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Abstract

Although fiber-reinforced composite materials have often been considered as pe-

riodic materials in theoretical models, the distribution of fibers is random in real

materials. This random distribution of fibers is closely related to their transverse

failure behavior. This paper proposes the use of statistical functions which describe

random point patterns as a quantification of the dispersion of the transverse failure

properties of several carbon fibre reinforced polymers (CFRP). It is shown that the

analysis of the K function is the most meaningful for this purpose.
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 1 Introduction

At the microscopical level, the main morphological characteristics of long fibre

reinforced polymers are heterogeneity and anisotropy. In spite of this, com-

posite materials have classically been modeled by means of periodical unit

cells, that is, without taking into account neither the heterogeneity nor the

geometrical disorder of fibers. The periodicity hypothesis leads to simplifica-

tions which make possible the application of homogenization methods [1–3],

it provides good estimations for the elastic properties [4], and it can also be

employed with good results in non-linear two-scale methods [5–9]. Also, in

computational mechanics, the periodicity assumption leads to lower computa-

tional costs whereas other approaches may be computationally unaffordable.

However, a simple optical microscope observation reveals that long fiber re-

inforced composites (i.e. carbon or glass fiber-reinforced thermoset matrices)

are far from being ordered materials since the fiber is randomly distributed

through the matrix, sometimes showing areas with fiber clusters and resin

pockets. These heterogeneities lead to local stress values in the matrix which

are higher than those obtained assuming a periodical distribution and, con-

sequently, they are more likely to produce damage, matrix cracking, or to

cause degradation phenomena [10]. For this reason, the local damage in a

transverse section of the composite (that is, matrix cracking and matrix-fiber

debonding) is expected to depend strongly on the random distribution of the

reinforcement.

On the other hand, because of the growing importance of composite materials

∗ Corresponding author
Email address: dani@emci.udg.es (D. Trias).
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ACCEPTED MANUSCRIPT 
 in mechanical and structural engineering together with the lack of knowledge

about many issues related to their failure, damage and fatigue behavior, there

is a demand from the industry for quality control methods. This quality con-

trol methods should provide information on the defects within the material

produced during manufacturing, the tolerance to these kind of defects, the

relation between the material properties and its micro-scale structure. Tra-

ditionally, volume fraction is used as a measure of the quality of a laminate

and ultrasound devices are normally used to complement this information by

detecting voids and bubbles within the matrix.

Some researchers have proposed sophisticated and highly technological pro-

cedures such as thermal imaging techniques [11,12], optical coherence tomog-

raphy [13], near-infrared spectroscopy [14,15] or X-ray tomography [16] for

the inspection of fiber-reinforced composites. Although these techniques are

extremely precise, they usually require high technology machinery, sophisti-

cated interpretation techniques and highly specified and qualified personnel.

This makes them unusable for most industries.

The widespread use of computers in industry prompted some pioneering work,

like that by Berryman [17], in data acquisition using digital image process-

ing for heterogeneous materials. The quantitative techniques for digital image

processing of composites are widely employed in metal matrix composites

(MMCs) [18,19] and some research has applied Fourier transformation to de-

tect the orientation of reinforcement in reinforced concrete [20].

In fiber-reinforced polymers, much of the work devoted to the geometrical

characterization of materials via digital image processing has been focused on

braided composites [21]. Summerscales and co-workers computed total perime-
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 ter and total area of inter-tow pore spaces in woven laminates produced by

RTM [22,23] and applied Voronoi tessellation and fractal dimensions to quan-

tify the microstructure of woven composites [24]. The full characterization of

glass and carbon fiber reinforced composites has also been addressed by means

of optical microscopy [25] and digital image processing of micrographies has

been employed by Joffe and Mattsson[26].

