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Theoretical and experimental study of heat transfer through a vertical 

partitioned enclosure: application to the optimization of the thermal 

resistance 

V. Samboua,b, B. Lartigue*a, F. Monchouxa, M. Adjb 

aP.H.A.S.E., Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 9, France 

bL.E.A., Ecole Supérieure Polytechnique, BP 5085 Dakar Fann, Sénégal 

 

Abstract 

Enclosures divided by multiple vertical diffusive partitions have high insulating qualities and may 

provide tangible benefits as a construction material. In this study, we have developed one-

dimensional analytical model of coupled heat transfer (conduction, convection, radiation) in such 

enclosures. This model is numerically and experimentally validated for an important number of 

configurations and size of alveolus. The variation of the thermal resistance versus the number of 

partitions has been experimentally validated. The model is then used to find the partitions number 

that maximizes the thermal resistance of a partitioned enclosure. Effects of thermal and geometrical 

parameters on the maximal thermal resistance of the partitioned enclosure have been also 

investigated. We have shown that the thermal resistance could be improved by decreasing the 

thermal conductivity of walls; decreasing the emissivity of the partitions faces; or using very thin 

partitions. The use of relatively thick exterior vertical walls marginally degrades the optimal thermal 

resistance while at the same time increases the thermal inertia. The combination of the different 

parameters gives a set of solutions when one desires to obtain precise characteristics for an 

insulating envelope. The presented model can help to determine the most suitable combination of 

parameters allowing to get the desired maximal thermal resistance.

                                                 
* lartigue@cict.fr 
Tel: +33.5.61.55.69.94 ; fax: +33.5.61.55.81.54 
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1. Introduction  

Residential and commercial buildings represent 46% of the total energy consumption in France [1], 

becoming the first final energy consuming. Corresponding greenhouse gas emission represents a 

quarter of the total emission. The Kyoto protocol aims reduce energy consumption and greenhouse 

gas emissions in residential as well as commercial buildings. As a consequence, in its thermal 

standards, the building code recommends industrial development of products with strengthened 

thermal insulation for opaque building walls [2]. Yet, high insulation which decreases heating energy 

during winter period leads to overheating during hot days. To overcome this phenomenon using 

thermal inertia is an efficient way [3]. Construction materials with non-localized insulation aim to 

have this double property: they both are insulating materials and have a high heat capacity that 

increases thermal inertia of the building. Among these materials, alveolar materials have an 

important place. 

Enclosures with vertical partitions may describe such construction material [4]. They have been 

efficiently used to reduce conduction, convection and radiation heat transfer. In addition to alveolar 

materials, other engineering applications recover from such a system, like alveolar solar collectors, 

cryogenic storage, etc. 

Laminar natural convection in differentially heated rectangular cavities has been studied extensively 

[5, 6]. More recently, several works outline the decrease of heat transfer using partitioned 

enclosures. Andersen and Bejan reported in [7] the decrease of the overall heat transfer in single 

and double partitioned enclosure, both theoretically and experimentally. Other studies focus on the 

only natural convection heat transfer in enclosures divided by one [8, 9] or multiple [10] non-

diffusive partitions, showing that partitioned enclosures compare favorably with fully insulating the 

enclosure with a porous material [8]. The coupled conduction-convection heat transfer is studied 

when considering thick partitions by Ho and Yih [11] in a single partitioned enclosure as well as by 

Kangni et al.[12] and Turkoglu and Yücel [13] in multiple partitioned enclosures. These studies 

mainly emphasize the decrease of heat transfer by reducing the size of the alveolus. Radiation heat 
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transfer is rarely taken into account although it is as important as the convection heat transfer. The 

complexity of three-dimensional coupled heat transfer as well as the complexity of the geometry of 

alveolar materials make difficult to optimize these products.  

In this study, we have established an analytical model of conduction-convection-radiation heat 

transfer for an enclosure with multiple vertical diffusive partitions, representing more closely real 

applications. The performances of the system calculated with the analytical model have been 

compared with both the results of a numerical model and experimental results. The validated 

analytical model is then used to evaluate the sensitivity of geometrical parameters and thermal 

properties to the thermal resistance. 

