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Abstract 

Early-warning for leakage in a recovery boiler can help the process operator to detect 

faults and take action when a dangerous situation is developing. By analysing the mass-

balances on both the steam and combustion side of the boiler in a Bayesian network, 

the probability of leakage can be determined and used as an early-warning. The method 

is tested with real plant data combined with leakage simulations. The results show that 

it is possible to detect considerably smaller leakages using this method than using the 

type of simple steam-side mass-balance method that is in use today. Bayesian network 

is an efficient tool to combine information from measurement-signals and calculations 

giving an early-warning system that is robust to signal faults. 
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1 Introduction 

Operating and diagnosing complex industrial processes are usually difficult tasks. 

Faults that cause only minor disturbances in the production can be frequent. It is mainly 

the operator who detects, isolate and take action when a disturbance or fault appears. It 

can be very hard to distinguish between normal process operation with its minor 

disturbances and a developing fault. 

 

Early-warning systems can help the process operator to detect faults at an early stage 

and thus prevent further fault development. Early warning systems have been 

developed for safety critical events, e.g. fire on ships [1], disconnections in electrical 

systems [2] and landslides [3]. Common for early-warning systems are that they are 

designed to make a person aware of that a critical situation is or might be developing. 

 

Industrial processes normally have alarms on signal levels to pay attention to large 

deviations from a normal value. The alarm trigging levels are set to protect the process 

equipment, maintain product quality, etc. A diagnostic system can give the process 

operator more information than just an alarm that a signal is deviating. Fault diagnosis 

is commonly divided in the two steps; detection and isolation [4]. Fault detection is to 

determine that there is a fault and isolation is to determine where the fault is located. 

An early-warning system is a diagnosis system aimed to help the process operator to 

detect and isolate faults as early as possible. 
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Leakage detection in recovery boilers is important to avoid severe damages on 

equipment. The walls of the furnace are containing evaporating water with high 

pressure. Fireside corrosion and thermal stress can cause leakages, implying that water 

or steam comes in contact with the smelt. Water in the smelt can cause an explosion 

with total destruction of the boiler as result. There are a number of commercial systems 

for detection of leakage flows in both conventional boilers and recovery boilers [5] [6]. 

These systems are detecting the leakage flow or cracking with acoustic sensors. 

 

In this work, a new method to detect boiler leakage flows by a mass balance in a 

Bayesian network is evaluated by study of a typical recovery boiler. Data from real 

process operation are combined with a process model to simulate leakage flows. 

Bayesian networks [7] [8] have been used for diagnostics in many different areas e.g. 

medicine, electronics and mechanics [9]. An advantage over other diagnostic methods 

is the handling of uncertainty. An alternative would be to use e.g. fuzzy logic [10]. This 

methodology will be investigated in future research on the current application. 

 

2 Chemical recovery 

Black-liquor is a residue from the cooking-plant in sulphate pulp mills. It consists of 

both organic and inorganic materials and has a dry solids content of 14-18 %. The 

organic material contains energy and the inorganic material gives valuable process 

chemicals. Before it can be combusted, the dry solid content has to be increased in an 

evaporation plant. Content of dry solids is 65-80 % after the evaporation plant. 
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2.1 Black-liquor combustion 

The recovery boiler burns the organic material in the concentrated black-liquor and 

produces high pressure steam [11]. It also recycles and regenerates chemicals through 

reduction, mainly from potassium-sulphate to potassium-sulphide. The recovery boiler 

is an important component in the process because it both regenerates the cooking 

chemicals and produces steam to processes. 

 

Concentrated black-liquor is fed in a furnace where volatile organic material is 

combusted. The remaining material falls down to the bottom and forms a smelt. 

Reducing conditions in the lower part of the boiler reduces the sulphates to sulphide 

with some of the energy generated in the combustion. The smelt is also containing a 

number of other components, mainly sodium carbonate, which are not active in the 

process. Smelt spouts bleeds the smelt out of the furnace to be solved in weak-liquor. 

 

2.2 Steam generation 

Water is fed from a feed-water deaerator thorough the economiser. The economiser is 

located as the last component in the flue gas path and utilises the reminding heat in the 

flue gas to preheat the feed water before it enters the steam drum. Furnace walls and a 

convection section in the flue gas path are cooled by evaporating water. From the steam 

drum, the furnace walls and the convection section are connected in a natural 

circulation system, see Figure 1. 

 

Steam is separated in the upper part of the steam drum and lead to the super-heaters. 

Super-heaters are located first in the flue gas path, close to the furnace. To protect the 
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super-heater closest to the furnace from radiation, water or steam cooled screen-tubes 

can be located in front of the super-heater. Steam cooling to control the outgoing steam 

temperature of each super-heater section is done with injection of water or by a surface-

cooler. Injection water can be feed-water or, to prevent salts and other contaminations 

in the steam, water produced by condensing steam from the drum thorough cooling 

with feed-water [11]. 