This work is part of a line of research which tries to bridge stress and strain

fields at the macroscale with damage initiation and other microstructural phe-

nomena by considering the random distribution of the fibers within the com-

posite. This approach provides probability distribution functions for the stress

and strain components, and is therefore useful for structural reliability pur-

poses. The methodology presented here starts from micrographies and, using

image processing techniques together with spatial statistics tools, measures the

homogeneity of the distribution of the fiber within the composite. Although

the distribution of the fiber within the material is random, it is homogeneous

- as will be shown in the next section the statistical homogeneity can be math-

ematically defined - if the fiber is correctly spread through out the material

and, in this way, regions containing matrix pockets are avoided. This homo-

geneity can be seen as a measure of the quality of the fiber distribution since,

as this paper will show, homogeneity in the material leads to lower mechanical

property dispersion.

2 Spatial point patterns

This section summarizes the basics on spatial point patterns focusing on

those aspects which are specially relevant for the statistical analysis of the
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 microstructural characteristics of heterogeneous materials. Details on these

topics can be found elsewhere [27–29].

A spatial pattern is a set of points which are located irregularly in a domain.

The points’ position is governed by some stochastic mechanism. Consider an

image of area A of a fiber-reinforced composite material , with the number

(N) and position (x) of the center of the fibers being a random variable. Then,

the set of the position of the centers is a spatial point pattern.

The first-order properties of a spatial point pattern can be described by the

intensity function, λ(x):

λ(x) = lim
|dx|→0

{
E[N(dx)]

|dx|

}
(1)

where E[·] is the mathematical expectance operator. The second-order inten-

sity function, λ2(x,y), can be defined as:

λ2(x,y) = lim
|dx|,|dy|→0

{
E[N(dx)N(dy)]

|dx||dy|

}
(2)

which corresponds to the intensity function at x conditional on knowing that

there is a fiber located at y. The scaled function:

g(x,y) = λ(x,y)/λ2 (3)

is called the radial distribution function.

A usual assumption for the spatial point patterns found in heterogeneous ma-
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 terials is that they are second-order stationary. This assumption implies that

their statistical properties are invariant under translation, they have a con-

stant mean, λ((x)) = λ, and second-order properties can be expressed only as

a function of the vector r = x − y. Moreover, if a spatial point pattern can

be considered isotropic, second order properties only depend on the modulus

of vector r, so we can write λ2(x,y) = λ2(r), g(r) = g(r). The point patterns

given by the positions of fiber centres in fiber-reinforced composite materi-

als can be considered isotropic second-order stationary and, consequently, the

second order properties analyzed in this work only depend on r.

The usual probabilistic function which is assumed to describe the position of

inclusions in a material is the Poisson point field [28,29]. This model describes

complete spatial randomness (CSR) in the distribution of fibers. That means

that the probability of finding N fibers in a subdomain of area A is the same

for any chosen subdomain. Consequently, this model assumes that clusters of

inclusions (fibers) do not take place.

The probability of finding k fibers in a window W of area A(W ) is given by:

P [N = k] =
(λ · A(W ))k

k!
· e−λ·A(W ) k = 0, 1, . . . (4)

where λ is the fiber density, that is, the number of fibers per unit area.

Nevertheless, the Poisson distribution is physically unattainable due to fi-

nite dimension of the inclusions. For this reason, the Poisson distribution is
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 often used for comparison purposes and may serve to distinguish between ag-

gregated and more regular patterns. Therefore, a slight modification in the

Poisson point field model is usually taken into account in order to reproduce

real situations, in which the inclusions have a finite radius. In this case, the

center of two inclusions cannot be closer than their diameters. So this model,

which is also known in the literature as Matérn’s model [28,29], is normally

employed to describe the random position of the fibers within the compos-

ite. For the cases in which the radius of the fiber r is much smaller than the

sample window, it can be considered that the Poisson hard-core model and

the Poisson model can be considered equivalent. This is the situation found

in the materials described in this paper and, for this reason, only the Poisson

distribution will be employed.

After these assumptions, the pair distribution function g(r) can be defined

as the probability of finding an inclusion whose center lies in an infinitesimal

circular region of radius dr around the point r, provided that the coordinate

system is located at the center of a second inclusion.