 

2. Heat transfer through partitioned enclosures 

2.1 Geometry  

The studied system is a two-dimensional partitioned enclosure of internal height H, internal width L 

and a supposed infinite depth (Fig. 1). The four external walls of the enclosure have a thickness ew. 

N partitions of thickness ep are equally placed in the enclosure. The enclosure has therefore (N+1) 

alveolus of thickness ea calculated by: 

p
a

L N e
e

N 1

−
=

+
      (1) 

 

2.2 One-dimensional analytical heat transfer model 

Constant uniform temperatures TH and TC are imposed at external surfaces of vertical walls. Heat 

transfer is supposed one-dimensional in the enclosure. The enclosure is segmented into three 

visible parts on Fig. 1. The heat transfer is evaluated for a unit length in the Oy direction. 

 

2.2.1 Heat transfer through horizontal walls (parts 1 and 3) 

In parts 1 and 3 the thermal conduction resistance is calculated using: 

h c w
1 3

w w w

T T L 2e
R R

Q k e
− +

= = =     (2) 
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where kw is the thermal conductivity of the walls. 

 

2.2.2 Heat transfer through the alveolus (part 2) 

In the part 2, heat flow calculation should be computed taking into account either conduction or 

convection occurring in the alveolus, as well as radiation between the alveolus faces. 
ihT  and 

icT  

are hot and cold faces temperatures of the alveolus i, respectively.  

� If heat flux through the alveolus occurs by conduction, calculation is performed with: 

i i

i

h c
cd a

a

T T
Q k H

e

−
=      (3) 

� If the heat flux is convective, it is then given by: 

i i

i

h c
cv a i

a

T T
Q k Nu H

e

−
=      (4) 

The Nusselt number in the alveolus i (Nui) is given by Bejan correlation [6]: 

1 14
i iNu 0.364 Ra A−=      (5) 

where Rai is the Rayleigh number and Ai the aspect ratio of the alveolus i. 

( )i ih c 3
i i

i i

T T
Ra g H

−
= β

α ν
 and 

a

H
A

e
=     (6) 

where �βi is the thermal expansion coefficient; αi the air thermal diffusivity and νi the air kinematic 

viscosity calculated at i i

i

h c
m

T T
T

2

+
= . 

� Calculation of the radiation heat transfer in the cavities supposes that air is a non-participant 

media, and that the radiative exchange of horizontal faces is negligible. Vertical faces are assumed 

to be perfectly diffuse with a constant emissivity coefficient. Then, radiation flux between cold and 

hot faces of the alveolus i is given by: 

( )i i i irad rad h cQ h H T T= −       (7) 

The radiative coefficient 
iradh  is given by [14]: 
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i i

i i

i i

3
rad m

h c

h c hc

1
h 4 T

1 1 1
F

= σ
� �− ε − ε

+ +� �
� �ε ε� �

    (8) 

where 
ihε  and 

icε  are the emissivity coefficients of hot and cold faces of alveolus i, respectively; 

Fhc is the view factor; 
imT  is the mean temperature in the alveolus i. 

� The global heat flux through the alveolus i is therefore given by: 

( )i i i ig g h cQ h H T T= −      (9) 

with 
( )

i i

a a i
g r

a

max k ;k Nu
h h

e
= +     (10) 

Heat flux through the left and right external vertical walls of the envelope is given respectively by: 

( )1

1

h h
w w

w

T T
Q k H

e

−
=  and 

( )( )N 1

2

c c

w w
w

T T
Q k H

e
+

−
=  (11) 

Similarly, the flux through a partition j is given by: 

( )( )j j 1

j

c h

p p
p

T T
Q k H

e
+

−
=       (12) 

Finally, using the conservation of the flux in steady state, the total flux can be calculated from the 

temperature difference (Th-Tc) by: 

( )

i

h c
tot N 1

pw

w p gi 1

T T
Q H

ee 1
2 N

k k h

+

=

−
=

� �
+ +� �

� �
� �

�
    (13) 

ihT , 
icT  and totQ  computation is made by solving iteratively equations (10) to (13). Thermal 

resistance of the part 2 is then given by: 

( ) i

N 1
pw

w p gi 1h c
2

tot

ee 1
2 N

k k hT T
R

Q H

+

=

� �
+ +� �

� �− � �= =
�

   (14) 

 

