

The use of Self Interaction Chromatography in stable formulation and crystallization of proteins

Kedar Deshpande, Tangir Ahamed, Joop H. ter Horst, Peter T. Jansens, Luuk

A.M. van Der Wielen, Marcel Ottens

▶ To cite this version:

Kedar Deshpande, Tangir Ahamed, Joop H. ter Horst, Peter T. Jansens, Luuk A.M. van Der Wielen, et al.. The use of Self Interaction Chromatography in stable formulation and crystallization of proteins. Biotechnology Journal, 2009, 4 (9), pp.1266. 10.1002/biot.200800226 . hal-00498911

HAL Id: hal-00498911 https://hal.science/hal-00498911

Submitted on 9 Jul 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Biotechnology Journal

The use of Self Interaction Chromatography in stable formulation and crystallization of proteins

Journal:	Biotechnology Journal
Manuscript ID:	BIOT.200800226.R1
Wiley - Manuscript type:	Review
Date Submitted by the Author:	11-Mar-2009
Complete List of Authors:	Deshpande, Kedar; Delft University of Technology, Biotechnology Ahamed, Tangir; Delft University of Technology, Biotechnology ter Horst, Joop; Delft University of Technology, Process & Energy Laboratory Jansens, Peter; Delft University of Technology, Process & Energy Laboratory van der Wielen, Luuk; Delft University of Technology, Biotechnology Ottens, Marcel; Delft University of Technology, Biotechnology
Primary Keywords:	
Secondary Keywords:	
Keywords:	Predictive protein crystallization, protein phase behavior, miniaturization

The use of <u>self-</u> interaction chromatography in stable formulation and	Deleted: self
	/
crystallization of proteins	
Kedar S. Deshpande ^{1,2} , Tangir Ahamed ^{1,*} , Joop H. ter Horst ² , Peter J. Jansens ² , L. A.	
M. van der Wielen ¹ and Marcel Ottens ¹	
¹ Department of Biotechnology, Delft University of Technology, Delft, The	Deleted: Julianalaan 67, 2628BC
Netherlands	Deleted:
	Deleted: &
² Process and Energy Laboratory, Delft University of Technology, Delft, The	Formatted: Font: Not Italic
Netherlands	Deleted: Leeghwaterstraat 44, 2628
	Deleted: .
Correspondence: Dr. Marcel Ottens, Department of Biotechnology, Delft University	
of Technology, Julianalaan 67, 2628BC Delft, The Netherlands	
	Deleted: .¶
E-mail: m.ottens@tudelft.nl	∠´ Deleted: ¶
Fax: +31-15-278-2355	
* Current address: SynCo Bio Partners B.V., Paasheuvelweg 30, 1105 BJ,	
* <i>Current address</i> : SynCo Bio Partners B.V., Paasheuvelweg 30, 1105 BJ, Amsterdam, The Netherlands	
Amsterdam, The Netherlands	
Amsterdam, The Netherlands Keywords: Miniaturization / Predictive protein crystallization / Protein phase behavior / Self-interaction chromatography	Deleted: ,
Amsterdam, The Netherlands Keywords: Miniaturization / Predictive protein crystallization / Protein phase behavior / Self-interaction chromatography Abbreviations: B_{224} osmotic second virial coefficient; SIC , self-interaction	Deleted: DLS, dynamic light scattering; LLS, laser light scattering mAbs, monoclonal antibodies; MO, micro-osmometry; SAXS, small angle ray scattering; SEC, size exclusion
Amsterdam, The Netherlands Keywords: Miniaturization / Predictive protein crystallization / Protein phase behavior / Self-interaction chromatography Abbreviations: B_{224} osmotic second virial coefficient; SIC , self-interaction chromatography; SLS , static light scattering	Deleted: DLS, dynamic light scattering; LLS, laser light scattering mAbs, monoclonal antibodies; MO, micro-osmometry; SAXS, small angl
Amsterdam, The Netherlands Keywords: Miniaturization / Predictive protein crystallization / Protein phase behavior / Self-interaction chromatography Abbreviations: B_{224} osmotic second virial coefficient; SIC self-interaction	Deleted: DLS, dynamic light scattering; LLS, laser light scattering mAbs, monoclonal antibodies; MO, micro-osmometry; SAXS, small angl ray scattering; SEC, size exclusion chromatography;
Amsterdam, The Netherlands Keywords: Miniaturization / Predictive protein crystallization / Protein phase behavior / Self-interaction chromatography Abbreviations: B_{224} osmotic second virial coefficient; SIC , self-interaction chromatography; SLS , static light scattering	Deleted: DLS, dynamic light scattering; LLS, laser light scattering mAbs, monoclonal antibodies; MO, micro-osmometry; SAXS, small angl ray scattering; SEC, size exclusion chromatography; Formatted: Font: Not Bold Deleted: , Deleted: ,
Amsterdam, The Netherlands Keywords: Miniaturization / Predictive protein crystallization / Protein phase behavior / Self-interaction chromatography Abbreviations: <i>B</i> ₂₂₄ _osmotic second virial coefficient; SIC , self-interaction chromatography; SLS , static light scattering This paper reviews the basic principles of the recently developed self-interaction chromatographic (SIC) technique with regard to protein solution stability and protein	Deleted: DLS, dynamic light scattering; LLS, laser light scattering mAbs, monoclonal antibodies; MO, micro-osmometry: SAXS, small angle ray scattering; SEC, size exclusion chromatography; Formatted: Font: Not Bold Deleted: , Deleted: , Deleted: ; UV, ultraviolet
Amsterdam, The Netherlands Keywords: Miniaturization / Predictive protein crystallization / Protein phase behavior / Self-interaction chromatography Abbreviations: $B_{22_{\bullet}}$ osmotic second virial coefficient; SIC self-interaction chromatography; SLS static light scattering This paper reviews the basic principles of the recently developed self-interaction	Deleted: DLS, dynamic light scattering; LLS, laser light scattering mAbs, monoclonal antibodies; MO, micro-osmometry: SAXS, small angle ray scattering; SEC, size exclusion chromatography; Formatted: Font: Not Bold Deleted: , Deleted: , Deleted: ; Deleted: in
Amsterdam, The Netherlands Keywords: Miniaturization / Predictive protein crystallization / Protein phase behavior / Self-interaction chromatography Abbreviations: <i>B</i> ₂₂₄ _osmotic second virial coefficient; SIC , self-interaction chromatography; SLS , static light scattering This paper reviews the basic principles of the recently developed self-interaction chromatographic (SIC) technique with regard to protein solution stability and protein	Deleted: DLS, dynamic light scattering; LLS, laser light scattering mAbs, monoclonal antibodies; MO, micro-osmometry; SAXS, small angle ray scattering; SEC, size exclusion chromatography; Formatted: Font: Not Bold Deleted: , Deleted: , Deleted: ; UV, ultraviolet
Amsterdam, The Netherlands Keywords: Miniaturization / Predictive protein crystallization / Protein phase behavior / Self-interaction chromatography Abbreviations: <i>B</i> ₂₂₄ osmotic second virial coefficient; SIC ₂ self-interaction chromatography; SLS ₂ static light scattering. This paper reviews the basic principles of the recently developed self-interaction chromatographic (SIC) technique with regard to protein solution stability and protein crystallization. It gives experimental protocols for both <u>normal-scale and micro-scale</u>	Deleted: DLS, dynamic light scattering; LLS, laser light scattering; mAbs, monoclonal antibodies; MO, micro-osmometry; SAXS, small angle ray scattering; SEC, size exclusion chromatography; Formatted: Font: Not Bold Deleted: , Deleted: , Deleted: in Deleted: normal

design of stable aqueous formulations of therapeutic proteins and the determination of solution conditions favoring protein crystallization.

1 Introduction

The use of proteins in industrial and pharmaceutical applications has become increasingly common. For example, many monoclonal antibodies (mAbs) are currently in the pipeline of biopharmaceutical drug development due to their high binding strengths and specificities. However, antibodies are susceptible to aggregation and degradation at elevated concentration. At the higher concentrations currently reached in industrial production titers, proteins tend to aggregate and Deleted: o usually lose their potency. Protein drug formulations containing aggregates are known to cause an immunogenetic response and cannot be used. Preparation of very high concentration of these antibodies at a very low volume per dose is critical. Therefore, predicting or quickly measuring aggregation behavior is paramount for Deleted: protein proper formulation development of protein-based biopharmaceuticals. Modern biochemistry relies on the structural information provided by protein crystallization to understand fundamental mechanisms of action. Knowledge of Deleted: key protein solubility is crucial for understanding the crystal growth and crystallization Deleted: to process of proteins. In the native state, proteins can be crystallized by the addition of a precipitating agent, which may for example be a neutral salt, a high molecular weight polymer such as PEG, or a small organic compound such as methylpentanediol [1, 2]. The addition of salts, like NaCl, screens the protein Deleted: attractive charges, progressively leading to protein-protein interactions and eventually to Deleted: Deleted: leading

Biotechnology Journal

protein crystallization [3]. Growing evidence suggests that protein crystallization can	
be understood in terms of phase transition in a system of weakly attractive particles	
[4]. Controlling these attractions is essential for growing the crystals. However, a	Deleted: of
	Deleted: to
priori prediction of protein pair potentials governing these attractions is a difficult	
task and remains a significant challenge in determining crystallization conditions.	
Experimental methods for characterizing the influence of solution conditions (pH,	Formatted: Font: Italic
ionic strength, temperature, <i>etc.</i>) on the pair potential would provide the	
experimentalist with the opportunity to make predictions about how these variables	Deleted: for
will influence solubility, phase behavior and eventual crystallization.	Deleted: ly
Protein-protein interaction phenomena occur throughout the range of pharmaceutical	Deleted: protein
protein-processing environments: inclusion body formation in fermentation	
operations; aggregation as a competitive reaction to refolding; precipitation steps;	
and inadvertent crossings of solubility thresholds in purification and finishing	
processes [5]. Underlying all of these areas is physical protein stability. Physical	
protein stability can roughly be defined as the inability for a protein to form protein	
aggregates, protein crystals or an amorphous protein in a stored solution. Physical	
stability differs from chemical stability in that no chemical modifications of the	Deleted: is Deleted: ent
protein or peptide occur. Measuring realistic protein solubility is hampered by the	
ability of proteins to supersaturate. Supersaturated solutions generally are not	
physically stable over storage periods of months or years. Physical protein stability is	Deleted: s
a particularly relevant issue today in the pharmaceutical field, as indicated above, and	
will continue to gain more importance as the number of therapeutic protein products	
in development increases.	
Protein-protein self-interactions under varying conditions are important, and	
screening tools are being developed. One of the parameters capturing protein-protein	
self-interactions is the osmotic second virial coefficient (B_{22}) . B_{22} can be easily	Deleted: This

screened using self-interaction chromatography (SIC). The aim of this paper is to Deleted: review the important factors governing protein solution stability and protein crystallization propensity, and to describe the novel SIC methodology and its Deleted: will be application in protein stability and crystallization studies. This is exemplified by a detailed description of the methodology and some recent developments in Deleted: will be miniaturizing the method. Finally, some examples from industry are given utilizing this approach. Deleted: The o **2<u>O</u>**smotic second virial coefficient (B_{22}) 2.1 History of B_{22} as a predictor of crystallization conditions Deleted: (DLS) Dynamic laser scattering has been used to study the change in the state of aggregation of protein solutions during nucleation and post-nucleation growth [6] and also to estimate the particle-size distribution in the protein aggregate mixture [7]. Results from these types of experiments have been used to postulate the existence of a critical nucleus to sustain growth [8, 9] and to differentiate between the formation of craggs (aggregates which eventually result in protein crystals) and praggs (aggregates which eventually result in amorphous protein precipitates) [10]. Light scattering to Deleted: determine aggregation behavior is experimentally difficult and time consuming, and Deleted: relatively large amounts of protein are needed. Therefore, there is still a genuine interest among protein crystallographers for the development of a quantitative pre-Deleted: on crystallization assay as a way to test protein solutions for the likelihood for either

crystal or amorphous precipitate formation. Having a universal predictor will allow