Another useful function for the statistical analysis of point patterns is Ripley’s

K-function, which can be defined as the number of further points expected to

lie within a radial distance r of an arbitrary point and divided by the number of

points per unit area. Ripley’s estimator [30] seems to be the most appropriate

[31]:

K(r) =
A

N2

N∑

k=1

w−1
k IK(r) (5)

where N is the number of points in the observation area A; IK(r) is the

number of points lying within the circle of radius r and with center located in
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 the k-th point; and wk is the proportion of the circumference contained within

the sampling area A to the whole circumference with radius r. The weight

wk can be computed numerically or using analytical expressions given in the

literature [27].

[Figure 9 about here]

The following relation between g(r) and K(r) can be found [32]:

g(r) =
1

2πr

dK(r)

dr
(6)

The second-order intensity function of a complete random pattern (CSR or

Poisson set), KP (r), in a two dimensional domain is given by [28,29]:

KP(r) = πr2 r > 0 (7)

Although g(r) and K(r) are related, they provide quite different physical

information. K(r) can distinguish different patterns and detect regularities,

whereas the pair distribution function g(r) describes the occurrence intensity

of inter-inclusion distances. In this later function, a local maximum indicates

the most frequent distances between points and a local minimum the least

frequent ones in the pattern. The pair distribution function, , instead of the

two-point probability function, can be used for the statistical description of a

composite sample when the material can be considered ergodic and statisti-

cally isotropic.

The second order intensity function, K(r), and the pair distribution function,
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 g(r), are useful to describe long-range interactions between points. Another

interesting measure of how inclusions or fibers are distributed within the mate-

rial is given by the nearest-neighbor distribution, which can be obtained easily

as the probability distribution function of the shortest distance to a fiber for

each fiber. Analogously, second- or third-nearest-neighbor distributions may

be computed. These nearest neighbor functions focus on short-range interac-

tions between points.

3 Materials and techniques

In this work, the analyzed composite materials were UD Laminates containing

a nominal fiber volume fraction of 60% (HTA 5131 400TEX 6K TO AERO

Tenax). Three different matrices, RTM6 and 6376 from Hexcel and 977-2

epoxy resin from Cytec, were used. The composite with the RTM6 matrix was

produced by resin transfer moulding and the others by a standard autoclave

technique. All composites were cured at 180oC for 2 h and post cured at 190

oC for 4 h . From the panel, standard tensile test specimens were cut according

to DIN EN ISO 527-4, Type 3, and 45o GFRP tabs were applied. Finally, for

each material, seven specimens were tested in tension in the 90o direction in

a universal tensile machine (Zwick 1475) at a cross head speed of 1 mm/min.

The elastic properties of HTA fibers and the different matrices can be found

in Table 1. Results of tension tests are given in Table 2.

[Table 1 about here]

[Table 2 about here]

9



ACCEPTED MANUSCRIPT 
 The next step is the automatic detection of the fibers. In order to achieve

this goal, image processing algorithms have been applied to the sequence of

acquired images.

4 Digital image processing techniques

The automatic detection of the fibers should face two main challenges. Firstly,

the radiometric properties of the acquired images prevent the fibers from being

segmented from the matrix by a simple binarization. This radiometric artifact

can be observed in the images as a non-uniform illumination field, brighter

at the top-right corner of the image, and darker at the bottom-left corner.

Figure 1 shows a sample image to be processed. Its radiometric properties can

be observed by plotting the intensity component of the image as a depth-map,

as shown in Figure 2. On the other hand, it is not possible to directly binarize

the acquired images, since their histogram is not bimodal and, therefore, no

unique threshold exists to correctly separate the pixels belonging to the fibers

and from those of the matrix (see Figure 3). The second problem to be solved

is the detection of the individual fibers in the segmented image. In view of

the fact that a binary image segmenting the fibers presents a large number

of connected fibers (e.g. see Figure 3a), it is not possible to directly apply

standard image processing techniques –such as Connected Component Labeling

(CCL) [33]– to label the fibers. On the other hand, we could consider using the

a priori knowledge of the circular shape of the fibers. One alternative could be

the use of the Hough transform [34]. Unfortunately, some of the fibers present

radii that are quite different from the average (e.g. see Figure 4), generating

a very large parameter space. The amount of possible radius in the parameter
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 space, together with the lack of knowledge in the number of fibers to detect

in every image, advises against the use of the Hough transform for circles.