2.2.3 Total resistance of the whole partitioned enclosure 
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The total resistance of the whole enclosure is determined with the thermal resistances R1, R2 and 

R3 in parallel. The total resistance for a unit of surface (rtot) is therefore given by: 

( ) 1 2 3
tot w

1 2 1 3 2 3

R R R
r H 2e

R R R R R R
= +

+ +
   (15) 

 

2.3 Two-dimensional numerical heat transfer model in partitioned enclosure 

� Actually, as soon as the convection takes place in alveolus, heat transfer is two-dimensional. The 

proposed numerical model consists in computing Navier-Stockes and energy equations. Using the 

Boussinesq approximation to account for density variation (in vertical direction), the steady state 

laminar non-dimensional continuity and momentum equations can be written as: 

U W
0

X Z
∂ ∂+ =
∂ ∂

      (16) 

1
2 22

2 2

1
2 22

2 2

U U P Pr U U
U W

X Z X Ra X Z

W W P Pr W W
U W

X Z Z Ra X Z

�
� �∂ ∂ ∂ ∂ ∂� �	 + = − + +� �� � � �	 ∂ ∂ ∂ ∂ ∂� �	 � �



	 � �∂ ∂ ∂ ∂ ∂� �	 + = − + + + θ� �� � � �∂ ∂ ∂	 ∂ ∂� � � ��

 (17) 

( )
2 21

2
2 2

U W Ra Pr
X Z X Z

− � �∂θ ∂θ ∂ θ ∂ θ+ = +� �� �∂ ∂ ∂ ∂� �
   (18) 

where U and W are the dimensionless velocity components in the x and z direction, respectively. P 

and θ are the dimensionless pressure and temperature. Dimensionless parameters are defined as: 

x
X

H
= ;

z
Z

H
= ;

0

u
U

W
= ;

0

w
W

W
=  with ( )0 0 h cW g T T H= β −  

2
0

p
P

W
=

ρ
; 0

h c

T T
T T

−
θ =

−
 with h c

0
T T

T
2
+

=  

Pr is the Prandtl number defined as a

a
Pr

ν
=

α
 

� Radiation between alveolus faces is calculated using the discrete ordinates method. Air in the 

alveolus is supposed semi-transparent non-diffusing medium with very small absorption coefficient. 
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Alveolus faces are assumed to be opaque and perfectly diffuse for the infrared radiation. The 

radiative flux leaving the surface of an alveolus face is given by: 

( ) 4
rad in Sq = 1-� q +��T      (19) 

where the incident radiative heat fluxψψqin can be given by solving the radiative transfer equation 
(RTE) [15].  
 
� In solid parts the two-dimensional steady state heat transfer is governed by:  

2 2

2 2
0

X Z

∂ θ ∂ θ+ =
∂ ∂

      (20) 

with the following boundary conditions: 

( ) 1
0, Z

2
θ =  ; 

L 1
, Z

H 2
� �θ = −� �
� �

 ; 
Z 0

0
Z =

∂θ =
∂

 ; 
w2e

Z 1
H

0
Z = +

∂θ =
∂

 (21) 

A uniform, tight (401 x 603) (X,Z) grid - ensuring independence of the solution on the grid size - is 

used.  The set of equations was computed using the computational fluid dynamics software Fluent 

[16], based on the finite volumes method. In order to compare the results with those of the 

analytical model, the mean temperature is calculated at alveolus faces by: 

( )
w

w

e
1

H
m e

H

(X) X, Z dZ
+

θ = θ�     (22) 

Average Nusselt number in an alveolus is calculated from: 

w

w

e H

cv
e

cv
ref

1
q (z)dz

HNu
q

+

=
�

    (23) 

where refq  is the average conduction heat transfer in the case where convection does not develop. 

cvq (y)  is the local parietal flux, calculated as: 

( )i i '
cv a

T (z) T (z)
q (z) k (z)

x

−
=

∆
    (24) 

where Ti(z) is the temperature of the face i and Ti’(z) is the temperature of the very close node in the 

viscous air layer. 

Similarly, radiative Nusselt number is defined by: 
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w

w

e H

rad
e

rad
ref

1
q (z)dz

HNu
q

+

=
�

    (25) 

where radq (y)  is the local radiation flux at the alveolus face. 