Biotechnology Journal

		Deletedu 'See
	crystallographers to <u>'fine-tune'</u> existing crystallization conditions or discover new	Deleted: 'fine
	solution conditions to crystallize difficult proteins.	
I	George and Wilson [11], <i>via</i> light scattering experiments, proposed the osmotic	Formatted: Font: Italic
	ـــــــــــــــــــــــــــــــــــــ	Deleted: ,
	second virial coefficient $(B_{22})_{a}$ as a predictor for protein crystallization and showed a	
I	correlation between protein crystallizability and B_{22} . Their work demonstrated that	
	small, spherical proteins crystallize in conditions <u>under which <i>B</i>₂₂, becomes slightly</u>	Formatted: Not Superscript/ Subscript Deleted: where
Į	negative, indicating net attractive interactions between protein molecules [11]. An	Deleted: the second osmotic virial coefficient
	increase in B_{22} indicated a shift toward favorable protein–solvent interaction, whereas	
1	a decrease in B_{22} indicated a shift toward protein self-interaction [12]. Solution	Deleted: Thereafter,
		Deleted: s
	conditions conducive to crystallization have been shown to correspond to slightly	
	negative values of B_{22} [11, 13]. Such conditions denote weak attraction, whereas	
	stronger attraction (more negative B_{22}) was found to correlate with amorphous	
	precipitation. Rosenbaum <u>et al.</u> [14] extended the correlation by showing that the	Deleted: et al
I	measured virial coefficients could be used to predict solubility within the framework	
	of the sticky hard sphere model, suggesting that short-range attraction is dominant in	
	governing phase behavior. The empirical relationship between the second virial	
	coefficient and solubility of proteins was well supported by complementary studies	
	on a molecular basis [14-16] as well as through the classical thermodynamic	Deleted: -
	approach [17]. Velev <u>et al.</u> [18] extended the hypothesis and investigated the virial	Deleted: et al
	coefficients of lysozyme and chymotrypsinogen by both static light scattering (SLS)	
	coefficients of tysozyme and chymotrypsmogen by both static right scattering (SLS)	Deleted: SANS
	and small angle neutron scattering,	
I	Over the years, B_{22} has been correlated to physical protein stability; that is, solubility	
I	[15, 19, 20], crystallization [11_13], and aggregation [21_23] by explicitly	Deleted: -
		Deleted: -
	accounting for the same interactions that regulate protein phase behavior [14, 16].	Deleted: et al
	For example, Ahamed <u>et al.</u> [24] generated a universal protein phase diagram in	
	terms of B_{22} as a pre-scan for suitable crystallization conditions of the intact mAb	Deleted: onoclonal antibody
	2_{22} as a problem for summore or β summore conditions of the index $\frac{1}{10}$	

IDEC152. This link between molecular interactions in terms of B_{22} and protein crystallization thus offered hope that screening the second virial coefficient values may be useful for the predictive crystallization of proteins not crystallized previously.

2.2 Measurement and application of B_{22}

Despite the potential utility of B_{22} , it was rarely used in biotechnology, pharmaceuticals, and structural biology because the main techniques for measurement were slow, sample intensive, and required significant expertise. Over the years, B_{22} has been measured by neutron scattering [18], sedimentation equilibrium [25], x-ray scattering [26], and osmometry [27]. However, both light (or dynamic) scattering and osmometry suffer from the disadvantage of requiring a relatively large amount of protein (~100 mg) for each desired solution condition. Further, with these methods it is difficult to measure interactions between different proteins because the second virial coefficient of individual proteins must be determined before making measurements on the mixture. Patro and Przybycien [28], described SIC, as a new protein characterization technique, which overcame both of these disadvantages. Tessier <u>et al.</u> [29] elaborated and further refined this novel method of measuring B_{22} using the SIC technique. A comparison between conventional B_{22} measuring techniques and SIC is given in Table 1.

((Table 1))

According to <u>Table 1</u>, the SIC methodology has a distinct advantage over traditional methods <u>Imicro-osmometry (MO)</u>, SLS, <u>size exclusion chromatography (SEC)</u>, <u>etc.</u>] used to measure B_{22} <u>through</u> higher accuracy, lower protein consumption, simple automation and the potential for miniaturization. Miniaturized SIC (micro-SIC)

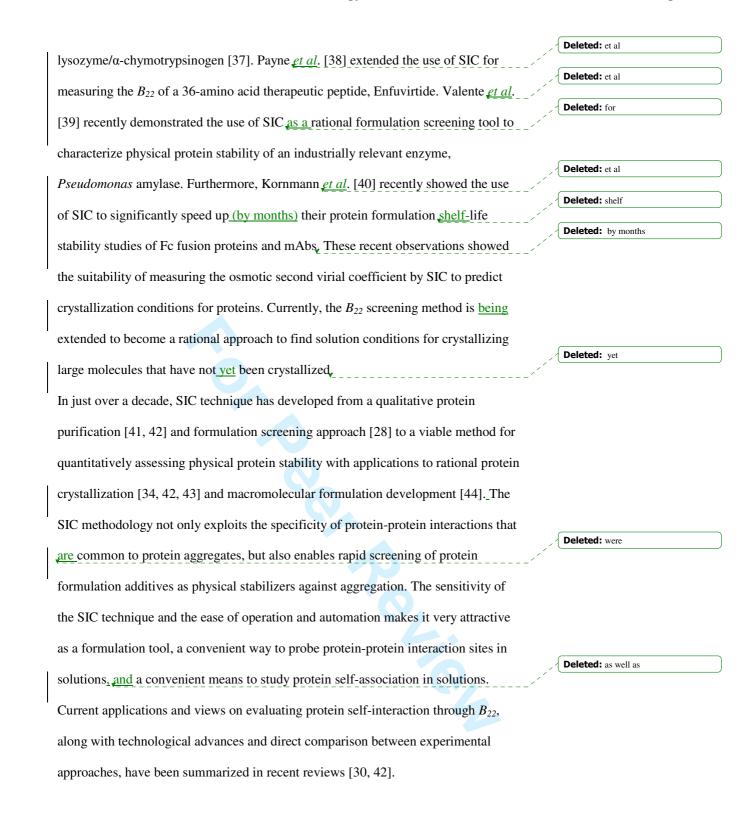
Formatted: Not Superscript/ Subscript Formatted: Not Superscript/ Subscript

Deleted: 100

Deleted: self-interaction chromatography (Deleted:) Deleted: et al Deleted: by

	Deleted: table
[Deleted: (
1	Formatted: Font: Italic
I	Deleted: .)
1	Deleted: by accounting for
	Deleted: , on the other hand,

Biotechnology Journal


requires an order of magnitude less protein (≤ 0.002 mg per B_{22} value), has rapid measurement time scales (<5_min per B_{22} value) and thereby the possibility to generate hundreds of B_{22} measurements per day. It has to be noted that the minimum amount of protein (Table 1) required in MO, SLS and SEC are calculated on the basis of minimum sample volume that can be handled by the measuring instrument. In case of SIC, as protein is immobilized on column wall, the retention of protein depends on the injected concentration. It has been shown that at $\geq 33\%$ surface coverage, multibody interactions give inconsistent B_{22} values and experiments suggest a surface coverage of 15% to be adequate for optimum coupling [30]. Hence, the minimum amount of injectable protein on a SIC column depends on the number of protein molecules immobilized inside the chromatography column with an optimal surface coverage. There has been a substantial decrease in the amount of injectable protein needed with the advent of the micro-SIC platform. The reproducibility of SIC is good, but since all the measuring techniques have an inherent inaccuracy, it is difficult to state that the SIC technique is the most accurate one. Nevertheless, the measurements from SIC and micro-SIC are reproducible and results fall well within the scattered literature data set.

Experimental evidence of the suitability of SIC for measuring B_{22} for numerous proteins, such as BSA [29], myoglobin [29], lysozyme [30–34], equine serum albumin [32], chymotrypsinogen [34] and ribonuclease A [35] has been well documented over the years. The reproducibility along with the accuracy limit of B_{22} for lysozyme was found to be superior using SIC methodology (also known as quantitative affinity chromatography [33]) in comparison to other traditional techniques [30]. A modified form of SIC, referred to as cross-interaction chromatography, was also used to study weak protein interactions (B_{23}) between unlike protein pairs such as BSA/lysozyme [36, 37], ovalbumin/lysozyme [36] and Deleted: table1

Deleted:

Deleted:

Deleted:

Wiley-VCH

8 9

11

15

17

21

27

31

37

41

47

48

49

50

Deleted:

2.3 Principle of SIC In traditional liquid column chromatography, the ligand of interest is immobilized on a chromatographic support, a front of ligate in a suitable solution is passed over the 10 stationary phase, and the column effluent is monitored for ligate breakthrough. The 12 13 retention time reflects the average strength of the interaction. SIC is an affinity 14 Deleted: where chromatographic technique in which the target protein serves as both the 16 chromatographic ligand and ligate [28]. The SIC approach involves covalently 18 19 immobilizing protein on chromatographic particles, packing the particles into a 20 column, and measuring the retention time of a pulse of the same protein injected into 22 Deleted: figure 23 the column (Fig. 1). 24 25 ((Figure 1)) 26 The relative retention of the protein pulse provides a measure of the average protein-28 29 protein interactions. The retention pattern obtained from an SIC run can be used to 30 Deleted: The osmotic second virial coefficient (calculate the parameter B_{22} . B_{22} has been derived rigorously [30, 45], and is reported 32 Deleted:) 33 as: 34 35 $B_{22} = \frac{V_0 - V_r}{N \cdot M_w}$ 36 (1)38 where N is the total amount of immobilized protein molecules (g) accessible for 39 Deleted: g 40 mobile protein molecules and M_w is the molecular weight of the protein (g/mol). V_0 Deleted: -1 42 Deleted: ml (mL) and V_r (mL) are the retention volumes in protein-free column and protein-43 Deleted: ml 44 Deleted: protein immobilized column, respectively. 45 Deleted: protein 46 Deleted: attractive

Retention time of the mobile phase protein is higher when attracting interaction takes place between the mobile-phase protein and immobilized protein on the SIC column. On the other hand, the retention time is shorter when the interaction is repulsive. In

9

Deleted: mobile

Deleted: in

Deleted: mobile

this technique, <u>mobile-phase conditions can be selected to approximate those</u> favorable for crystal growth so that specific binding interactions associated with crystallization can potentially be harnessed in a chromatographic mode. Provided that the immobilized protein retains its native 3-D structure, the resulting retention time will reflect the average protein-protein interaction energy under the solution conditions employed.