[Figures 1, 2, 3 and 4 about here]

In this context, the proposed procedure to detect the fibers involves 2 phases:

(i) filtering and radiometric correction, and (ii) fiber segmentation and local-

ization.

4.1 Filtering and radiometric correction

In order to carry out the radiometric correction of the images, the procedure

illustrated in Figure 5 is applied.

[Figure 5 about here]

First, the image is divided into buckets. Every bucket has to be small enough

to neglect local differences in the radiometric values inside the bucket, but

big enough to ensure that a reasonable amount of pixels belonging to the

two regions to be segmented (fiber and matrix) fall inside the bucket. Next, a

local segmentation of the grey levels detected in every bucket is carried out.

We should look for the two main regions, fiber and matrix, and compute the

average value of the matrix grey levels. In some cases, a small third region,

which belongs to the dust forming a deposit onto the sample, may appear .

The pixels belonging to this third region can be observed in Figure 2b as the

vertical stripes at the lower bound of the depth map. It is expected that the

amount of dirt will be very small when compared with the other two regions,

and that it will have lower grey values. A fixed threshold is set to remove the
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 pixels that belong to the dust (if any). The remaining pixels are segmented

into the two regions (fiber and matrix), using the Otsu algorithm [35]. The

local brightness-constancy assumption has proved to be valid for every bucket,

enabling a correct segmentation of the matrix region. Then, the average value

of the region corresponding to the matrix is computed for every bucket. Once

a grid of mean grey level values is obtained, a second order 2D surface is fitted

to them.

Finally, the original image is subtracted from the obtained surface. In this

way, a corrected image presenting similar values for both fiber and matrix

regions is obtained. The good performance of this procedure can be observed

comparing the histograms of an original and a processed image (see Figure 6).

[Figure 6 about here]

4.2 Fiber segmentation and localization

Once the image has been radiometrically corrected, it presents a perfect bi-

modal histogram, as illustrated in Figure 6b. Therefore, a binarization can be

carried out by choosing the correct threshold using the algorithm proposed by

Otsu [35]. Then, a Connected Component Labeling (CCL) algorithm can be

applied to the binary image [33]. Since the points in a connected component

form a candidate region for representing an object, this algorithm finds the

connected blobs in the image. After running CCL on the image, the algorithm

assigns a unique label to all points in the same component. Our final aim

is then to obtain a labeled image where every label belongs to an individual

fiber in the image. Unfortunately, if we apply CCL to the binarized image,
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 and then look for the largest connected component, the object illustrated

with a bounding rectangle in Figure 7a is obtained. For this reason, further

processing is required to segment the individual fibers. One way to “discon-

nect” objects that are linked together is to apply the erode operator as defined

by the mathematical morphology [36]. This operator shrinks the objects by

“eroding” their contour, but erosion of a binary image has the problem: the

objects that are smaller than the size of the structuring element used for erod-

ing are eliminated. A priori, this should not be a problem, since a small 3× 3

structuring element is used. However, due to the nature of the images illus-

trated in this work, several iterations of erosion are required to “disconnect”

individual fibers. For this reason, instead of applying the erosion to the whole

image, the biggest connected component of the image is segmented from the

rest of the image, and the erode operation is applied only to this element.

This procedure produces an image where only this connected component is

eroded, and the rest of the image remains unmodified (see Figure 7). Next,

the biggest connected component of the object is located through CCL, and

the segmentation/erosion procedure is repeated recursively until the biggest

object is the size of an individual fiber. Finally, CCL provides a unique la-

bel for every fiber of the image. Then, computing the gravity center of every

connected component provides the localization of the fibers, as shown in Fig-

ure 8. Provided that most image processing algorithms involving the use of

neighborhood operations (i.e., applying structuring elements, masks, etc.) fail

to correctly process the boundaries of the image, the outline of the image is

ignored to obtain statistical data. This outline has been set to the radius of a

standard fiber.