In order to validate the numerical code, one reproduces in Table 1 results of Wang et al. [17] for an 

air-filled square cavity differentially heated in which natural convection is coupled with radiation. 

Results of other authors [18] on a same square cavity in which only convection is studied are also 

reported. The agreement is good: the maximal deviation with [17] in Nusselt number is 1%. 

 

2.4 Experimental study 

A PVC partitioned enclosure has been built (Fig. 2a). Internal dimensions of the enclosure are 

H=0.184 m, L=0.285 m and 0.275 m of depth. External walls have a thickness ew=0.008 m. 1 to 47 

vertical partitions of thickness ep=0.003 m are placed between the vertical walls of the enclosure, 

creating therefore different configurations from 2 to 48 equal width alveolus. Thermal properties of 

the solid parts are the thermal conductivity of the PVC [2] ( 1 1
w pk k W.m .K− − = = 0.17 ) and the faces 

emissivity (�=0.9). Physical air properties are βi = 3.49 10-3 K-1, αa =1.96 10-5 m2.s-1, νa =1.46 10-5 

m2.s-1.  

When it is possible, thermocouples (type K) are placed on each partition at points A, B, C and D as 

indicated on Fig. 2b. Points of measures A to C permit to highlight the temperature stratification on 

Oz direction. Measures on points B and D are used to check the two-dimension of the problem. The 

thermocouples are standardized and the temperature uncertainty is estimated to 0.3K. Heat transfer 

through the partitioned enclosure is experienced in a calibrated hot-box (Fig. 3). Two highly 

insulated chambers are clamped tightly together to surround the test enclosure. The cold and hot 

chambers are metering and thermally controlled. Two fluxmeters (100 x 100 mm2) are placed on the 

hot and cold sides of the enclosure. The fluxmeter precision given by the constructor is 5%. The 

climatic chamber is the one used for U-value measurements of a whole wall according to the 

standard ISO 8990 [19]. The apparatus has been modified for the characterization of a single brick 
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[20].  

Temperatures and parietal flux are regularly measured with a datalogger driven by a computer until 

the steady state is reached. The experimental thermal resistance of the partitioned enclosure is 

determined by: 

exp exph c
exp

exp

T T
r

q

−
=      (26) 

where 
exphT  is the average hot face temperature, 

expcT  is the average cold face temperature and 

qexp the average parietal flux measured on the hot face and on the cold face. 

Table 2 reports the problem parameters of the seven configurations of the partitioned enclosure 

experimentally studied, i.e. the partitions number N, the aspect ratio A of a cavity and the 

temperature difference (Th-Tc) of the whole enclosure. The temperature difference values are 

imposed by the experiments. These configurations have been chosen to characterize different 

modes of heat transfer, as can been shown on Fig. 4. Indeed, according to Yin et al. [21] and 

Batchelor [22], pure conduction occurs in the cavities of configurations A to D while established 

convection regime is expected for configurations F and G. Configuration E is in the transition zone. 

 

3. Validation of the analytical model 

Although all the 7 configurations of the enclosure have been numerically and experimentally 

studied, only results of configurations G (N=3, Th-T c =23.2 K) and D (N=11, Th-Tc =29.7 K) are 

presented in detail, since they are characteristic of two different flow regimes (Fig. 4) in air-filled 

cavities.  

 

3.1 Numerical validation 

Tables 3 and 4 report convective and radiative analytical Nusselt numbers. In the enclosure G, 

Nucv>>1 (Table 3) in all alveolus indicates that convection develops. Radiative flux represents 2/3 of 

the total heat transfer. In the enclosure D, convection is slight with cvNu 1≅  (Table 4). Radiative flux 

is still higher than the convective one. These results show the predominance of radiative flux over 
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convection in alveolus. This is due to the high emissivity of the material (PVC) used here and to the 

low local Rayleigh number in cavities (about 1.9 105 for case G and 2.3 103 for case D). Therefore 

one can not study this type of enclosure without taking into account the radiation [23]. 

The analytical model allows to compare contributions of radiation and convection. If temperature 

difference in cavities is low, i.e. Th close to Tc or N high (configurations A to D), convection does not 

occur. Only conduction heat transfer occurs in air cavities. Radiation and the conduction heat 

transfer vary simultaneously with the temperature difference in cavities and the ratio between them 

remains more or less constant. Moreover, if the temperature difference in cavities increases 

sufficiently - it occurs theoretically when (Th-Tc) reaches a limit value and/or when N is low 

(configurations F and G) - convection takes place in cavities. The convection heat flux increases 

more rapidly than the radiative one until the two modes balance.     