 

2.3 Leakage 

Corrosion, erosion and thermal stress can cause holes and cracks resulting in a flow of 

water or steam into the combustion side of the boiler. The leak can be located in either 

the water or steam tubes, but a leak in the furnace wall-tube is the most severe due to 

the risk of water to come in contact with the smelt. A leak in the economiser results 

mainly in a water flow, with some flashing steam, while a leak in the super-heaters 

results in a pure steam-flow. 

 

A smaller leak from a corrosion hole can cause erosion on tubes close to the leaking 

tube. The erosion can then lead to a larger tube rupture with an extensive leakage flow 

as result. The magnitude of a leakage can be varying. Leakages have in other models 

been simulated with flows from 0.2 kg/s [12] [13]. 

 

3 Early-warning 

Leakage detection by analysing the mass balance on the steam side of the boiler is only 

possible when a large leakage flow is present. This due to the relatively low 

measurement precision on feed-water and steam-flow in comparison to a leakage flow. 
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A leakage can also be detected on the combustion side by indirect calculations of mass 

flows, but the precision is lower with this method compared to the method exploiting 

the mass balance on the steam side. By combining the two balances, indications on a 

leakage can be considered from both the steam side and the combustion side. This is 

exploited here to generate an early-warning to the process operator. 

 

3.1 Bayesian networks 

In this paper, we use a Bayesian network for diagnostics. A Bayesian network is 

defined from [7]; 

• a set of nodes representing variables, 

• directed arcs between the nodes, and 

• a probability table for each node. 

 

If there is an arc from node A to node B, B is a child of A and A is a parent to B. The 

nodes are originally discrete, but handling of continuous variables is possible if they are 

not parents to discrete nodes. Discrete nodes have two or more states. A conditional 

probability table (CPT) describes the probability for the states given all possible 

combinations of the parent states. This means that a combination of many parent nodes 

with a lot of states gives a large CPT. An example of a CPT is shown in Figure 2, 

which is describing the conditional probabilities for node B depending on the states of 

node A and C. Continuous nodes have instead of discrete states a Gaussian distribution 

with a mean and standard deviation. Analogous to the CPT for a discrete node, the 

mean and standard deviation of the continuous node are computed as functions of its 

parents. 
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The nodes in a Bayesian network for diagnostics can be classified as fault nodes, 

intermediate nodes and symptom nodes, see the illustrating example in Figure 3. Input 

data are inserted as evidences of a node state in the symptom nodes. The network is 

then propagated, which means that the probabilities are computed for all nodes. After 

the propagation, the probabilities of the fault nodes form the output. 

 

3.2 Calculation of mass flows 

The mass-balance on the combustion side is defined as 

 

smeltgasflueblowsootairfuel mmmmm ����� +=++ −− , (1) 

 

where the sum of fuel flow ( fuelm� ), air flow ( airm� ) and soot-blow steam-flow ( blowsootm −� ) 

equals to the sum of flue-gas flow ( gasfluem −� ) and smelt flow ( smeltm� ). On the steam-side, 

the mass balance is 

 

downblowblowsootsteamhpwaterfeed mmmm −−−− ++= ���� . (2) 

 

The feed-water flow ( waterfeedm −� ) leaves the boiler as high pressure steam-flow 

( steamhpm −� ), soot-blow steam flow ( blowsootm −� ) and blow-down flow ( downblowm −� ). 
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Sensors measure all flows in and out from the boiler on the steam side, while only fuel 

is measured on the combustion side. This means that gasfluem −� , airm�  and smeltm�  has to be 

computed by an indirect method.  

 

By a combustion and smelt reduction calculation on the combustion side, it is possible 

to determine flue-gas (g), combustion-air (a) and smelt quantity (s) per mass unit of 

fuel. The calculation is based on the ultimate analysis of the fuel, reduction rate (R), 

fraction of sulphur-oxide, [SO2]flue-gas, in flue-gas and fraction of oxygen, [O2]flue-gas, in 

flue-gas [11]. 

 

Solid fuel fired boilers utilise an indirect combustion calculation to determine flow of 

fuel, flue-gas, air and slag. This method is also applicable on boilers where the fuel 

flow is measured, to get a calculated fuel mass-flow. With a measured thermal power 

(Pth), a known lower heating value (LHV) of the fuel and the boiler efficiency (�boiler), 

the fuel mass-flow is calculated as 

 

boiler

th
fuel LHV

P
m

η⋅
=� . (3) 

 

The boiler efficiency is calculated by determining the relative losses in the flue gas 