2.3.1 Micro-SIC technology

Rapid advances in micro fluidic technology are revolutionizing chemical and biochemical analysis in the pharmaceutical industry [46–51]. The successful application in measuring protein-protein interactions by SIC through B_{22} screening and the growing interest for a micro fluidic platform for rapid biochemical analysis have opened a new frontier in a way to couple chromatography and microfluidics. In this context, protein interactions have been successfully measured by microchip <u>SIC</u> by packing the miniaturized chromatographic column with Toyopearl particles and using lysozyme as a model protein [31]. Extending the microfluidic and self-interaction chromatography platform, we recently developed a novel miniaturized experimental procedure for measuring protein-protein interactions by SIC on a microchip, without the use of chromatographic resins [52], (Fig. 2). ((Figure 2))

This successful miniaturization to <u>a</u> microchip level of measurement device for protein <u>self-interaction</u> data is a first key step to a complete microfluidic screening platform for the rational design of protein crystallizations, using substantially less expensive protein and experimentation time.

Deleted: -		
Deleted: the		

Deleted: has
Deleted: were
Deleted: self-interaction chromatography
Deleted: on

Deleted: the	
Deleted: ement of	
Deleted: ,	
Deleted: figure	

Deleteu:	a	

Deleted: self

3 SIC protocol

3.1 Protein immobilization on solid surfaces

Immobilization of proteins onto solid surfaces is of great importance and several strategies exist for linking proteins to surfaces, which are mainly based on physical, covalent and bio-affinity immobilization mechanisms. Immobilized proteins can be used as a valuable tool for rapid characterization and high-throughput analysis of thousands of proteins by identifying protein-protein [53], protein-small molecule [54] and protein-nucleic acid [55] interactions. The interaction of proteins with the surface is a complex process dependent upon the nature of the individual protein, its orientation, concentration, time, *etc.*, all of which may influence the final state of the absorbed protein.

Protein immobilization involving physical adsorption suffers from inherent drawback of non-specific interactions resulting from random orientation mechanism [56]. Covalent attachment of proteins to solid surfaces is becoming increasingly important in the field of biotechnology. Most methods that involve covalent attachment rely on non-selective chemical attachment by the reaction between various possible functional groups on the protein surface (*e.g.* -NH₂, -SH, -COOH, -OH, etc) with suitably modified functional groups on solid supports (*e.g.*, carboxylic acid, esters, aldehyde, maleimide, amine, epoxy, *etc.*) [57]. However, this covalent attachment chemistry is random in nature and often results in heterogeneous immobilization pattern. Site-specific immobilization, on the other hand, overcomes the limitation of random immobilization, resulting in optimal and well-ordered attachment on solid supports [58]. Bio-affinity immobilization, a site-specific variant, offers the Formatted: Font: Italic

Formatted: Font: Italic

 Deleted: eg.

 Formatted: Font: Italic

 Formatted: Font: Italic

additional advantage of homogeneous attachment and also the possibility of detaching the proteins from the surface resulting in a plug-<u>play-type</u> immobilization ______ **Deleted:** play ______ approach [57].

3.1.1 <u>Normal-scale SIC</u>

To set up an SIC experiment, the first step is to immobilize protein molecules on the chromatography media. The immobilized proteins should be tightly bound to the solid surface and should not get detached during the experimentation. For the purpose of self-interaction, the chromatographic material should not have any other mechanism of retaining proteins other than weak protein interactions. Chromatography media used till date in the field of SIC are activated agarose [33], Toyopearl-tresyl [31, 32], Toyopearl-amino [35] and Toyopearl-formyl [34] groups. There is no concrete general immobilization chemistry and a variety of proteins (p/2–10) can be immobilized using a general protocol [59]. The incubation time, temperature, pH and protein concentration of the immobilization reaction mixture are the parameters for controlling the immobilization reaction. From the coupling point of view, both tresyl-Toyopearl and N-hydroxysuccinimide (NHS)-Sepharose are good options for SIC. Optimum coupling can be achieved with a surface coverage of 15% and 12-h incubation time [30]. The immobilized proteins must be randomly oriented on the solid support to prevent protein interaction in only one specific direction. The pattern of immobilization, either random or specific, can be obtained by carrying out limited proteolysis of the immobilized protein and observing the obtained peptide distribution pattern. More description on the possible influencing

Deleted: rather

Deleted: Normal

Deleted: a

Deleted: p/ Deleted: -Formatted: Font: Italic Formatted: Font: Italic

Formatted:	Font:	Italic	
Deleted:			

De	eted	! of

Deleted: in order

parameters and the detailed experimental considerations for the design of a protein

<u>SIC</u> can be found in literature [30].

Deleted: self-interaction chromatography

3.1.2 Micro-SIC

Microfluidic (or lab-on-a-chip) technologies are gaining ground in the biological and medical sciences and offer a suitable platform for <u>high-throughput screening</u> technologies [60_63], Proteins present a particular challenge in microfluidic devices because of the need to maintain structural integrity when attached to a number of different surface geometries and chemistries [50]. Several strategies have been used to address the issue of protein-wall interactions [64, 65]. One of the approaches is to chemically alter the silica surface by coating with linear polyacrylamide or other hydrophilic functional polymers. The interaction of proteins with the silica surface through an ion-exchange mechanism is believed to be responsible for degrading the efficiency and reproducibility of the immobilization process [64]. Nevertheless, there have been a number of recent reports where proteins, including enzymes, have been incorporated into micro-channels while maintaining biological activity [66]. High-throughput analysis of protein-protein interactions in a microfluidic platform can be achieved by carefully selecting the protein strategy that allows the protein to retain its biological activity.

Deleted: (HTS)
Deleted: Formatted: Not Superscript/
Subscript

Deleted: has

Deleted: which

Deleted: self-interaction chromatography

Formatted: Font: Italic

Deleted:

Deleted:

hindrance from the vicinity of the support. The protein was then covalently coupled to the APTES molecule activated by glutaraldehyde. The schematic description of the Deleted: self-interaction chromatography setup used for micro fluidic <u>SIC</u> runs is shown is <u>Fig. 3</u>. Deleted: figure ((Figure 3)) Experiments were carried out to monitor lysozyme retention times as a function of NaCl concentration in the mobile phase under different pH conditions. The labeled protein solution was then passed through the microchip by a continuous buffer flow Deleted: means of and the protein pulse was detected at the chip inlet and at the outlet by fluorescence detection. The difference in retention time gives the measure of protein-protein Deleted: by interactions through calculating the parameter B_{22} . Mapping of lysozyme's B_{22} profile, at different pH values, is shown in Fig. 4, and compared to various literature Deleted: obtained under the same or similar conditions. data obtained using different B_{22} measuring techniques under the same or similar Deleted: is shown in figure 4 conditions. ((Figure 4)) Deleted: self-interaction chromatography Quantitative agreement between virial coefficients measured by SIC and traditional characterization methods were obtained for the protein lysozyme over a range of pH Deleted: figure and ionic strengths. It can also be seen that the micro-SIC data (Fig. 4, solid lines) Deleted: was were able to reproduce larger scale B_{22} data and were precise in comparison with Deleted: as other reported techniques. The overall approach of SIC on a microchip worked successfully and the protein immobilization chemistry on the channel surface could Deleted: self-interaction chromatography reproduce larger scale SIC data. This approach avoided the use of packing material normally used for chromatography columns, such as resins, beads or particles. Many microfluidic systems are now based on polymeric materials, like polycarbonate (PC), Deleted: (polymethylmethacrylate (PMMA), and polydimethylsiloxane (PDMS) for which Deleted:) Deleted: (surface modifications are required as they do not contain any functional groups in Deleted:) Deleted: in their native form [66]. The micro-SIC method also provides the significant advantage

60

1

of being at least an order of magnitude less expensive in terms of the amount of protein and time required than <u>normal-scale SIC</u> and other conventional characterization methods.

$4 B_{22}$ results and applicability to the crystallization slot

The key to growing high-quality protein crystals is knowing which solution conditions (temperature, pressure, protein concentration, precipitating agent concentration, *etc*) are favorable for crystallization. The usual approach is to extensively screen in a wide range of solution conditions, out of which a number of conditions give a "hit". Over the years, it has been observed that there is a commonality to the solution conditions that give the experimenter the "hit" and that commonality is expressed as the B_{22} value. It is postulated that protein crystallization can only occur in a narrow range of slightly negative B_{22} values ($\sim 1 \times 10^{-4}$ to = 8×10^{-4} mol.mL.g⁻²) [18, 42]. In positive B_{22} solution conditions, there will be no precipitation while in too-negative B_{22} conditions, amorphous precipitates dominate. Apart from model protein lysozyme, there has been a wealth of experimental evidence of B_{22} values for different types of proteins using SIC (Fig. 5).

((Figure 5))

The crystallization slot (between red dashed lines, Fig. 5) is an empirical representation of solution conditions for which crystallization of the protein has been successfully reported [11]. The link between B_{22} and protein crystallization conditions offers the possibility that screening B_{22} values may be useful for the predictive crystallization of proteins proven difficult to crystallize. This also gives the experimenter a fair insight into possible modification of solution conditions so as to

Formatted: Font: Italic

Deleted: only
Deleted: -
Deleted: -
Deleted:
Deleted: x
Deleted: -
Deleted: ml
Deleted: -
Deleted: protein crystallization can occur
Deleted: too
Deleted: self-interaction chromatography
Deleted: figure
Deleted: figure

push a particular protein into the crystallization slot. Nevertheless, for identical solution conditions, changes in the solubility trend of different proteins can be related to the observed B_{22} behavior and can be used <u>as a predictive tool for crystallizing</u> industrially relevant proteins. Deleted: ((Figure 5))¶ In the recent years, there has been a growing need to develop polypeptide Deleted: ml formulations at relatively high concentrations (>100 mg/mL). Following on the crystallization slot hypothesis for proteins [11], it would be possible to rationally increase the solubility of any given peptide by measuring the peptide virial coefficient and adapting to those solution conditions where B_{22} is positive. Although it is known that peptides self-associate in aqueous solutions, their ability to scatter light is very weak, making the SLS technique inadequate for virial coefficient measurements. Recently, SIC, which does not have the same molecular size limitations as SLS, has been successfully used, for the first time, for the measurement of the virial coefficient of a 36-amino acid therapeutic peptide "Enfuvirtide" as a Deleted: figure function of solution conditions (Fig. 5, solid blue line). The B_{22} determined by SIC was found to correlate strongly with solubility and apparent molecular weight of the Formatted: Font: Not Italic, Not Superscript/ Subscript peptide [38], demonstrating that it was possible to measure B_{22} for a peptide in a relatively rapid fashion and also suggested the practical applicability of the measuring technique, SIC.