In Fig. 5 numerical isotherms contours are plotted for configurations G and D, respectively. In 

addition to the expected two-dimensional flow, these patterns also confirm the complete 

establishment of the convection in the enclosure G contrarily to the enclosure D, in accordance with 

the prediction of the diagram on Fig. 4. 

Tables 5 and 6 present radiative and convective numerical Nusselt numbers in the alveolus of the 

enclosures G and D, respectively. The numerical values of Nurad are very closed to the analytical 

ones. The maximal difference is 1.3%. On the other hand, the numerical values of convection 

Nusselt numbers are lower than those obtained analytically. The maximal difference is 25% for 

enclosure G and 18% for enclosure D. This maximal difference takes place in the first and last 

cavities for the two cases. The analytical model overestimates the convection heat flux in cavities. It 

is due to the fact that Bejan correlation used here is established for cavities with isotherm faces. 

When convection decreases, the temperature stratification decreases on the faces of cavities and 

the difference between Nucv given by the two models decreases and tends to zero when convection 

stops.  

Analytical, numerical and experimental dimensionless mean temperatures at alveolus faces are 

plotted in Fig. 6. These graphs show a great agreement between analytical and numerical 
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temperatures. Indeed, the maximal difference between analytical and numerical temperatures is 

about 0.1K for both enclosures G and D. 

Except the values of Nucv presenting a non negligible difference when convection develops, the 

numerical results match the analytical ones; this is a first validation of the analytical model. 

 

3.2 Experimental validation 

Fig. 6 compares also analytical and experimental dimensionless temperatures at alveolus faces. 

These graphs show a good agreement between analytical and experimental results. The maximal 

difference between analytical and mean experimental temperatures is 0.6K for enclosure G and 

0.9K for enclosure D. Although these maximal values are higher to the uncertainty of the 

thermocouples estimated to 0.3K, the results shown here can be considered as another validation 

of the analytical model. 

Fig. 7 presents dimensionless temperatures at points A, B and C placed on a vertical line on 

partitions for the partitioned enclosure G and D. These graphs show measured temperature 

stratification on alveolus faces, confirming the two-dimension of the temperature field. The maximal 

temperature difference between points A and C is 2.9 K for enclosure G and 2.5 K for enclosure D. 

The mean value of this difference is 2 K for enclosure G and 1.5 K for enclosure D. These values 

confirm that convection is more established in enclosure G than in enclosure D. 

In order to determine the importance of the three-dimension of the problem, Fig. 8 presents 

dimensionless experimental temperatures at points B and D placed on a horizontal line on partitions 

for the partitioned enclosures G and D . These temperatures are practically the same. Indeed, the 

maximal temperature difference between points B and D is 0.3 K for enclosure G and 0.9 K for 

enclosure D. For enclosure D, only two values of the temperature difference between points B and 

D are superior to the thermocouple uncertainty. These values are erroneous. These results show 

that the third dimension according y does not intervene in the heat transfer in the enclosure even 

with a small partitions number. This remark justifies limiting the numerical study to two-dimensional 

model. 
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3.3 Comments 

The analysis of numerical and experimental results allows us to use with confidence the analytical 

model presented in 2.2, to describe heat transfer through the partitioned enclosure.  

Indeed, this analytical model is a simplified expression of the two-dimensional modeling of the 

thermal transfer in enclosures. Radiation heat transfer calculation takes into account the geometry 

of the alveolus through the view factor Fij. The aspect ratio is sufficiently high to neglect the 

horizontal side effects. The two-dimensional aspect of the convection heat transfer is taken into 

account with the aspect ratio in Bejan relation [6]. The radiation has the effect to attenuate 

temperature stratification on faces and then justifies the validity of the use of Bejan relation. In the 

case of conduction heat transfer – preponderant when convection does not occur – only the 

presence of horizontal walls causes the two-dimensionality of heat transfer. The thickness of these 

walls is very low in relation to the height of the cavity; therefore, the heat flux through these 

horizontal walls is very small in comparison with the one through the partitioned enclosure. 

