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Abstract

The present paper aims at predicting the ultimate mechanical properties of a particle-
reinforced polymer using a micromechanical approach of a local failure criterion.
The considered criterion includes both normal and shear stresses at the interface
between the polymer matrix and the reinforcing material. In the case of rigid par-
ticles, a new closed-form expression of the interfacial stress concentration tensor is
provided and simple analytical formula are proposed and compared for different ho-
mogenization schemes. A combination of these results with acoustic emission data
allows the identification of the parameters involved in the local failure criterion. It
has been shown that the predicted interfacial strength highly depends on the choice
of a suitable homogenization scheme.

Key words: Particle-reinforced composites, Interfacial strength, Mechanical
properties, Acoustic emission, Stress concentrations

1 Introduction

Polymer composites have been used for many years in several applications such
as aircraft, space and marine structures, mass transport systems, automotive
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 industries, building and construction. The experience gained in all these ap-

plications showed that the in-service behavior of a polymer composite highly
depends on the properties of the reinforcing particle-matrix or endless fibre-
matrix interface that contributes to stress transfer. The reinforcing particle
can be a filler or a chopped fiber. This explains why the study of interfaces
received much attention in order to understand phenomena and mechanisms
involved there. Adhesion is one the most fundamental aspect addressed in this
area because interfacial debonding is, with particle breakage, one of the basic
local failure modes in particle-reinforced composites. The study of such local
failure mechanism classically requires the use of a stress-based local approach.
A suitable analysis can be performed by using micromechanical approaches
which allow to relate the microscopic (local) stress field to the macroscopic
stress tensor.The determination of the local stress field, particularly at the
particle-matrix interface, depends on both the material microstructure and
the choice of a suitable homogenization scheme. In this paper, we investigate
the local criterion considered by Fitoussi et al. [2] and derive a new explicit for-
mulation in the case of rigid particles, different homogenization schemes being
considered and compared for this purpose. Moreover, the closed-form results
are combined with acoustic emission data in order to evaluate the mechanical
parameters involved in the criterion.

2 Local debonding criterion and micromechanical analysis

2.1 Local failure criterion

Let us consider a local failure criterion based on the stress field at the in-
terface between the matrix and the reinforcing material. As previously used
by Fitoussi et al. [2], an example of this type of criterion consists in a linear
combination of the local normal and shear stresses and is defined as follows:

σout
n + βτ out

n = Rint (1)

where σout
n and τ out

n are the interfacial normal and shear stresses respectively; β
and Rint are two parameters to be identified by an iterative regression between
both experimental and simulated results (see [2]). The local normal and shear
stresses are classically defined as:σout

n = nT · σout · n

τ out
n =

√
‖σout · n‖2 − (nT · σout · n)2

(2)

where σout is the interfacial stress field and n is the outward unit normal to
the boundary on the interface point under consideration.
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 2.2 Micromechanical formulation

Requiring the displacement and the interfacial traction accross the bound-
ary to be continuous, the components of the stress tensor just outside the
inhomogeneity are found to be (see for instance [1]):

σout
ij =

1

D (n)
C1

ijkl

[
S2

klab + Nkp (n) nlnq∆CpqmnS2
mnab

]
σ2 in

ab (3)

where σout is the stress tensor at the interface, C1 is the stiffness tensor of
the matrix; C2 and S2 are the stiffness and compliance tensors of the inhomo-
geneity respectively. ∆C is defined by ∆C = C2−C1, σ2 in is the stress tensor
inside the inhomogeneity, Nkp and D (n) are the cofactor and determinant,
respectively, of the acoustic tensor K associated with C1 and the direction n:

Kik = C1
ijklnjnl (4)

D (n) =∈mnl Km1Kn2Kl3 (5)

Nij =
1

2
∈ikl∈jmn KkmKln (6)

where ∈ijk are the components of the permutation tensor defined by:

∈ijk=


−1 for the even permutation of 1,2,3

1 for the odd permutation of 1,2,3

0 for other cases

(7)

A starting point of the micromechanical analysis consists in relating the micro-
scopic and macroscopic stresses. Due to the linearity of this homogenization
problem, the stress tensor σ2 in inside the inhomogeneity is given by the stress
concentration relation:

σ2 in = B2 : Σ (8)

where B2 is the stress concentration tensor for the inhomogeneity embedded
in the solid matrix and Σ is the macroscopic stress tensor prescribed at the
boundary of the representative elementary volume.