5 How to use SIC for stable protein formulation?

The number of protein-based therapeutic products is growing. The main issues in developing these products are in-process stability and solubility. In addition to the stability during the manufacturing process, the protein formulation products should

Deleted: in

be physically, chemically and biologically stable for a long shelf life [73]. Protein stability consists of (i) conformational stability, and (ii) colloidal stability of the protein in the solution [74_76]. Thermodynamically, conformational stability of a protein's native state can be given in terms of free energy. The free energy of native conformation is only 5_6 kcal/mol less than the free energy of non-native conformations, which are biologically inactive [77, 78]. The balance between large stabilizing forces and large destabilizing forces results in this net conformational stability. The free energy of folding arises due to contributions from electrostatics (charge repulsion and ion pairing), hydrogen bonding, van der Waals interactions, and hydrophobic interactions [77, 78].

To develop a stable protein formulation, both conformational and colloidal stability of the protein in solution should be achieved. The conformational stability is measured by (ΔG° unfold) and the colloidal stability is measured by the osmotic second virial coefficient (B_{22}) in a solution [75]. B_{22} accounts for both short<u>–</u> and long-range interactions, such as electrostatic interactions, van der Waals interactions, excluded volume, and hydrophobic interactions [75, 79]. A positive B_{22} indicates that the protein-protein interactions are repulsive; consequently, in a solution the protein molecules stay apart from each other, and prevent crystallization and aggregation. Crystallization and aggregation require the protein molecules to come together to from a nucleation center [69] In other words, a positive B_{22} indicates that the protein in a solution is colloidally stable. A negative B_{22} suggest attractive protein-protein interactions, a condition favorable for crystallization/aggregation. Thus, the solutions for which, B_{22} values are negative are colloidally unstable [80]. SJC was used as an innovative approach to screen for physical stability of a

Pseudomonas amylase, monitoring the pattern of the parameter B_{22} [39]. Increasing the concentration of stabilizing agents shifted the value of B_{22} to positive region

Deleted: 1 Deleted: 2 Deleted: -

Deleted: -	
Deleted: 6	

Deleted:

Deleted: ((Figure 6))¶ **Deleted:** elf-interaction chromatography

(Fig. 6a). This positive shift in the trend of <i>B</i> ₂₂ was in strong qualitative agreement with the marked increase in the enzymatic activity (Fig. 6b). This was not only an indicator of co-solvent-induced physical stability of the amylase, but also indicated Deleted: indicating	
with the marked increase in the enzymatic activity (Fig. 6b). This was not only an Deleted: solvent	
Deleted: solvent	
indicator of co- <u>solvent-induced physical stability of the amylase</u> , but also <u>indicated</u> Deleted: indicating	
an important role of SIC, <i>yia</i> a <i>B</i> ₂₂ screen, for rational formulation screening of more	ic
industrially relevant enzymes.	
<u>((Figure 6))</u>	
Recently, intermolecular interactions of lysozyme in native and denatured state, in	
the presence of different co-solvents, were also characterized in terms of B_{22}	
determined by SIC [81]. The results indicated that SIC can be used as a rapid	
screening process for estimating B_{22} values of different protein	
stabilizers/aggregation inhibitors, which in turn can be used in stabilizing the Deleted:	
refolded protein product by enhancing the protein folding rate. In another study,	
protein self-interactions (B_{22}) for untested formulation conditions were measured by <u>a</u>	
high-throughput SIC approach by combining an incomplete factorial screen	
technique with an artificial neural network model [82]. It can be seen that B_{22} can not	
only predict solubility behavior, but can also predict the protein colloidal stability.	
Miniaturized SIC on a high-throughput automized platform can further accelerate the	
determination of optimum conditions to improve the physical stability of drug	
formulations. In future, this correlation can be used by pharmaceutical companies to	
fine-tune the colloidal stability to obtain stable formulations of therapeutic proteins	
solutions with long shelf <u>lives</u> .	
6 Concluding remarks	

6 Concluding remarks

Biotechnology Journal

2
2
3 4 5 6 7 8
4
5
6
7
1
8
9
10
44
11
12
13
14
15
15
16
17
18
10
19
20
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 27 28 30 31 32 33 34 35 36 37 38 40
22
22
23
24
25
26
20
27
28
29
30
00
31
32
33
21
34
35
36
37
20
30
39
40
41
42
+2
43
44
45
46
40
47
48
49
50
51
52
53
55 54
04
55
56
57
58
00

59 60

	Recent advances in the development of SIC technologies, especially the micro-SIC	
	technology platform, provide the opportunity of rapid screening of B_{22} values of a	
		Deleted: SIC
	protein under various solution conditions. Due to the availability of an <u>SIC</u> -based	
		Deleted: recently
	competent B_{22} screening technology, the application of B_{22} is being extended beyond	
		Deleted: namely
	protein crystallization prediction; <i>i.e.</i> , protein stability and prediction of stable	Formatted: Font: Italic
ļ	formulation conditions.	

The authors acknowledge financial support for this project from the Delft Research Centers, SIP (Sustainable Industrial Processes) and LST (Life Science and Technology).

((Funded by:

- Sustainable Industrial Processes, Delft Research Center
- Life Science and Technology, Delft Research Center))

The authors have declared no conflict of interest.

7 References

[1]	Ritthausen, H., Krystallinische. Eiweisskorper aus versehiedenen Oel-samen.	
J. Pra	<u>1kt. Chem 1881, 23, 481–486,</u>	
[2]	Osborne, T. B., Crystallized vegetable proteids, Am. Chem. J, 1892, 14, 662.	
[3]	Ries-Kautt, M. M., Ducruix, A. F., Relative effectiveness of various ions on	
the so	blubility and crystal growth of lysozyme. J. Biol. Chem. 1989, 264, 745–748.	(

F	ormatted: English (U.S.)
D	eleted: Prakt, J., Chem 23, 1881, 481
	ormatted: Font: (Default) Times ew Roman, 12 pt
F	ormatted: English (U.S.)
D	eleted: ,
D	eleted:
D	eleted: ,
D	eleted: -

Formatted: Font: Not Italic Formatted: Bullets and Numbering

Formatted: Font: Not Italic Formatted: Font: Not Italic

Formatted: Font: Not Italic

Formatted: Line spacing: Double

teractions and phase behavior: Sensitivity to the form of the pair potential J. Chem.	
hys, 1999, 111, 9882–9890,	Deleted:
	- Deleted:
Cleland, J. L., Powell, M. F., Shire, S. J., The development of stable protein	Deleted
ormulations: A close look at protein aggregation, deamidation, and oxidation, Crit.	Deleted: ,
	Deleted: apeut
ev. Ther, Drug Carrier Sys, 1993, 10, 307–377.	Deleted: ,
Denne D. I. Denne D. D. de <i>L' L(C) ((de la Laboravilla de Venda</i>	Deleted: -
Berne, B. J., Pecora, R., <i>Dynamic Light Scattering</i> , John Wiley, <u>New York</u>	
976.	Deleted: New York,
	Formatted: Font: Not Italic
Chu, B. <i>The Application of Light Scattering to the Study of Biological</i>	- Formatted: Font: Italic
Leting Formations I. Oters M. (Ed.) Discours David Mr. N. 1 1000 50	Deleted: edited by
<i>Internation</i> , Earnshaw, J., Steer, M. (Eds.), Plenum Press, New York 1983, p. 53.	- Deleted: &
[] Mikol, V., Hirsch, E., Giegé, R., Monitoring protein crystallization by	Deleted: New York:
	Formatted: Font: Not Italic
ynamic light scattering_ <i>FEBS Lett</i> , 1989, 258, 63–66.	Formatted: Font: Not Italic
	Formatted: Font: Not Italic
Vincent, M., Giegé, R., Phase diagram of a crystalline protein: Determination	Deleted: ,
f the solubility of concanavalin A by a microquantitation assay, J. <u>Cryst.</u> Growth,	Deleted: -
	Deleted: ,
989, 97, 324_332.	Deleted: Crystal
	Deleted:
0] Kadima, W., McPherson, A., Dunn, M. F., Jurnak, F. A., Characterization of	Deleted: -
recrystallization aggregation of canavalin by dynamic light scattering. Biophys. J.	Deleted: ,
	Deleted: ,
990, 57, 125 <u>–</u> 132.	Deleted: -
1] George, A., Wilson, W. W., Predicting protein crystallization from a dilute-	Deleted:
blution property, Acta Crystallogr. Sec. D Biol. Crystallogr, 1994, 50, 361–365.	- Deleted: ,
	(,
2] Neal, B. L., Asthagiri, D., Velev, O. D., Lenhoff, A. M. et al., Why is the	
smotic second virial coefficient related to protein crystallization? J. Cryst. Growth	Deleted: ,
shoue second virtal coefficient related to protein crystalization? J. Cryst. Growin,	
999, 196, 377–387.	
	Deleted: ,
3] George, A., Chiang, Y., Guo, B., Arabshahi, A, et al., Second virial	
pefficient as predictor in protein crystal growth Method Enzymol 1997, 276, 100–	Deleted: ,
American as predictor in protoni crystal growing method Entymol, 1997, 270, 100-	Deleted: ,