The model is therefore validated, regardless of the number of partitions placed in the enclosure. A 

later validation will be performed with the determination of the number of partitions that maximizes 

the thermal resistance of the material. 

 

4. Application: optimization of the thermal resistance 

4.1 Maximal thermal resistance 

Thermal resistance through alveolar material as described above varies with the number of 

partitions. Indeed, the increase of the number of partitions reduces radiative and convective flux in 

alveolus. On the other hand, this increase furthers conduction in the solid parts of the enclosure. 

Therefore limiting heat transfer through the material implies to find the optimal partitions number 

leading to the maximal thermal resistance. This calculation is made theoretically using the analytical 

model of the partitioned enclosure that has been validated. Experimental determination is made by 

measuring the thermal resistance of the enclosure in configuration A to G. 

Fig. 9 shows the variation of the thermal resistance versus the number of partitions. Bars of 
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experimental resistance uncertainty are added in the graph. This curve shows a good agreement 

between theory and experiments. The existence of a maximum indicates that there is an optimal 

number of partitions that induces a maximal thermal resistance.  

The maximal thermal resistance achieves a compromise between two phenomena: the conduction 

and the radiation heat transfer. Indeed, the more the number of partitions, the more conduction heat 

flux since the partitions are more conductive than air. Thus, the conduction thermal resistance 

decreases when N increases. On the other hand, the addition of a partition causes a reduction of 

the temperature difference in cavities and therefore the radiation heat transfer decreases. Then the 

radiation thermal resistance increases with N. The thermal resistance being the sum of two values 

varying in an opposite way with N, it exists an optimal number of partitions for which this resistance 

is maximal. 

This number of partitions is equal to 45 in our case (PVC enclosure). The optimal number of 

partitions obtained with the analytical model is constant if the temperature difference (Th-Tc) varies 

over a constant mean temperature value; it increases slowly with the mean temperature. The 

optimal number varies with different parameters as shown in following.  

 

4.2 Case of a construction material: influence of parameters  

The validated analytical model has been then used to determine the thermal resistance of an 

enclosure made with a construction material. A parametric study for the partitioned enclosure has 

been made according to the thermal conductivity of the material of the enclosure (Fig. 10a), the 

emissivity of alveolus faces (Fig. 10b), the thickness of partitions (Fig. 10c) and the vertical wall 

thickness of the enclosure (Fig. 10d). The geometry of the enclosure is the same described in Fig. 

1. The considered parameter only varies. 

 

4.2.1 Thermal conductivity of the partitioned enclosure 

Fig. 10a illustrates the influence of thermal conductivity of the material of the partitioned enclosure 

on the optimal number of partitions. The graphs outline two phenomena. First, the optimal number 
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of partitions slightly decreases to a limiting value when the thermal conductivity increases. The 

limiting value is 40 partitions corresponding to an alveolus thickness of about 0.004 m for our case. 

Material thermal conductivity has a small influence on the optimal number of partitions (from 40 to 

43 in Fig. 10a), but of course a great one on the thermal resistance which increases (from 1.2 to 3.6 

m2.K.W-1) when thermal conductivity decreases. Secondly, when k is high, the variation of the 

thermal resistance presents a tray around the optimal value. Indeed, as soon as the convection 

stops in cavities, the reduction of radiation by addition of a partition has the same order of 

magnitude than the increase of conduction flux. Therefore, the total heat flux varies slowly. For 

instance, for the case of − −= 1 1k 2.2W.m .K , the optimal number could be reduced of half without the 

thermal resistance is modified. 

 

4.2.2 Walls and partitions emissivity 

In order to model a classic brick, material is considered to be terra cotta (k=1.04 W.m-1.K-1). Fig. 

10b shows that the diminution of the alveolus faces emissivity improves the optimal thermal 

resistance of the enclosure. This result is predicable due to the fact that radiation represents the 

highest part of heat transfer in alveolus. It is worth noting that the optimal number of partitions 

decreases quasi linearly with the emissivity. The emissivity variation from 0.9 to 0.1 decreases the 

optimal number of partitions from 40 to 16 corresponding to an increase of the alveolus thickness 

from 0.004 m to 0.014 m. The aspect ratio A decreases from a value of 46 to 13.2. The diminution 

of the partitions number can constitute an economy on the material used for the manufacture. 