(lflue-gas), unburnt in flue gas (lCO) and heat in the slag (lslag). Heat losses to the 

surroundings (Pradiation) are constant heat flows determined by the size and type of 

boiler. Nominal boiler power (Pnominal) is used to get the relative loss. The boiler 

efficiency is then given as 
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nominal

radiation

slagCOgasflue
boiler

P
P

lll −−−
= −1

η . 
(4) 

 

Recovery boilers are similar to conventional boilers in the sense that the smelt is 

equivalent to the slag. Slag losses are often negligible in conventional boilers since the 

ash content in the fuel is low. The flow of smelt in a recovery boiler is considerably 

higher and it leaves the boiler at a high temperature. Instead of an effective heating 

value, a net heat value (NHV) is used for recovery boilers in (3). The net heat value is 

the lower heating value for the black-liquor corrected with the energy to the reduction 

process [11], 

 

RCDhLHVNHV SR ⋅⋅⋅−=
32
78

, (5) 

 

where the heat for reduction (DhR) is 13.1 MJ/kgNa2S and CS is the sulphur content. The 

efficiency of reduction (R) is expressed as [11], 

 

422

2

SONaSNa
SNa

R
+

= . (6) 

 

Mass-flow of combustion-air ( airm� ) are then calculated using the fuel mass-flow and air 

quantity from the combustion calculation, 

 

fuelair mam �� ⋅= . (7) 
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In a similar way, the mass-flow of smelt ( smeltm� ) is computed from smelt quantity and 

fuel mass-flow, 

 

fuelsmelt msm �� ⋅= . (8) 

 

In the current application, the combustion-air ratio (a) is about 4.1 kg air per kg fuel 

and the smelt ratio (s) is about 0.26 kg smelt per kg fuel. 

 

The flue-gas flow is calculated using an energy balance over the economisers. Heat 

transferred (Peconomiser) is determined on the feed-water side. Specific heat capacity (cp 

flue-gas) and temperature difference of the flue gas (tflue-gas in - tflue-gas out) gives the flue-gas 

mass-flow as 

 

�
�

�
�
�

� −⋅
=

−−−

−

outgasflueingasfluegasfluep

economiser
gasflue

ttc

P
m� . 

(9) 

 

The specific heat capacity is determined from flue gas temperature and composition. 

 

3.3 Signal diagnostics 

Uncertainty in process signals and calculated values are represented in the Bayesian 

network as a signal or calculation node. The node is connected as a child to the node 

representing the real value together with a node representing the signal or calculation 

status [14], see Figure 4. 
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The signal status node has the states "normal" and "faulty". If the state of the signal 

status node is "normal", the process signal node is Gaussian distributed with a mean of 

the real value and a standard deviation representing the measurement precision. When 

the signal status is "faulty", the standard deviation in the signal node is changed to a 

significant lager value, covering the entire signal range. For the current process signals 

it was found suitable to increase the standard deviation with a factor of ten. 

 

3.4 Mass balance in Bayesian network 

The mass balances on both the combustion side (1) and the steam side (2) of the boiler 

are defined in a Bayesian network. All mass flows are represented with continuous 

nodes and forms a structure of intermediate nodes.  

 

A discrete node with the states "none" and "leakage" connects the two mass balances, 

see Figure 5. The upper part is representing the steam-side balance and the lower part 

the combustion side balance. The soot-blow flow is also connecting the two mass 

balances. When the state of leakage is "none", the node has no impact on flue-gas and 

high-pressure steam. When the state is "leakage", a flow is added to the mean value of 

the flue-gas and subtracted from the mean value of high-pressure steam.  

 

In particular (see Figure 5), equation (1) is modelled in the node gasfluem −�  and equation 

(2) is modelled in the node steamhpm −� . Equations (3) - (9) are parts of the nodes 

representing calculated values. For all nodes representing signals and calculated values, 

the status handling described in Section 3.3 is applied. 
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All mass-flow nodes are defined as intermediate nodes, see Figure 3. The signals and 

calculated values are interpreted as symptoms. Leakage and status nodes are defined as 

fault nodes. If the signal and calculated values are added into the network, and the 

network is propagated, the probabilities of leakage and signal status are obtained. The 

leakage probability is then used to assess if there is a possible leakage or not. 

 

If available, other observations such as acoustic, blow-down analysing or image leak 

detection can be inserted as nodes connected to the leakage node. The studied recovery 

boiler has none of these leak detection systems installed. 

 

4 Results 

The Bayesian network defined in Section 3.4 is applied to process history data from a 

recovery boiler at Vallviks Bruk, Sweden. The data is from operation at varying load 

conditions during a time period of three months.  

 

Three different cases have been evaluated; 

• normal operation, 

• test with simulated leakage, and 

• test with fault in signals. 

 

Since data from operation with a leaking boiler is not available, a simulation model has 

been developed. The software Prosim [15] is used to build a model with possibility to 

simulate leakage in four components; furnace wall, super-heater, convection section 

and economiser. Prosim is a thermal power plant simulator. The software includes 
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general modules for conventional thermal power plants and specific modules for 

recovery burning.  