Biotechnology Journal

[14] Rosenbaum, D., Zamora, P. C., Zukoski, C. F., Phase behavior of small	
	Deleted: ,
attractive colloidal particles, Phys. Rev. Lett, 1996, 76, 150–153.	Deleted: .,
[15] Haas, C., Drenth, J., Wilson, W. W., Relation between the solubility of	
proteins in aqueous solutions and the second virial coefficient of the solution, J.	Deleted: ,
Phys. Chem. B, 1999, 103, 2808–2811.	Deleted: ,
· · · · · · · · · · · · · · · · · · ·	
[16] Rosenbaum, D. F., Kulkarni, A., Ramakrishnan, S., Zukoski, C. F., Protein	Deleted: ,
interactions and phase behavior: Sensitivity to the form of the pair potential_J. Chem	
<i>Phys</i> , 1999, <i>111</i> , 9882–9890.	Deleted: ,
[17] Ruppert, S., Sandler, S. I., Lenhoff, A. M., Correlation between the osmotic	
	Deleted: ,
second virial coefficient and the solubility of proteins, <u>Biotechnol. Prog. 2001, 17</u> ,	Deleted: ,
182–187 <u>.</u>	
[18] Velev, O. D., Kaler, E. W., Lenhoff, A. M., Protein interactions in solution	
characterized by light and neutron scattering: Comparison of lysozyme and	Deleted:
chymotrypsinogen_Biophys. J., 1998, 75, 2682–2697.	Deleted: ,
[19] Guo, B., Kao, S., McDonald, H., Asanov, A, <i>et al.</i> , Correlation of second	Deleted: ,
	Deleted: ,
 [19] Guo, B., Kao, S., McDonald, H., Asanov, A, et al., Correlation of second virial coefficients and solubilities useful in protein crystal growth, J. Cryst. Growth, 1999, 196, 424–433. 	Deleted: ,
virial coefficients and solubilities useful in protein crystal growth, J. Cryst. Growth	Deleted: ,
 virial coefficients and solubilities useful in protein crystal growth, J. Cryst. Growth, 1999, 196, 424–433. [20] Ruppert, S., Sandler, S. I., Lenhoff, A. M., Correlation between the osmotic 	Deleted: , Deleted: , Deleted: ,
 virial coefficients and solubilities useful in protein crystal growth, J. Cryst. Growth, 1999, 196, 424–433. [20] Ruppert, S., Sandler, S. I., Lenhoff, A. M., Correlation between the osmotic second virial coefficient and the solubility of proteins, <i>Biotechnol. Prog</i> 2001, 17, 	Deleted: , Deleted: ,
 virial coefficients and solubilities useful in protein crystal growth, <i>J. Cryst. Growth</i>, <i></i> 1999, <i>196</i>, 424–433. [20] Ruppert, S., Sandler, S. I., Lenhoff, A. M., Correlation between the osmotic second virial coefficient and the solubility of proteins, <i>Biotechnol. Prog</i>, 2001, <i>17</i>, 182–187. 	Deleted: , Deleted: , Deleted: ,
 virial coefficients and solubilities useful in protein crystal growth, J. Cryst. Growth, 1999, 196, 424–433. [20] Ruppert, S., Sandler, S. I., Lenhoff, A. M., Correlation between the osmotic second virial coefficient and the solubility of proteins, <i>Biotechnol. Prog</i> 2001, 17, 	Deleted: , Deleted: , Deleted: , Deleted: ,
 virial coefficients and solubilities useful in protein crystal growth, <i>J. Cryst. Growth</i>, <i></i> 1999, <i>196</i>, 424–433. [20] Ruppert, S., Sandler, S. I., Lenhoff, A. M., Correlation between the osmotic second virial coefficient and the solubility of proteins, <i>Biotechnol. Prog</i>, 2001, <i>17</i>, 182–187. 	Deleted: , Deleted: , Deleted: , Deleted: ,
 virial coefficients and solubilities useful in protein crystal growth, <i>J. Cryst. Growth</i>, <i></i> 1999, <i>196</i>, 424–433. [20] Ruppert, S., Sandler, S. I., Lenhoff, A. M., Correlation between the osmotic second virial coefficient and the solubility of proteins, <i>Biotechnol. Prog</i>, 2001, <i>17</i>, 182–187. [21] Chi, E. Y., Krishnan, S., Kendrick, B. S., Chang, B. S, <i>et al.</i>, Roles of conformational stability and colloidal stability in the aggregation of recombinant 	Deleted: , Deleted: , Deleted: , Deleted: , Deleted: ,
 virial coefficients and solubilities useful in protein crystal growth, <i>J. Cryst. Growth</i>, <i></i> 1999, <i>196</i>, 424–433. [20] Ruppert, S., Sandler, S. I., Lenhoff, A. M., Correlation between the osmotic second virial coefficient and the solubility of proteins, <i>Biotechnol. Prog</i>, 2001, <i>17</i>,	Deleted: , Deleted: , Deleted: , Deleted: , Deleted: ,
 virial coefficients and solubilities useful in protein crystal growth, <i>J. Cryst. Growth</i>, <i>J. Cr</i>	Deleted: , Deleted: , Deleted: , Deleted: , Deleted: ,

[23] Ho, J. G. S., Middelberg, A. P. J., Ramage, P., Kocher, H. P., The likelihood of aggregation during protein renaturation can be assessed using the second virial	
	Deleted: ,
coefficient, Protein Sci, 2003, 12, 708–716.	Deleted: ,
[24] Ahamed, T., Esteban, B. N. A., Ottens, M., van Dedem, G. W. K, et al.,	Deleted: ,
	Deleted: Biophysical
Phase behavior of an intact monoclonal antibody. <u><i>Biophys. J.</i></u> 2007, 93, 610–619.	Deleted: <i>ournal</i> ,
[25] Behlke, J., Ristau, O., Analysis of the thermodynamic nonideality of proteins	Deleted: (2)
[25] Denke, 5., Ristad, O., Anarysis of the merinodynamic nonideanty of proteins	Deleted: -
by sedimentation equilibrium experiments, Biophys. Chem, 1999, 76, 13-23.	Deleted: ,
	Deleted: ,
[26] Bonnet, F., Finet, S., Tardieu, A., Second virial coefficients: variations with	
	Deleted: ,
lysozyme crystallization conditions. J. <u>Cryst.</u> Growth 1999, 196, 403–413.	Deleted: Crystal
[27] Moon, Y. U., Curtis, R. A., Anderson, C. O., Blanch, H. W, et. al., Protein-	Deleted: ,
[27] Woon, 1. U., Curus, K. A., Anderson, C. U., Dianen, H. W $(2.24, 1000)$	Deleted: -
protein interactions in aqueous ammonium sulfate solutions: Lysozyme and bovine	Deleted: ,
$(D_{1}, C_{1}) = (D_{1}, C_{1}) + (C_{1}) = (2000, 20, (00, 717))$	Deleted:),
serum albumin (BSA). J. Solut. Chem., 2000, 29, 699–717.	Deleted: ,
[28] Patro, S. Y., Przybycien, T. M., Self-interaction chromatography: <u>A tool for</u>	Deleted: a
	Deleted: ,
the study of protein-protein interactions in bioprocessing environments, Biotechnol.	
Bioeng_1996, 52, 193–203.	Deleted: ,
<i>Diveng</i> , 1990, 52, 195–205.	Deleted:
[29] Tessier, P. M., Vandrey, S. D., Berger, B. W., Pazhianur, R, et. al., Self-	// (
	Deleted: a
interaction chromatography: <u>A</u> novel screening method for rational protein \sim	/
	Deleted: ,
crystallization, Acta Crystallogr. Sec. D Biol. Crystallogr, 2002, 58, 1531–1535.	Deleted: ,
[30] Ahamed, T., Ottens, M., van Dedem, G. W. K., van der Wielen, L. A. M.,	
Design of self-interaction chromatography as an analytical tool for predicting protein	
	Deleted: ,
phase behavior, J. Chromatogr. A, 2005, 1089, 111–124.	Deleted: ,
[31] Garcia, C. D., Hadley, D. J., Wilson, W. W., Henry, C. S., Measuring protein	
	Deleted: ,
interactions by microchip self-interaction chromatography. Biotechnol. Prog. 2003,	Deleted: ,

Biotechnology Journal

	, Deleted: ,
protein-ligand interactions by affinity chromatography, Biotechnol. Prog. 2003, 19,	Deleted: ,
575–579 <u>.</u>	
[33] Teske, C. A., Blanch, H. W., Prausnitz, J. N., Measurement of lysozyme–	Delated
lysozyme interactions with quantitative affinity chromatography, J. Phys. Chem. B	Deleted: , Deleted: ,
2004, 108, 7437–7444.	
[34] Tessier, P. M., Lenhoff, A. M., Sandler, S. I., Rapid measurement of protein	(
osmotic second virial coefficients by self-interaction chromatography, Biophys. J	Deleted: ,
2002, 82, 1620–1631.	Deleted:
[35] Tessier, P. M., Johnson, H. R., Pazhianur, R., Berger, B. W., et. al., Predictive	
crystallization of ribonuclease A <i>via</i> rapid screening of osmotic second virial	Formatted: Font: Italic
coefficients, Proteins Struct. Funct. Genet. 2003, 50, 303–311.	Deleted: ,
[36] Teske, C. A., Blanch, H. W., Prausnitz, J. M., Chromatographic measurement	Deleted
of interactions between unlike proteins, Fluid Phase Equilibr, 2004, 219, 139–148.	Deleted: ,
[27] Tassian D.M. Sandlar S. L. Lankoff A.M. Direct measurement of protein	
[37] Tessier, P. M., Sandler, S. I., Lenhoff, A. M., Direct measurement of protein	Deleted: ,
osmotic second virial cross coefficients by cross-interaction chromatography, Protein	
Sci. 2004, 13, 1379–1390.	Deleted: ,
	Deleted: ,
[38] Payne, R. W., Nayar, R., Tarantino, R., Terzo, S. D _v <i>et. al.</i> , Second virial	Deleted:
coefficient determination of a therapeutic peptide by self-interaction chromatography $_{*-}$	
Peptide Sci. 2006, 84, 527_533.	Deleted: ence,
epilite Scl <u>.</u> 2000, 04, 521 <u>–</u> 555.	Deleted: - Deleted: ,
[39] Valente, J. J., Fryksdale, B. G., Dale, D. A., Gaertner, A. L <u>et. al.</u> , Screening	
For physical stability of a <i>Pseudomonas</i> amylase using self-interaction	Formatted: Font: Italic
	Deleted: ,
chromatography, Anal, Biochem, 2006, 357, 35–42.	Deleted: ytical
[40] Kornmann, H., Collet, N., Baer, G., Self-interaction chromatography applied	Deleted: istry
	Deleted:
to the rapid development of formulation for therapeutic proteins, 234 th ACS National	Deleted: -

1
2
3
4
5
Э
6
7
Q
0
9
10
11
40
12
13
14
15
10
16
17
2345678910112314156789001122222456789001123345678900112334567890011222224567890012223456789000000000000000000000000000000000000
10
19
20
21
22
22
23
24
25
20
20
27
28
20
23
30
31
32
22
33
34
35
36
07
37
38
39
40
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
50
59
60

	Deleted: ,
[41] Chiancone, E., Fronticelli, C., Gattoni, M., Urbaitis, B. K <u>et. al.</u>	
Immobilized hemoglobin in the purification of hemoglobin-based oxygen carriers, J.	Deleted: ,
	Deleted: ,
Chromatogr, 1992, 604, 117–123.	Deleted:
[42] Przybycien, T. M., Protein–protein interactions as a means of purification	Deleteu.,
	Deleted: ,
Curr. Opin. Biotechnol. 1998, 9, 164–170.	
[43] Tessier, P. M., Lenhoff, A. M., Measurements of protein self-association as a	
mide to crystallization Curr Onin Biotechnol 2003 14 512 516	Deleted: ,
guide to crystallization, Curr. Opin. Biotechnol, 2003, 14, 512–516.	Deleted: ,
[44] Valente, J. J., Verma, K. S., Manning, M. C., Wilson, W. W, et. al., Second	
virial coefficient studies of cosolvent-induced protein self-interaction, Biophys. J	Deleted: ,
virial coefficient studies of cosolvent-induced protein sen-interaction, <u>propriss.</u>	Deleted: ,
2005, <i>89</i> , 4211–4218.	
[45] Winzor, D. J., Scott, D. J., Wills, P. R., A simpler analysis for the	
	Deleted: ,
measurement of second virial coefficients by self-interaction chromatography, <u>Anal.</u>	
Biochem, 2007, 371, 21–25.	Deleted: <i>istry</i> ,
	Deleted:
[46] Hadd, A. G., Raymond, D. E., Halliwell, J. W., Jacobson, S. C. <i>et. al.</i> ,	Deleted: ,
Microchip device for performing enzyme assays, Anal. Chem, 1997, 69, 3407-3412.	Deleted: ,
	Deleted: -
[47] Jones, F., Forrest, S., Palmer, J., Lu, Z _v et. al., Immobilized enzyme studies in	Deleted: ,
a micro-scale bioreactor, Appl. Biochem. Biotechnol., 2004, 113-116, 261-272.	Deleted: ,
[40] Karden I. Fant F. Land Hiller I. Star field	Deleted: -
[48] Krenkova, J., Foret, F., Immobilized microfluidic enzymatic reactors	Deleted: -
Electrophoresis, 2004, 25, 3550–3563.	Deleted: ,
[49] Ku, B., Cha, J., Srinivasan, A., Kwon, S. J, et. al., Chip-based polyketide	Deleted: ,
[49] Ku, B., Cha, J., Shiniyasan, A., Kwon, S. J. et. <i>ut.</i> , Chip-based polykeide	Deleted:
biosynthesis and functionalization, <i>Biotechnol. Prog.</i> 2006, 22, 1102–1107.	Deleted: ,
[50] Lee, M-Y., <u>Srinivasan</u> , A., Ku, B., Dordick, J. S., Multienzyme catalysis in	Deleted: ,
	Deleted: -
microfluidic biochips, <i>Biotechnol. Bioeng</i> , 2003, 83, 20–28.	Deleted: Srinivisan
[51] Srinivasan, A., Wu, X., Lee, M-Y., Dordick, J. S., Microfluidic peroxidase	Deleted:
	Deleted: -
biochip for polyphenol synthesis, <i>Biotechnol. Bioeng</i> , 2003, 81, 563–569.	Deleted: ,
	Deleted: .