 

4.2.3 Thickness of partitions  

Considered material is still terra cotta. The partitions thickness has a strong influence on the 

thermal resistance of the enclosure when the partitions number is high (Fig. 10c). This influence is 

weak when the partitions number is low because the quantity of material is small in this case. The 

optimal resistance decreases when the partitions thickness increases. This result is predicable 

because by increasing the partitions thickness one increases the contribution of conduction in the 
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solid parts into the total heat transfer through the whole enclosure. The use of thin partition 

improves the thermal resistance. For example, using partitions of 0.001 m of thickness instead of 

0.003 m partitions increases the optimal resistance of about 20%.  

 

4.2.4 Thickness of vertical external walls 

Fig. 10d shows that the increase of the thickness of external vertical walls of the partitioned 

enclosure has a modest influence on the resistance. Indeed, the use of vertical walls of 0.020 m of 

thickness instead of 0.008 m reduces the maximal thermal resistance only about 4%. This result is 

important because it shows that one can improve the thermal inertia of the partitioned enclosure by 

increasing only the vertical wall thickness without degrading very significantly the thermal 

resistance. 

 

5. Conclusion 

A one-dimensional analytical electrical analogy model-based can be used to evaluate correctly 

thermal performances such as the thermal resistance of partitioned enclosures where heat transfer 

is two-dimensional. Prominent role of the radiative transfer in partitioned enclosures, which is 

commonly neglected, has been established. The analytical model validated by experiments is used 

to determine the number of equally distributed partitions that minimizes heat transfer. We have 

shown that the thermal resistance of the partitioned enclosure could be improved by decreasing the 

thermal conductivity of the partitions; decreasing the emissivity of walls; or by using very thin 

partitions. Finally, the use of relatively thick external vertical walls marginally degrades the maximal 

thermal resistance while at the same time increases the thermal inertia.  

The combination of the different parameters gives a set of solutions when one desires to obtain 

precise characteristics for an insulating envelope. The space is sufficiently large to overcome 

economic and technical constraints that accompany the elaboration of a product. The presented 

model can help to determine the most suitable combination of parameters allowing to get the 

desired maximal thermal resistance.
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Nomenclature 

A alveolus aspect ratio 

e thickness (m) 

g acceleration due to gravity (m.s-2) 

H height (m) 

h convective coefficient (W.m-2.K-1) 

k thermal conductivity (W.m-1.K-1) 

L width (m) 

N partition number 

Nu  Nusselt number �
�
�

�
�
�
�

� ⋅
=

ak
aeq

Nu  

P dimensionless pressure 

Pr Prandtl number 

Q flux (W) 

q heat flux density (W.m-2) 

R Thermal resistance (K.W-1) 

r surfacic thermal resistance (m2.K.W-1) 

Ra Rayleigh number 

T temperature (K) 

u, v, w velocity components (m.s-1) 

U, V, W dimensionless velocity components 

x, y, z Cartesian coordinates (m) 

X, Y, Z dimensionless Cartesian coordinates  

 

 

Greek letters 

α thermal diffusivity (m2.s-1) 

β thermal expansion coefficient (K-1) 

ε emissivity 

ν kinematic viscosity (m2.s-1) 

θ dimensionless temperature 

σ Stefan Boltzmann Constant 

 

Subscripts 

a air 

h hot 

cv convective 

c cold  

exp experimental 

g global 

in incident 

m mean 

p partition 

rad radiative 

ref reference 

s surface 

tot total 

w wall 
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Figures 

 

 
Fig. 1: Studied partitioned enclosure  
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(a)

(b)
 

Fig. 2: Experimental enclosure (a) and thermocouples positioning on a partition (b) 
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Fig. 3: Climatic chamber  
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Fig. 4: Conduction - convection limits in an air-filled rectangular enclosure 
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(a)

(b)  
Fig. 5: Dimensionless numerical isotherms in the enclosure G (N=3, Th-Tc=23.2 K) (a) and in the 

enclosure D (N=11, Th-Tc =29.7 K) (b) 
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(a)

(b)  
Fig. 6: Analytical, numerical and experimental mean dimensionless temperatures in the enclosure G 

(N=3, Th-Tc=23.2 K) (a) and in the enclosure D (N=11, Th-Tc =29.7 K) (b) 
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(a)