2.3 Case of a matrix reinforced by infinitely rigid inclusions

In order to derive closed-form expressions, we consider the case of rigid rein-
forcements (i.e. S2 → 0); we then rewritte the term ∆CpqmnS2

mnab as:

∆CpqmnS2
mnab =

(
C2 − C1

)
pqmn

S2
mnab = Ipqab −

(
C1 : S2

)
pqab

≈ Ipqab (9)
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 where I is the symmetric fourth-order identity tensor defined by Ipqab =

1
2
(δpaδqb + δpbδqa), δ is the Kronecker delta (δij = 1 for i = j and δij = 0

for i 6= j). Taking into account (9), we have:

Nkp (n) nlnq∆CpqmnS2
mnab = Nkp (n) nlnqIpqab (10)

which also reads

Nkp (n) nlnq∆CpqmnS2
mnab =

1

2
{Nka (n) nlnb + Nkb (n) nlna} = N (n)⊗ (n⊗ n)

(11)
where (A⊗B)klab = 1

2
[AkaBlb + AkbBla] for any second order tensors A and

B.

Then, equation (3) can be rewritten in a more readily and compact tensorial
form:

σout =
1

D (n)
C1 : [N (n)⊗ (n⊗ n)] : σ2 in (12)

Let us recall now that for different homogenization schemes, the stress con-
centration tensor which enters (8) is classically given for the inhomogeneity
by (see for instance [8]):

B2 = B2
i :

(
2∑

k=1

f rBr
i

)−1

(13)

where f r is the volume fraction of the phase r (the superscripts 0, 1 and 2 de-
note some reference medium, the matrix and the inhomogeneity respectively)
and Br

i is defined by:

Br
i =

[
I + Q0 :

(
Sr − S0

)]−1
(14)

where Sr is the compliance tensor of the phase r and Q0 is defined by :

Q0 = C0 − C0 : P2
0 : C0 (15)

P2
0 is the Hill tensor (see [11]). Since C0 : S0 = I and S2 → 0, one easily gets:

B1
i = [I + Q0 : (S1 − S0)]

−1

B2
i ≈ (C0 : P2

0)
−1

(16)

Substituting (16) into (13) and recalling that (A : B)−1 = B−1 : A−1 (A and
B being any symmetric fourth-order tensor, i.e. Aijkl = Ajikl = Aijlk = Aklij)

4
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 and f 1 = 1− f 2, we obtain for the two phase composites:

B2 = B2
i : [(1− f 2) B1

i + f 2B2
i ]
−1 ≈

[
(1− f 2) [I + Q0 : (S1 − S0)]

−1
: C0 : P2

0+

f 2I]−1

(17)
and then, we finally define a new tensor,

Bout = 1
D(n)

C1 : [N (n)⊗ (n⊗ n)] :
[
(1− f 2) [I + Q0 : (S1 − S0)]

−1
: C0 : P2

0+

f 2I]−1

(18)
such as:

σout = Bout : Σ (19)

Bout can be considered, for rigid inhomogeneities, as a concentration tensor for
the interfacial stress field: it is readily seen that this new tensor Bout depends on
both the geometry of the inhomogeneity (via the tensor P2

0) and the properties
of the reference medium denoted by the superscript 0. Therefore, note that the
expression of Bout clearly depends on the homogenization scheme (see section
2.4).

2.4 Role of the homogenization schemes

Different homogenization schemes are going to be considered in the following.
For the dilute estimate (also known as the Eshelby’s solution, see for instance
[4]), classically devoted to non interacting inhomogeneities (at dilute concen-
tration), the matrix is considered as the reference medium (i.e. S0 = S1) and
is subjected to the macroscopic stress tensor. The validity of this approach
corresponds to f 2 → 0 and thus to, B2 → (C1 : P2

0)
−1

. We recall that in gen-
eral, P2

0 = SESH : (C0)
−1

, where SESH is the Eshelby tensor which depends on
both the geometry of the inhomogeneity and the reference medium (see [1]).
Therefore, eqn (18) yields:

Bout
ESH =

1

D (n)
C1 : [N (n)⊗ (n⊗ n)] :

(
C1 : P2

1

)−1
(20)

where obviously, P2
1 = (P2

0)Dilute estimate = SESH : (C1)
−1

.