Biotechnology Journal

[52]	Deshpande, K., Ahamed, T., van der Wielen, L. A. M., ter Horst, J. H _v et. al.,
Protein	self-interaction chromatography on a microchip, Lab Chip, 2009, 9, 600–605,
	Kim, S. H., Tamrazi, A., Carlson, K. E., Katzenellenbogen, J. A., A
proteor	nic microarray approach for exploring ligand-initiated nuclear hormone
recepto	or pharmacology, receptor selectivity, and heterodimer functionality, Mol. Cell
Prot <u>eor</u>	<u>mics</u> 2005, 4, 267–277.
[54]	Huang, J., Zhu, H., Haggarty, S. J., Spring, D. R. et. al., Finding new

components of the target of rapamycin (TOR) signaling network through chemical genetics and proteome chips, *Proc. Natl. Acad. Sci. USA*, 2004, *101*, 16594–16599.
[55] Hall, D. A., Zhu, H., Zhu, X., Royce, T, *et. al.*, Screening yeast proteins for DNA binding identified a biosynthetic enzyme for the amino acid arginine that also unexpectedly binds to DNA and regulates genes directly, *Science*, 2004, *306*, 482–484.

[56] Butler, J. E., Ni, L., Nessler, R., Joshi, K. S, *et. al.*, The physical and functional behavior of capture antibodies adsorbed on polystyrene, *J. Immunol. Methods*, 1992, *150*, 77–90.

[57] Rusmini, F., Zhong, Z., Feijen, J., Protein immobilization strategies for protein biochips, *Biomacromolecules*, 2007, 8, 1775–1789.

[58] Camarero, J. A., Recent developements in the site-specific immobilization of proteins onto solid supports. *Biopolymers* 2008, 90, 450–458, █ check changed journal and date█

[59] Nakamura, K., Hashimoto, T., Kato, Y., Shimura, K, *et. al.*, Effect of type and concentration of coupling buffer on coupling yield in the coupling of proteins to a tresyl-activated support for affinity chromatography, *J. Chromatogr*, 1990, *513*, 367.

Deleted:
Deleted:
Deleted: ,
Deleted:
Deleted: , DOI: 10. 1039/b810741f
Formatted: Font: Italic
Deleted: -
Deleted:
Deleted: ,
Formatted: Font: Italic
Deleted:
Deleted: ,

Deleted: ,	
Deleted:	
Deleted:	
Deleted:	
Deleted: 101,	
Deleted: ,	
Deleted: ,	
Deleted: ,	

Delet	ed: ,	
Delet	ed: ,	
Delet	ed: ,	

Deleted: ,
Deleted: ,
Deleted: (6)
Formatted: Font: Not Italic
Deleted: -
Deleted: ,
Deleted: Peptide Science,
Deleted: 2007
Deleted: (3)
Formatted: Font: (Default) Times New Roman
Formatted: Font: (Default) Times New Roman
Deleted: DOI 10. 1002/bip. 20803
Deleted: ,
Deleted: ,
Deleted: ,

	, Deleted: ,
[60] Els-Ali, J., Sorger, P. K., Jensen, K. F., Cells on chips, <u>Nature</u> , 2006, 442,	Deleted: ,
403-411.	
	Deleted: ,
[61] Powers, M. J., Domansky, K., Kaazempur-Mofrad, M. R., Kalezi, A. et. al.,	
A micro fabricated array bioreactor for perfused 3D liver culture_Biotechnol. Bioeng	Deleted: ,
2002, 78, 257–269.	
[62] Yager, P., Edwards, T., Fu, E., Helton, K, et. al., Microfluidic diagnostic	Deleted: ,
$[02] \qquad Fager, f., Edwards, f., fu, E., Heron, Ket, a., Meronaule diagnostic (12)$	Deleted: ,
technologies for global public health, <i>Nature</i> , 2006, 442, 412–418.	- Deleted: ,
[63] Qin, J. H., Ye, N. N., Liu, X., Lin, B. C., Microfluidic devices for the analysis	
[05] Xin, J. H., Te, R. R., Elu, A., Eli, D. C., Wieroffuluie devices for the alialysis	Deleted:
of apoptosis, <i>Electrophoresis</i> , 2005, 26, 3780–3788.	- Deleted: ,
[64] Lauer, H. H., McManigill, D., Capillary zone electrophoresis of proteins in	
[04] Lauer, II. II., Methanight, D., Capinary zone electrophoresis of proteins in	Deleted:
untreated fused silica tubing, Anal. Chem, 1986, 58, 166.	- Deleted: ,
[65] Walbroehl, Y., Jorgenson, J. W., Capillary zone electrophoresis for the	
[65] Walbroehl, Y., Jorgenson, J. W., Capillary zone electrophoresis for the	Deleted:
determination of electrophoretic mobilities and diffusion coefficients of proteins, J.	
Minnershum Em 1020 / 41	Deleted:
Microcolumn, Sep, 1989, 1, 41.	- Deleted: ,
[66] Soper, S. A., Henry, A. C., Vaidya, B., Galloway, M. et. al., Surface	Deleted: ,
	Deleted:
modification of polymerbased microfluidic devices, Anal. Chim. Acta, 2002, 470,	Deleted: ,
87–99.	
[67] Ahamed, T., Predictive crystallization of proteins using self-interaction	Deleted:
chromatography, PD Engineering Thesis, 2004, TU Delft.	
[68] Bonnete, F., Finet, S., Tardieu, A., Second virial coefficient: variations with	Deleted:
lysozyme crystallization conditions, J. <u>Cryst.</u> Growth, 1999, 196, 403–414.	- Deleted: Crystal
	Celeted: ,
[69] Curtis, R. A., Prausnitz, J. M., Blanch, H. W., Protein-protein and protein-salt	Deleted: -
interactions in aqueous protein solutions containing concentrated electrolytes.	, Deleted: ,
	Deleted: ogy and
Biotechnol, Bioeng, 1998, 57, 11–21.	Deleted: ineering,

[70] Custia D. A. Illeich, I. Mantagan, A. Davugaita, I. M. et al. Dastain gratein	Deleted: ,
[70] Curtis, R. A., Ulrich, J., Montaser, A., Prausnitz, J. M, et. al., Protein-protein	Deleted: ,
interactions in concentrated electrolyte solutions_Biotechnol_Bioeng_ 2002, 79, 367-	- Deleted: ogy and
	Deleted: <i>ineering</i> ,
380.	
[71] Asanov, A. N, DeLucas, L. J, Oldham, P. B, Wilson, W. W, Interfacial	
aggregation of bovine serum albumin related to crystallization conditions studied by	Deleted:
total internal reflection fluorescence, J Colloid Interface Sci. 1997, 196, 62-73.	- Deleted: ,
	Deleted: -
[72] Costenaro, L., Zaccai, G., Ebel, C., Link between protein–solvent and weak	Deleted:
protein-protein interactions gives insight into halophilic adaptation, Biochemistry	Deleted: ,
2002 41 12245 12252	Deleted: -
2002, <i>41</i> , 13245 <u>–13252</u> .	Deleted:
[73] Shahrokh, Z., Sluzky, V., Cleland, J. L., Shire, S. J. et. al., Therapeutic	, (,
protein and peptide formulation and delivery, ACS symposium series, 1997, 675.	
protein and peptide formulation and derivery, <i>ites symposium series</i> , 1997, 075.	Deleted: ,
[74] Krishnan, S., Chi, E. Y., Webb, J. N., Chang, B. S, et al., Aggregation of	,
granulocyte colony simulating factor under physiological conditions:	
	Deleted: ,
Characterization and thermodynamic inhibition, <i>Biochemistry</i> , 2002, 41, 6422–6431.	- Deleted: ,
[75] Chi, E. Y., Krishnan, S., Kendrick, B. S., Chang, B. S., et. al., Roles of	Deleted: ,
conformational stability and colloidal stability in the aggregation of recombinant	
conformational stability and confordal stability in the aggregation of recombinant	Deleted: ,
human granulocyte colony-stimulating factor, Protein Sci. 2003, 12, 903–913.	- Formatted: German (Germany
[76] Kim, YS., Jones, L. S., Dong, A., Kendrick, B. S., et. al., Effects of sucrose	Deleted: ence,
[70] Kini, TS., Jones, E. S., Dong, A., Kendrick, B. S. et. al., Effects of sucrose	Deleted: ,
on conformational equilibria and fluctuations within the native-state ensemble of	
proteine Protein Sei 2003 12 1252 1261	Deleted: ,
proteins, Protein Sci, 2003, 12, 1252–1261.	Deleted: ence,
[77] Chi, E. Y., Krishnan, S., Randolph, T. W., Carpenter, J. F., Physical stability	
of proteins in aqueous solution: Mechanism and driving forces in nonnative protein	Deleted
aggregation, <u>Pharm.</u> Rev. 2003, 20, 1325–1336.	- Deleted: , Deleted: <i>Pharmaceutical</i>
	Deleted: <i>iew</i> ,
[78] Dill, K. A., Dominant forces in protein folding, <i>Biochemistry</i> , 1990, 29, 7133–	Deleted: ,
	Deleted:

Valente, J. J., Verma, K. S., Manning, M. C., Wilson, W. W, et. al., Second [79] virial coefficient studies of cosolvent-induced protein self-interaction, Biophys. J. 2005, 89, 4211-4218. Deleted: ,..., ...Biophysical ...i

[80] Curtis, R. A., Steinbrecher, C., Heinemann, M., Blanch, H. W, et. al.,

Hydrophobic forces between protein molecules in aqueous solutions of concentrated

electrolyte, Biophys. Chem. 2002, 98, 249-265.