(b)  
Fig. 7: Evidence of stratification through dimensionless experimental temperatures in enclosure G 

(N=3, Th-Tc=23.2 K) (a) and in enclosure D (N=11, Th-Tc =29.7 K) (b) 
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(a)

(b)  
Fig. 8: Evidence of non 3-dimensionnal heat transfer with dimensionless experimental temperatures 

in the enclosure G (N=3, Th-Tc=23.2 K) (a) and in the enclosure D (N=11, Th-Tc =29.7 K) (b) 
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Fig. 9: Thermal resistance rtot versus partitions number N 
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(a) (b)

(c) (d)  
Fig. 10: Thermal resistance rtot vs partitions number N for several materials (a), for several walls 

emissivities (b), for several partitions thicknesses (c) and for several external vertical walls 

thickness (d)  
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Figures caption 

Fig. 1: Studied partitioned enclosure  

Fig. 2: Experimental enclosure (a) and thermocouples positioning on a partition (b) 

Fig. 3: Climatic chamber  

Fig. 4: Conduction - convection limits in an air-filled rectangular enclosure 

Fig. 5: Dimensionless numerical isotherms in the enclosure G (a) and in the enclosure D (b) 

Fig. 6: Analytical, numerical and experimental mean dimensionless temperatures in the enclosure G 

(a) and in the enclosure D (b) 

Fig. 7: Evidence of stratification through dimensionless experimental temperatures in enclosure G 

(a) and in enclosure D (b) 

Fig. 8: Evidence of non 3-dimensionnal heat transfer with dimensionless experimental temperatures 

in the enclosure G (a) and in the enclosure (b) 

Fig. 9: Thermal resistance rtot versus partitions number N 

Fig. 10: Thermal resistance rtot vs partitions number N for several materials (a), for several walls 

emissivities (b), for several partitions thicknesses (c) and for several external vertical walls 

thickness (d)  
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Tables 

Table 1: Comparison of Nusselt numbers for a differentially heated square cavity (Ra=106)  

 De Vahl 

Davis [21] 

Le Breton et 

al. [21] 

A. Abdelbaki and 

Z. Zrikem [21] 

H. Wang et 

al. [20] 

This study 

ε=0 Nucv 9.270 8.794 9.446 8.852 8.947 

Nucv N/A N/A N/A 2.337 2.338 ε=0.2 

Nurad N/A N/A N/A 8.399 8.458 

Nucv N/A N/A N/A 7.873 7.941 ε=0.8 

Nurad N/A N/A N/A 11.208 11.229 

 

Table 2: Configurations of the partitioned enclosure 

Name A B C D E F G 

N 47 23 15 11 7 5 3 

A 61.3 20.4 12.3 8.8 5.6 4.1 2.7 

Th-Tc 30.2 29.4 23.2 29.7 21.4 28.8 23.2 

 

Table 3: Analytical Nusselt numbers for the enclosure G (N=3,Th-Tc=23.2 K)  

Alveolus 1 2 3 4 

Nurad 11.5 10.9 10.3 9.7 

Nucv 5.8 5.9 6.0 6.0 

 

Table 4: Analytical Nusselt number for the enclosure D (N=11, Th-Tc =29.7 K) 

Alveolus 1 2 3 4 5 6 7 8 9 10 11 12 

Nurad 4.2 4.1 4.0 3.9 3.8 3.7 3.7 3.6 3.5 3.4 3.3 3.2 

Nucv 1.4 1.4 1.4 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 
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Table 5: Numerical Nusselt numbers for the enclosure G (N=3, Th-Tc=23.2 K)  

Alveolus 1 2 3 4 

Nurad 11.4 10.8 10.2 9.7 

Nucv 4.7 4.9 5.0 4.8 

 

Table 6: Numerical Nusselt numbers for the enclosure D (N=11, Th-Tc =29.7 K)  

Alveolus 1 2 3 4 5 6 7 8 9 10 11 12 

Nurad 4.2 4.1 4.0 3.9 3.9 3.7 3.7 3.6 3.5 3.4 3.3 3.2 

Nucv 1.2 1.3 1.4 1.4 1.5 1.5 1.5 1.5 1.5 1.5 1.4 1.3 

 