For the Mori-Tanaka estimate [10] (see also [5]), which allows to take into
account the interactions between the inhomogeneities, the solid matrix is still
considered as the reference medium, but is now subjected to its own stress. It
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 follows that:

Bout
MT =

1

D (n)
C1 : [N (n)⊗ (n⊗ n)] :

[(
1− f 2

)
C1 : P2

1 + f 2I
]−1

(21)

In the Generalized Self-Consistent scheme [6], the reference medium is the
unknown effective medium denoted by SC, that is S0 = SSC . Then, eqn (18)
becomes:

Bout
SC = 1

D(n)
C1 : [N (n)⊗ (n⊗ n)] : [(1− f 2) [I+

QSC :
(
S1 − SSC

)]−1
: CSC : P2

SC + f 2I
]−1 (22)

Finally, the Ponte-Castaneda and Willis estimate [7] aims at taking into ac-
count not only the interaction effect, but also the spatial distribution of the
reinforcing material by means of a new tensor Pd (see [7] for a detailed pre-
sentation as well as the expression of Pd). In this approach, the tensor P2

1 is
then replaced by 1

1−f2 [P2
1 − f 2Pd] and we get:

Bout
PCW =

1

D (n)
C1 : [N (n)⊗ (n⊗ n)] :

(
C1 :

[
P2

1 − f 2Pd

]
+ f 2I

)−1
(23)

3 Case of a polymer-matrix composite reinforced by spherical in-
homogeneities: a comparison between micromechanical schemes

3.1 Introduction

In this section, we consider an isotropic unsaturated polyester matrix rein-
forced by E-Glass spherical beads (volume fraction : 30 %). Our aim here is
to determine the sensitivities of both the parameter Rint and the local stress
field to the homogenization scheme. The spherical particles have been burnt
five hours at 520◦ C to remove sizing in order to promote interfacial debonding
instead of matrix cracking. Fig. (1) shows a SEM inspection of the composite
material. The lack of polymer matrix at the particle surface, i.e. the particle
surface is smooth, gives the evidence that interfacial debonding is the damage
mechanism.
The values of the elastic moduli and Poisson’s ratios for each phase (the super-
scripts 1 and 2 correspond to the matrix and the inhomogeneity respectively)
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Figure 1. SEM micrography of the glass beads-filled unsaturated polyester resin

are: 

E1 = 2.7 [GPa]

ν1 = 0.37

E2 = 73 [GPa]

ν2 = 0.22

(24)

The consideration of these data has basically motivated the assumption of
rigid particles.
For spherical inhomogeneities, the Hill tensor P2

1 is given by (see [11] or [1]):

P2
1 =

α1

3k1
J +

β1

2µ1
K (25)

with

α1 =
3k1

3k1 + 4µ1
; β1 =

6 (k1 + 2µ1)

5 (3k1 + 4µ1)
(26)

k1 and µ1 are the bulk and shear moduli of the matrix respectively. J and K
are the classical symmetric fourth-order tensors defined by J = 1

3
i ⊗ i and

K = I − J, i is the second-order symmetric identity tensor : iij = δij. Due to
the isotropy of the constitutive phases, the stiffness tensor for the phase r can
be written as:

Cr = 3krJ + 2µrK (27)

and then, the compliance tensor reads:

Sr = [Cr]−1 =
1

3kr
J +

1

2µr
K (28)

In the case of the SC scheme, the Hill tensor P2
SC is given by:

P2
SC = SESH :

(
CSC

)−1
=

αSC

3kSC
J +

βSC

2µSC
K (29)

7
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 for which we recall that kSC and µSC are the effective bulk and shear moduli

of the composite respectively. αSC and βSC are obtained from (26) in which k1

and µ1 must be replaced by kSC and µSC respectively. Moreover, experimental
results in the case of a tensile test suggest that the debonding does appear at
the pole of the spherical particle, as illustrated on Fig. (2).
Then, we note that:

 

Reinforcing 
spherical 

inhomogeneities 

Initiation of the interfacial debonding

Matrix 

Figure 2. Interfacial debonding during a tensile test

σout
n, pole = Max

(
σout

n

)
, τ out

n, pole = 0 (30)

and recalling eqn (1), we get:

Rint = σout
n, pole (31)

It follows that Rint can be determined by a pure macroscopic uniaxial tensile
test coupled with an acoustic emission measure, as the debonding macroscopic
force Fdeb (and so, the interfacial failure) can be determined by comparing the
acoustic emission (AE) results (that are the counts and the amplitude - in
dB - vs. time - in seconds -) with the tensile test results (the force - in N
- vs. time); see section (3.3). We recall here that AE is widely used for non
destructive control as well as to identify and to monitor damage mechanisms
and evolution (see for instance [9] or [3]). In fact, each failure mode can be
characterized by a range of amplitude; the debonding phenomena basically
corresponds to the range [58...68] dB. Thus, we define the macroscopic tensile
stress tensor Σ (which is used for the micromechanical analysis) by :

Σ = Diag [0, 0, Σ33] (32)

8
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 3.2 Sensitivity of the local stress field

Due to the geometrical and material symmetries of the reinforcing inhomo-
geneities, the local normal and shear stresses are characterized by using a
parametrization of the unit normal n, that is (see Fig. (3)):

n = [cos(α), 0, sin(α)]T , α ∈
(
0,

π

2

)
(33)

Figure 3. Parametrization of the unit normal

Without any loss of generality, we consider an unit macroscopic tensile stress
tensor Σ = Diag [0, 0, 1] and the local normal and shear stress fields are com-
puted, for the different homogenization schemes, by using eqns (20), (21), (22)
or (23) combined with eqn (19). The results are shown on Fig. (4) and (5).