[Figures 7 and 8 about here]
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 5 Results and discussion

For each of the materials described in Section 3, 40 images have been analyzed

with the techniques just described. As a result, the position of the center of

the fibers in each image has been determined.

5.1 Volume fraction

The first magnitude which can be easily computed from the acquired data is

the fiber content (vf ). This is a key magnitude which governs the composite

behavior and from which elastic constants are usually estimated. Table 3 shows

the mean (µ), variance (σ2) and coefficient of variation (ρ) computed for each

of the three analyzed materials. While HTA5131/RTM6 and HTA5131/977-2

have similar properties, clearly HTA5131/6376 has a higher mean and much

lower values of variance and coefficient of variation.

[Table 3 about here]

5.2 Second-order functions

K(h) and g(h) (Equations 3 and 5, respectively) can be used to assess if a

point pattern describes complete spatial randomness.

For each of the images of all three materials, functions K(h) and g(h) were

computed. Let us denote with K̃
(j)
i (h) and g̃

(j)
i (h) the estimations of functions

K(h) and g(h) computed for the i-th image for the j-th material. Then, for
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 each of the materials, we can analyze the statistics of K(r) and g(r):

µ
[
K(j)(r)

]
' K̃(j)(r) =

1

m

mj∑

i=1

K̃
(j)
i (h) (8)

Var
[
K̃(j)(r)

]
' 1

m(m− 1)

mj∑

i=1

{K̃(j)
i (r)− K̃(j)(r)} (9)

ρ
[
K̃(j)(r)

]
'

Var
[
K̃(j)(r)

]

K̃(j)(r)
(10)

µ
[
g(j)(r)

]
' g̃(j)(r) =

1

m

mj∑

i=1

g̃
(j)
i (r) (11)

Var
[
g̃(j)(r)

]
' 1

m(m− 1)

mj∑

i=1

{g̃(j)
i (r)− g̃(j)(r)} (12)

ρ
[
g̃(j)(r)

]
'

Var
[
g̃(j)(r)

]

g̃(j)(r)
(13)

Figures 10 and 11 show plots for these statistics. Figure 10 (top) shows µ [K(r)]

for each material together with the plot of the analytical expression for a

Poisson set (Equation 7). All four plots are nearly superposed, showing that,

on average, all three materials could be considered to contain a CSR pattern

for the distribution of fibers.

[Figure 10 about here]

[Figure 11 about here]
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 A closer observation of the plots of K̃(j)(r) reveals that the superposition of

the plots is more remarkable for r/R < 15, where r is the inter-fiber distance

and R the fiber radius. For larger values of r/R the plot for HTA5131/977-2

seems to depart slightly from the CSR plot. The difference with respect a CSR

pattern can be analyzed by computing the relative error for each material j:

E
[
K(j)(r)

]
=

K̃(j)(r)−KP (r)

KP (r)
(14)

According to the plot for this function, given in Figure 12, the HTA5131/6376

material is clearly much closer to the CSR pattern than the others.

[Figure 12 about here]

The plots for the variance and coefficient of variation of K(r), also given

in Figure 10. As happened in the results for the volume fraction, given in

Table 3, the variance found in HTA5131/6376 is much lower than in the other

materials, .

Regarding Figure 11, analogous conclusions can be derived: all three materials

seem to have a g(r) function close to that corresponding to a CSR pattern and

the variance and coefficient of variation is much lower for the HTA5131/6376

material. The relative difference with respect to a CSR pattern can be com-

puted for g(r) as was done for K(r) in Equation 14. The resulting plots for

E
[
g(j)(r)

]
, shown in Figure 11, and the relative error, shown in Figure 13, are

not as meaningful as they were for E
[
K(j)(r)

]
.

[Figure 13 about here]

However, from the fiber distribution analysis and the statistics of volume frac-
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 tion and from the results of tensile tests shown in Table 2 a clear conclusion

can be drawn: those materials showing a large dispersion on tensile test also

exhibit a large dispersion on volume fraction and a large dispersion from a

CSR distribution. Analysis of the K function reveals this phenomenon more

clearly than the analysis of the fiber volume fraction.

