second step, the results obtained concern a square cell containing a large
number of randomly distributed fibres (Figure 4a). The same force potential
(28), the same fibre volume fraction (equal to 0.25) and the same material
properties (Table 2) are used again here, but only the viscosity exponent
n = 1 is considered for the matrix.

5.2 Loading

The composite is subjected to radial load paths in the space of the macroscopic
stresses: Σ(t) = λ(t)Σ0, where Σ0 is the prescribed stress direction. The
following four stress directions are used:

Σ
(1)
0 = e1 ⊗ e1, Σ

(2)
0 = e1 ⊗ e2 + e2 ⊗ e1,

Σ
(3)
0 = e1 ⊗ e1 − e2 ⊗ e2, Σ

(4)
0 = e1 ⊗ e1 + e2 ⊗ e2.

(29)

5.3 Discussion

Figure 2 gives the predictions obtained with various models (TFA, NTFA
with one mode per phase calculated at a fixed level of macroscopic strain
E : Σ

(1)
0 = 5%, and NTFA with two main eigen-modes per phase obtained

using the Karhunen-Loève decomposition) when the fibres and the matrix
have a power-law elastic-viscoplastic behaviour. The curves correspond to the
loading path Σ

(1)
0 . The predictions obtained with the classical TFA model are

too rigid. Those obtained with NTFA model with one mode per phase are
satisfactory, but the stress hardening estimate does not match the reference

9
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 calculations. The NTFA model with two main eigen-modes per phase gives

excellent results throughout the range of strains under consideration, which
shows the usefulness of adopting the Karhunen-Loève decomposition, which
means that the information will be optimally distributed at various loading
times between the two eigen-modes having the highest eigenvalues.

Figures 3 and 4b give the predictions obtained with the NTFA model in which
the modes are determined using the Karhunen-Loève decomposition, in the
case of elastic fibres and a porous elastic-viscoplastic matrix. The curves in
Figures 3a and 4b correspond to the loading paths Σ

(3)
0 and Σ

(4)
0 , whereas those

in Figure 3b correspond to the loading paths Σ
(1)
0 and Σ

(2)
0 . As in the context of

incompressible viscoplasticity, the NTFA method again gives excellent results
here.

6 Conclusion

The nonuniform transformation fields analysis method was extended here to
the case of elastic-viscoplastic and porous elastic-viscoplastic constituents. The
predictions obtained were accurate and the number of internal variables in-
volved was reduced thanks to the use of the Karhunen-Loève decomposition.

Acknowledgements. The authors thank Rubens Sampaio for useful discus-
sions about the Karhunen-Loève decomposition.
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Fig. 2. Fibres in a hexagonal array. Power-law elastic-viscoplastic fibres and matrix.
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0 (see (29) for the definition of the loading). (a) n = 1. (b) n = 8.
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definition of the loading).
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 Table 1

Material properties. Power-law elastic-viscoplastic fibres and matrix.

E (GPa) ν σ0 (MPa) ε̇0 (s−1) n

Fibres 100 0.3 250 10−5 1

Matrix 180 0.3 50 10−5 1

180 0.3 57.825 10−5 8
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 Table 2

Material properties. Elastic fibres and porous elastic-viscoplastic matrix.

E (GPa) ν σ0 (MPa) ε̇0 (s−1) n Porosity

Fibres 400 0.2

Matrix 70 0.3 100 10−2 1 or 8 0.07
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