The following remarks can be done:

• For both normal and shear stresses: the different homogenization schemes
provide the same profiles but different amplitudes; moreover, we note that
the local normal and shear stresses are not maxima at the same interfacial
point, which means that the failure can occur at points located between the
two points defining the maximum of the normal and shear stresses respec-
tively. The biggest difference between the estimates is observed at the point
of maximal stress, that is for instance α = π

2
for the normal component.

• For the local normal stress: as expected, the component is minimal and null
at the equator of the spherical inhomogeneity, while reaching its maximum
at the pole. As α increases from 0 to π

2
, the local normal stress starts to

decrease from 0 to its minimal value, and thus defines a local compression;
the component then starts increasing from its minimal to its maximal pos-
itive value obtained for α = π

2
(change from a local compression to a local

traction).
• For the local shear stress: the shear component is positive and null at both

the equator and the pole of the reinforcing inhomogeneity.

The maximum relative errors ε [%] between the estimates are also computed.
Note that these errors for the local normal and shear stresses are exactly
the same, as the use of different homogenization schemes basically results

9
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( )MPa out
nσ  DILUTE 

SC

PCW wd=0.8 
MT
PCW wd=1.2 

( )Radα  

Figure 4. Distribution of the local normal stress

in different predictions for the interfacial stress field which is used for the
determination of both local normal and shear stresses. The results are reported
in table (1).

Dilute Mori-Tanaka SC PCW wd = 0.8 PCW wd = 1.2

Dilute 0 [%] 22.6 [%] 6.9 [%] 20.1 [%] 24.6 [%]

Mori-Tanaka 0 [%] 16.8 [%] 3.1 [%] 2.6 [%]

SC 0 [%] 14.2 [%] 19 [%]

PCW wd := 0.8 0 [%] 5.6 [%]

PCW wd := 1.2 0 [%]
Table 1
Maximum relative errors for the different homogenization schemes

3.3 Sensitivity of the parameter Rint

For application purposes, the tensile test has been carried out on a Instron
tensile machine and coupled with an acoustic emission system (threshold: 30
dB). Eight tensile tests were carried out (see Fig. (6)) and a mean value for

10
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Figure 5. Distribution of the local shear stress

Fdeb was obtained:

Fdeb ≈ 39.42 [daN ] (34)

Given a mean section of S = 37.84 [mm2], we find the uniaxial debonding
macroscopic stress as:

Σdeb =
Fdeb

S
≈ 10.42 [MPa] (35)

Substituting Σ33 = Σdeb in eqns (20), (21), (22) and (23) and using eqn (19),
we finally derive the estimates of Rint for the different homogenization schemes
under consideration (see table (2)).

Homogenization Scheme Estimate of Rint

Dilute 20.06 [MPa]

Mori-Tanaka 15.53 [MPa]

SC 18.67 [MPa]

PCW wd = 0.8 16.03 [MPa]

PCW wd = 1.2 15.13 [MPa]
Table 2
Estimates of Rint
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Figure 6. AE spectra (amplitudes and counts vs. time) used for the identification
of the debonding macroscopic force

It is seen that the predictions for the mechanical parameter Rint are very
different depending on the micromechanical formulation under consideration:
a maximum relative error of 24.6[%] is for instance observed between the
Ponte-Castaneda and Willis (wd = 1.2) estimate and the Eshelby’s solution
which seems to overestimate the interfacial strength.

4 Concluding remarks

The role of the homogenization scheme in the analysis of a local failure cri-
terion has been investigated. In particular, a new closed-form expression of
the interfacial stress concentration tensor has been proposed in the case of
rigid particle-reinforced composites. The proposed methodology can be easily
applied to a more general class of materials (for instance thermoplastics re-
inforced with short or long fibres). The coupling of such a micromechanical
analysis with acoustic emission data allowed us to determine the interfacial
strength whose sensitivity to the homogenization scheme is emphasized. Thus,
it is observed that the predicted value of the interfacial strength (and in gen-

12
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 eral, of the effective mechanical properties) strongly depends on the homoge-

nization scheme which in practice has to be carefully chosen according to the
real morphology of the material.
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