6 Conclusions

The statistical point patterns of fiber positions have been analyzed for three

different carbon fiber-reinforced polymers. Data for the statistical analysis has

been obtained through digital image processing: (i) filtering and radiometric

correction, and (ii) fiber segmentation and localization. In this way, 40 digital

images for three different CFRPs have been analyzed. The volume fraction

and the position of the fiber centers has been obtained for each digital image.

Together with a statistical analysis of the volume fraction, the functions K(r)

and g(r) which describe the random distribution of fibers within the mate-

rial have been computed and compared with the respective functions for a

Complete Spatial Random (CSR) pattern.

The results of this analysis reveal that the materials showing a distribution

of fibers which is more different from a CSR pattern have a larger disper-

sion in their failure behavior,and the analysis of the K function is the most

meaningful.

The tools presented could be easily employed in an industrial environment as

quality control measurements, since the small dispersion in failure behavior is

a desired property in mechanic engineering materials.
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Fig. 1. Sample image to be processed.
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(a)

(b)

Fig. 2. Two views of the depthmap representing the grey values of the image of
Figure 1. (a) Orthogonal view. (b) Perspective view.
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(a) (b)

Fig. 3. Result of applying a binarization to the original image according to Otsu’s
algorithm [35]. (a) Threshold is set to 0.65. Notice that it produces a poor segmenta-
tion at the top right and bottom-left corners. (b) Result of applying a 0.69 threshold
to correctly segment the bottom-left fibers. It can be observed how a small change
in the threshold produces a big change in the segmentation. This means that the
selected threshold is located at a very unstable point.
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(a) (b) (c)

Fig. 4. Detail of 3 images showing fibers of different radii.
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Fig. 5. Bloc diagram of the radiometric correction procedure.
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Fig. 6. Histograms of (a) the original image illustrated in Figure 1, and (b) the image
obtained after radiometric correction. In (a) it is impossible to find an adequate
threshold, as illustrated in Figure 3. The (b) histogram is now well conditioned to
binarize the image applying Otsu’s algorithm.
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(a) (b)

Fig. 7. Binarization of the radiometrically corrected image. (a) The red rectangle
frames the largest object after applying a Connected Component Labeling (CCL)
strategy. The largest object defined in (a) is eroded, giving rise to image (b). Now
the objects with maximum height (red) and width (blue) are framed.
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Fig. 8. Localization of the automatically detected fibers. Due to the nature of the
algorithm, it can be observed how the algorithm fails to correctly locate the center
of the fibers when they are touching the border of the image. For this reason, only
the fibers having their gravity center within the rectangle are considered.
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Fig. 9. Estimation of Ripley’s K-function, K(h).
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Fig. 10. Mean(top), variance(middle) and coefficient of variation (bottom) of K(h)
for the analyzed materials
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Fig. 11. Mean(top), variance(middle) and coefficient of variation (bottom) of g(h)
for the analyzed materials
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Fig. 12. Relative error for K(h)
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Fig. 13. Relative error for g(h)
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Property Material HTA5131 RTM6 977-2 6376

E (MPa) 28000* 2755 2730 3630

ν 0.23 0.34 0.34 0.34

Table 1
Elastic properties of the fiber (HTA5131) and the three analyzed matrixes. (*)
Transverse modulus
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Material µ(εu) σ(εu)

HTA5131/RTM6 0.0034 0.0063

HTA5131/977-2 0.0112 0.0099

HTA5131/6376 0.0081 0.0009

Table 2
Ultimate strain statistics for three different CFRPs
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Material µ(vf ) σ2(vf ) ρ(vf )

HTA5131/RTM6 0.5771 0.002383 0.08458

HTA5131/977-2 0.5725 0.002118 0.08037

HTA5131/6376 0.6052 0.0004436 0.03480

Table 3
Volume fraction statistics computed for three different CFRPs
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