 

4.1 Normal operation 

A test with data from normal process operation is verifying the indirect calculation of 

liquor flow, etc. The results are shown in Figure 6. Case number 1-29 are from normal 

load operation and case number 30-34 are from low load operation. 

 

The leakage probability is below 7 % during normal load conditions. In the low load 

cases, the probability is between 13 and 18 %. This indicates that the indirect fuel mass 

flow calculation is not enough accurate under low load conditions. 

 

4.2 Simulated leakage 

Real plant operation data are used as input to the model and a leakage is simulated. 

Output from the model is used to determine the probabilities of lakage for a leakage 

flow of 0.25, 0.5 and 1 kg/s, respectively. Figure 7 depicts the results. 

 

A calculation without leakage gives a leakage probability of about 5 %. Simulation 

with 0.25 kg/s leakage results in a significant leakage probability for all components 

(above 20 %). The probabilities increase when the leakage flow increases to 0.5 kg/s. If 

a leakage of 1 kg/s is simulated in the economiser or convection section, the leakage 

probabilities are continuing to increase. A simulated leakage of 1 kg/s in the furnace or 

super-heater is resulting in a decreasing leakage probability. The reason for this may be 
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that the network finds it more probable that a signal is faulty when the leakage is in the 

furnace or super-heater. 

 

4.3 Fault in signals 

A bias is added to the process signals one at the time to simulate a fault in the signal, 

see the results in Figure 8. 

 

The feed-water flow and black-liquor dry substance is the most important signals. A 

fault in one of these signals can make the early-warning system indicating leakage 

probabilities over 15 % and thereby generating false warnings. Faults in the other 

signals result in a leakage probability below 10 %. 

 

The performance of the system is shown in Table 1, where the average leakage 

probability of normal operation is compared to cases with 0.25 kg/s leakage flow and 

cases with signal faults of ±2 %. In the table, we see that the leakage probability is 

below 15 % during normal operation for both normal and low load. A leakage of 0.25 

kg/s results in a leakage probability of about 25-30 %. A signal fault may cause a high 

leakage probability when the current sensor is measuring feed-water flow or black-

liquor dry substance. 

  

5 Conclusions 

Early-warning for fault detection in a recovery boiler was considered. A methodology 

based on mass balances in a Bayesian network was developed. The early-warning 
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system was tested on real plant data from normal operation combined with simulations 

to derive leakage cases. 

 

The results show that normal load operation gives a leakage probability below 10 %. A 

simulated leakage of 0.25 kg/s gives a leakage probability of about 25 %. This means, 

during normal operation, that an early-warning can be generated when the leakage 

probability exceeds 10 % without generating false alarms. A fault in measurement 

signals can cause a leakage probability of more than 10 %, but only when the relative 

fault in the signal is large. The detection level and reliability are depending on the 

measurements on feed-water flow and black-liquor dry substance. 

 

A limit for early-warning when the leakage probability exceeds 20 % can help the 

operator to be aware of that something is wrong, possibly a leak in the boiler. Further 

investigations can then be done to assess if it is a leakage or not. The ability to combine 

the mass-flow balance with other leakage detection methods in the Bayesian network is 

a possible way to further improve the warning sensitivity and reliability. 

 

The method with mass balances formulated in a Bayesian network is an efficient tool to 

analyse the balances and warn the process operator if the leakage probability becomes 

too high. Integrating signal diagnosis in the network structure makes the system robust 

to minor signal faults. Early-warning for a recovery boiler is one application in which 

the method is applicable, but it can also be generalized to other applications, e.g. screen 

clogging, hang-ups or sintering. 
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Figure 1. Recovery boiler. 

 

 

 

 

 

 

Figure 2. Bayesian network and the conditional probability table for node B. 
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Figure 3. Principal construction of Bayesian network for diagnostics. 

 

 

 

 

 

 

 

 

 

 

Figure 4. Real value node and signal status node connected to process signal node. 
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Figure 5. Bayesian network for diagnosis of a recovery boiler. 

 

 

 

 

Figure 6. Test with data from real cases. 
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Figure 7. Test with simulated leakage flows in four positions. 

 

 

 

 

 

Figure 8. Test with simulated fault in signals. 
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Leakage 
Tested case Case status 

probability [%] 

Normal load 1.61 
Normal operation 

Low load 12.1 

Furnace 23.8 

Convection section 26.2 

Economiser 26.7 
Leakage 

Super-heater 30.1 

Feed-water flow 21.2 

High-pressure steam flow 8.71 

Soot-blow steam flow 5.63 

Flue-gas temperature 12.1 

Black-liquor flow 8.69 

Signal fault 

Black-liquor dry substance 19.8 
 
Table 1. Comparison of results. 

 