Dong, X. Y., Liu, J. H., Liu, F. F., Sun, Y., Self-interaction of native and [81] denatured lysozyme in the presence of osmolytes, L-arginine and guanidine hydrochloride, Biochem. Eng. J. 2009, 43, 321-326.

[82] Johnson, D. H., Parupudi, A., Wilson, W. W., DeLucas, L. J., Highthroughput self-interaction chromatography: Applications in protein formulation prediction, Pharm. Res., 2009, 26, 296-305,

	/	Deleted: Figure normal self
Figure 1. Schematic representation of a normal-scale SIC concept.		interaction chromatography [[6]
	/	Deleted: Figuremicroself
Figure 2. Schematic representation of <u>micro-scale SIC</u> concept.		interaction chromatography[7]
	/	Deleted: Figureself-interaction
Figure 3. Schematic description of setup used for micro fluidic <u>SIC</u> runs.		chromatography [8]
	- /	Deleted: Figure
<u>Figure 4.</u> (a) Osmotic second virial coefficients (B_{22}) trend of lysozyme at <u>pH</u> 7.0	í	Deleted: pH [9]
		Formatted [10]
7.6. Open triangle with solid line: <u>pH</u> 7.0, 10 mM sodium phosphate buffer, micro-		Deleted: pH
		Deleted: pH ⁰ [11]
SIC [52]; open square: <u>pH</u> 7.5, 25°C, SLS [18]; black diamond with dash-dot line:		
		Deleted: pH ⁰ [12]
<u>pH</u> 7.4, 25°C, SLS [31]; black square with long dash line: <u>pH</u> 7.6, 10 mM sodium]7	Deleted: pH pH [13]
abaanhata huffan SIC [20], anan diamand with daah dat dat lina nU 70,5 mM Dia		
phosphate buffer, SIC [30]; open diamond with dash-dot-dot line: <u>pH 7.0, 5 mM Bis-</u>		
This haffer, GIO [20], black triangle with dated lines all 7.6, 20 mM as lines		Deleted: pH
Tris buffer, SIC [29]; black triangle with dotted line: <u>pH</u> 7.6, 20 mM sodium	1	
	1	Deleted: pH
phosphate buffer, SIC [33]; open circle with dash line: <u>pH</u> 7.0, 10 mM sodium	_/	
	/	Deleted: pH
phosphate buffer, SIC [67]. (b) B_{22} trend of lysozyme at <u>pH</u> 4.2–4.5. Open triangle		
	,1	Deleted: pH pH [15]
with solid line: <u>pH</u> 4.5, 10 mM sodium acetate buffer, micro-SIC [52]; black circle	11	
with long dash line: <u>pH 4.5, 50 mM sodium acetate buffer</u> , <u>small-angle x-ray</u>		

Deleted: I Formatted: Small caps Deleted: , ... Biochemical Engineering ...ournal... [3] Formatted: Font: Italic Deleted: -

Deleted: , Pharmaceutical	
earch,	<u>[[4]</u>
Formatted	[5]
Deleted: (2)	
Deleted: Figure normal se	lf
interaction chromatography	[[6]
Deleted: Figuremicrosel	f
interaction chromatography	[[7]]
Deleted: Figureself-interact	ion
chromatography	[[8]
Deleted: Figure	
Deleted: pH	[9]
Formatted	[10]
Deleted: pH	
Deleted: pH ⁰	[11]
Deleted: pH ⁰	[12]
Deleted: pHpH	[13]

Deleted: pH	
Deleted: pH	
Deleted: pH	[[14]
Deleted: pH pH	[[15]

Biotechnology Journal

2
3
1
4
5
6
7
Ω.
0
9
10
11
12
12
13
14
15
16
17
17
18
$\begin{array}{c} 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 2 \\ 3 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 2 \\ 12 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ $
20
21
<u>~</u> 1
22
23
24
25
20
20
27
28
29
20
30
31 32 33 34 35 36 37 38 39
32
33
21
34
35
36
37
38
20
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
<u> </u>

60

scattering (SAXS) [68]; open circle with dash-dot line: <u>pH 4.5</u>, <u>Jow-angle laser light</u> scattering (LLS) [69]; black triangle with dash-dot-dot line: <u>pH 4.5</u>, 25°<u>C</u>, <u>Jow-angle</u> LLS [70]; open triangle with dotted line: <u>pH 4.5</u>, 25°<u>C</u>, <u>Jow-angle LLS [18]; black</u> diamond with dash-dot line: <u>pH 4.6</u>, SLS [4]; open diamond with dash-dot-dot line: <u>pH 4.5</u>, 10 mM sodium acetate buffer, SIC [30]; black hexagon with dotted line: <u>pH 4.5</u>, 5 mM sodium acetate buffer [29]; open hexagon with dash-dot line: <u>pH 4.5</u>, 20 mM sodium acetate buffer, SIC [33].

Figure 5, *B*₂₂, as a function of precipitating salt concentration. Dashed red lines denote the upper and lower boundaries of the crystallization slot. Myoglobin at <u>pH</u> 7.4 (white circle with solid line) [29]; myoglobin at <u>pH</u> 7.0 (black circle with dotted line) [29]; myoglobin at <u>pH</u> 6.0 (black circle with short dash line) [29]; BSA at <u>pH</u> 7.0 (white square with solid line) [71]; BSA at <u>pH</u> 6.2 (black square with dotted line) [71]; chymotrypsinogen at <u>pH</u> 6.8 (white triangle with short dash line) [34]; malate dehydrogenase at <u>pH</u> 8.0 (white diamond with solid line) [72]; ovalbumin at <u>pH</u> 6.0 (solid blue line, no symbols) [38].

Figure 6. (a) Effect of stabilizing agents on <u>amylase B₂₂ values</u> estimated by SIC. (b) Activity of <u>amylase</u> as a function of stabilizing agents. Sucrose (black circles) and sorbitol (white circles); 1% NaCl at <u>pH</u> 6.00 (dotted line); 5% NaCl at <u>pH</u> 4.43 (short dash line); and 1% NaCl at <u>pH</u> 4.53 (solid line) [39].

Deleted: pH
Deleted: Low
Deleted: pH
Deleted: ⁰
Deleted: Low
Deleted: pH
Deleted: ⁰
Deleted: Low
Deleted: pH
Deleted: pH
Deleted: pH
Deleted: pH
Deleted: Figure
Deleted: :
Deleted: Osmotic second virial coefficients (
Deleted:)
Deleted: pH
Deleted: pH
Deleted: "H
Deleted: pH
Deleted: Figure
Formatted: Font: Not Bold
Deleted: Amylase
Deleted: osmotic second virial coefficient (

Deleted:)

Deleted: Amylase Deleted: (w/v) Deleted: pH Deleted: (w/v) Deleted: pH Deleted: (w/v) Deleted: pH

Formatted: Font: Not Bold

<u>**Table 1.**</u> Comparison of important operating parameters in estimation of B_{22} by

Deleted: Table

Formatted: Font: Not Bold

Deleted:

different techniques (adapted from [30]),

$\begin{array}{c cccc} (mol,mL,g^{-2}) & \text{protein} & \text{concentration} & \text{single } B_{22} \\ & \text{required for} \\ & \text{single } B_{22} \\ & \text{measurement} \\ (mg) & & & & & & & & & & & & & & & & & & &$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	technique	inaccuracy (mol_mL_ g^{-2})	protein required for single <i>B</i> ₂₂	concentration	single B_{22} measurement
measurement required for single B_{22} measurement (mg) (mg/mL) measurement (min) Micro-osmometry $\pm 1.0 \times 10^{-4}$ 0.60 2.0-10.0 15 (MO) $\pm 2.0 \times 10^{-4}$ 6.0 30.0 15-25 Static light $\pm 2.0 \times 10^{-4}$ 6.0 30.0 15-25 scattering (SLS) $\pm 3.0 \times 10^{-4}$ 25.0 15.0-65.0 15 Size exclusion $\pm 3.0 \times 10^{-4}$ 0.45 20.0 25 Self interaction $\pm 1.0 \times 10^{-4}$ 0.45 20.0 25 Miniaturized SIC $\pm 1.0 \times 10^{-4}$ 0.002 0.15-1.0 5	required for single B_{22} measurement (mg) (mg/mL) measurement (min) Micro-osmometry $\pm 1.0 \times 10^{-4}$ 0.60 2.0-10.0 15 (MO) $\pm 2.0 \times 10^{-4}$ 0.60 30.0 15-25 Static light $\pm 2.0 \times 10^{-4}$ 6.0 30.0 15-25 scattering (SLS) $\pm 3.0 \times 10^{-4}$ 25.0 15.0-65.0 15 Size exclusion $\pm 3.0 \times 10^{-4}$ 0.45 20.0 25 Self interaction $\pm 1.0 \times 10^{-4}$ 0.45 20.0 25 Miniaturized SIC $\pm 1.0 \times 10^{-4}$ 0.002 0.15-1.0 5	measurement required for single B_{22} measurement (mg) (mg/mL) measurement (min) Micro-osmometry $\pm 1.0 \times 10^{-4}$ 0.60 2.0-10.0 15 (MO) $\pm 2.0 \times 10^{-4}$ 6.0 30.0 15-25 Static light $\pm 2.0 \times 10^{-4}$ 6.0 30.0 15-25 scattering (SLS) $\pm 3.0 \times 10^{-4}$ 25.0 15.0-65.0 15 Size exclusion $\pm 3.0 \times 10^{-4}$ 0.45 20.0 25 Self interaction $\pm 1.0 \times 10^{-4}$ 0.45 20.0 25 Miniaturized SIC $\pm 1.0 \times 10^{-4}$ 0.002 0.15-1.0 5	measurement required for single B_{22} measurement (mg) (mg/mL) measurement (min) Micro-osmometry $\pm 1.0 \times 10^{-4}$ 0.60 2.0-10.0 15 (MO) $\pm 2.0 \times 10^{-4}$ 6.0 30.0 15-25 Static light $\pm 2.0 \times 10^{-4}$ 6.0 30.0 15-25 scattering (SLS) $\pm 3.0 \times 10^{-4}$ 25.0 15.0-65.0 15 Size exclusion $\pm 3.0 \times 10^{-4}$ 0.45 20.0 25 Self interaction $\pm 1.0 \times 10^{-4}$ 0.45 20.0 25 Miniaturized SIC $\pm 1.0 \times 10^{-4}$ 0.002 0.15-1.0 5		$(\text{mol},\underline{\text{mL}},\underline{\text{g}}_{\perp}^{=2})$	required for single B_{22}		measurement
single B_{22} measurement (mg) (min) Micro-osmometry (MO) $\pm 1.0 \times 10^{-4}$ 0.60 2.0-10.0 15 Static light scattering (SLS) $\pm 2.0 \times 10^{-4}$ 6.0 30.0 15-25 Size exclusion chromatography (SEC) $\pm 3.0 \times 10^{-4}$ 25.0 15.0-65.0 15 Self interaction chromatography (SIC) $\pm 1.0 \times 10^{-4}$ 0.45 20.0 25 Miniaturized SIC $\pm 1.0 \times 10^{-4}$ 0.002 0.15-1.0 5	single B_{22} measurement (mg) (min) Micro-osmometry (MO) $\pm 1.0 \times 10^{-4}$ 0.60 2.0-10.0 15 Static light scattering (SLS) $\pm 2.0 \times 10^{-4}$ 6.0 30.0 15-25 Size exclusion chromatography (SEC) $\pm 3.0 \times 10^{-4}$ 25.0 15.0-65.0 15 Self interaction chromatography (SIC) $\pm 1.0 \times 10^{-4}$ 0.45 20.0 25 Miniaturized SIC $\pm 1.0 \times 10^{-4}$ 0.002 0.15-1.0 5	single B_{22} measurement (mg) (min) Micro-osmometry (MO) $\pm 1.0 \times 10^{-4}$ 0.60 2.0-10.0 15 Static light scattering (SLS) $\pm 2.0 \times 10^{-4}$ 6.0 30.0 15-25 Size exclusion chromatography (SEC) $\pm 3.0 \times 10^{-4}$ 25.0 15.0-65.0 15 Self interaction chromatography (SIC) $\pm 1.0 \times 10^{-4}$ 0.45 20.0 25 Miniaturized SIC $\pm 1.0 \times 10^{-4}$ 0.002 0.15-1.0 5	single B_{22} measurement (mg) (min) Micro-osmometry (MO) $\pm 1.0 \times 10^{-4}$ 0.60 2.0-10.0 15 Static light scattering (SLS) $\pm 2.0 \times 10^{-4}$ 6.0 30.0 15-25 Size exclusion chromatography (SEC) $\pm 3.0 \times 10^{-4}$ 25.0 15.0-65.0 15 Self interaction chromatography (SIC) $\pm 1.0 \times 10^{-4}$ 0.45 20.0 25 Miniaturized SIC $\pm 1.0 \times 10^{-4}$ 0.002 0.15-1.0 5			single B_{22}	(mg <u>/mL)</u>	+
measurement (mg) measurement (mg) Micro-osmometry (MO) $\pm 1.0 \times 10^{-4}_{\star}$ 0.60 2.0-10.0 15 Static light scattering (SLS) $\pm 2.0 \times 10^{-4}_{\star}$ 6.0 30.0 15-25 Size exclusion chromatography (SEC) $\pm 3.0 \times 10^{-4}_{\star}$ 25.0 15.0-65.0 15 Self interaction chromatography (SIC) $\pm 1.0 \times 10^{-4}_{\star}$ 0.45 20.0 25 Miniaturized SIC $\pm 1.0 \times 10^{-4}_{\star}$ 0.002 0.15-1.0 5	measurement (mg) measurement (mg) Micro-osmometry (MO) $\pm 1.0 \times 10^{-4}_{z}$ 0.60 2.0-10.0 15 Static light scattering (SLS) $\pm 2.0 \times 10^{-4}_{z}$ 6.0 30.0 15-25 Size exclusion chromatography (SEC) $\pm 3.0 \times 10^{-4}_{z}$ 25.0 15.0-65.0 15 Self interaction chromatography (SIC) $\pm 1.0 \times 10^{-4}_{z}$ 0.45 20.0 25 Miniaturized SIC $\pm 1.0 \times 10^{-4}_{z}$ 0.002 0.15-1.0 5	measurement (mg) measurement (mg) Micro-osmometry (MO) $\pm 1.0 \times 10^{-4}_{\star}$ 0.60 2.0-10.0 15 Static light scattering (SLS) $\pm 2.0 \times 10^{-4}_{\star}$ 6.0 30.0 15-25 Size exclusion chromatography (SEC) $\pm 3.0 \times 10^{-4}_{\star}$ 25.0 15.0-65.0 15 Self interaction chromatography (SIC) $\pm 1.0 \times 10^{-4}_{\star}$ 0.45 20.0 25 Miniaturized SIC $\pm 1.0 \times 10^{-4}_{\star}$ 0.002 0.15-1.0 5	measurement (mg) measurement (mg) Micro-osmometry (MO) $\pm 1.0 \times 10^{-4}_{z}$ 0.60 2.0-10.0 15 Static light scattering (SLS) $\pm 2.0 \times 10^{-4}_{z}$ 6.0 30.0 15-25 Size exclusion chromatography (SEC) $\pm 3.0 \times 10^{-4}_{z}$ 25.0 15.0-65.0 15 Self interaction chromatography (SIC) $\pm 1.0 \times 10^{-4}_{z}$ 0.45 20.0 25 Miniaturized SIC $\pm 1.0 \times 10^{-4}_{z}$ 0.002 0.15-1.0 5					
(mg) (mg) Micro-osmometry (MO) $\pm 1.0 \times 10^{-4}_{r}$ 0.60 2.0-10.0 15 Static light $\pm 2.0 \times 10^{-4}_{r}$ 6.0 30.0 15-25 scattering (SLS) $\pm 3.0 \times 10^{-4}_{r}$ 25.0 15.0-65.0 15 Size exclusion $\pm 3.0 \times 10^{-4}_{r}$ 25.0 15.0-65.0 15 chromatography (SEC) $\pm 1.0 \times 10^{-4}_{r}$ 0.45 20.0 25 Miniaturized SIC $\pm 1.0 \times 10^{-4}_{r}$ 0.002 0.15-1.0 5	(mg) (mg) Micro-osmometry (MO) $\pm 1.0 \times 10^{-4}_{z}$ 0.60 2.0-10.0 15 Static light scattering (SLS) $\pm 2.0 \times 10^{-4}_{z}$ 6.0 30.0 15-25 Size exclusion chromatography (SEC) $\pm 3.0 \times 10^{-4}_{z}$ 25.0 15.0-65.0 15 Self interaction chromatography (SIC) $\pm 1.0 \times 10^{-4}_{z}$ 0.45 20.0 25 Miniaturized SIC $\pm 1.0 \times 10^{-4}_{z}$ 0.002 0.15-1.0 5	(mg) (mg) Micro-osmometry (MO) $\pm 1.0 \times 10^{-4}_{r}$ (0.60 $2.0-10.0$ 15 Static light scattering (SLS) $\pm 2.0 \times 10^{-4}_{r}$ 6.0 30.0 15-25 Size exclusion chromatography (SEC) $\pm 3.0 \times 10^{-4}_{r}$ 25.0 15.0-65.0 15 Self interaction chromatography (SIC) $\pm 1.0 \times 10^{-4}_{r}$ 0.45 20.0 25 Miniaturized SIC $\pm 1.0 \times 10^{-4}_{r}$ 0.002 0.15-1.0 5	(mg) (mg) Micro-osmometry (MO) $\pm 1.0 \times 10^{-4}_{r}$ 0.60 2.0-10.0 15 Static light $\pm 2.0 \times 10^{-4}_{r}$ 6.0 30.0 15-25 scattering (SLS) $\pm 3.0 \times 10^{-4}_{r}$ 25.0 15.0-65.0 15 Size exclusion $\pm 3.0 \times 10^{-4}_{r}$ 25.0 15.0-65.0 15 chromatography (SEC) $\pm 1.0 \times 10^{-4}_{r}$ 0.45 20.0 25 Miniaturized SIC $\pm 1.0 \times 10^{-4}_{r}$ 0.002 0.15-1.0 5					(min)
Micro-osmometry (MO) $\pm 1.0 \times 10^{-4}_{\star}$ 0.60 $2.0 - 10.0$ 15 Static light $\pm 2.0 \times 10^{-4}_{\star}$ 6.0 30.0 $15 - 25$ scattering (SLS) $\pm 3.0 \times 10^{-4}_{\star}$ 25.0 $15.0 - 65.0$ 15 Size exclusion $\pm 3.0 \times 10^{-4}_{\star}$ 25.0 $15.0 - 65.0$ 15 chromatography 5 $10 \times 10^{-4}_{\star}$ 0.45 20.0 25 Self interaction $\pm 1.0 \times 10^{-4}_{\star}$ 0.45 20.0 25 Miniaturized SIC $\pm 1.0 \times 10^{-4}_{\star}$ 0.002 $0.15 - 1.0$ 5	Micro-osmometry (MO) $\pm 1.0 \times 10^{-4}$ 0.60 $2.0 - 10.0$ 15 Static light $\pm 2.0 \times 10^{-4}$ 6.0 30.0 15 - 25 scattering (SLS) $\pm 3.0 \times 10^{-4}$ 25.0 15.0 - 65.0 15 Size exclusion $\pm 3.0 \times 10^{-4}$ 25.0 15.0 - 65.0 15 chromatography (SEC) $\pm 1.0 \times 10^{-4}$ 0.45 20.0 25 Miniaturized SIC $\pm 1.0 \times 10^{-4}$ 0.002 0.15 - 1.0 5	Micro-osmometry (MO) $\pm 1.0 \times 10^{-4}_{x}$ 0.60 $2.0 - 10.0$ 15 Static light $\pm 2.0 \times 10^{-4}_{x}$ 6.0 30.0 $15 - 25$ scattering (SLS) $\pm 3.0 \times 10^{-4}_{x}$ 25.0 $15.0 - 65.0$ 15 Size exclusion $\pm 3.0 \times 10^{-4}_{x}$ 25.0 $15.0 - 65.0$ 15 chromatography (SEC) $\pm 1.0 \times 10^{-4}_{x}$ 0.45 20.0 25 Miniaturized SIC $\pm 1.0 \times 10^{-4}_{x}$ 0.002 $0.15 - 1.0$ 5	Micro-osmometry (MO) $\pm 1.0 \times 10^{-4}_{2}$ 0.60 $2.0 - 10.0$ 15 Static light $\pm 2.0 \times 10^{-4}_{2}$ 6.0 30.0 15-25 scattering (SLS) $\pm 3.0 \times 10^{-4}_{2}$ 25.0 15.0-65.0 15 Size exclusion $\pm 3.0 \times 10^{-4}_{2}$ 25.0 15.0-65.0 15 chromatography $\pm 1.0 \times 10^{-4}_{2}$ 0.45 20.0 25 Self interaction $\pm 1.0 \times 10^{-4}_{2}$ 0.45 20.0 25 Miniaturized SIC $\pm 1.0 \times 10^{-4}_{2}$ 0.002 0.15-1.0 5			measurement		
(MO) $\pm 2.0 \times 10^{-4}$ 6.0 30.0 15_25 scattering (SLS) $\pm 3.0 \times 10^{-4}$ 25.0 15.0_65.0 15 Size exclusion chromatography (SEC) $\pm 3.0 \times 10^{-4}$ 0.45 20.0 25 Self interaction chromatography (SIC) $\pm 1.0 \times 10^{-4}$ 0.45 20.0 25 Miniaturized SIC $\pm 1.0 \times 10^{-4}$ 0.002 0.15_1.0 5	(MO) $\pm 2.0 \times 10^{-4}$ 6.0 30.0 15-25 scattering (SLS) $\pm 3.0 \times 10^{-4}$ 25.0 15.0-65.0 15 Size exclusion chromatography (SEC) $\pm 3.0 \times 10^{-4}$ 25.0 15.0-65.0 15 Self interaction chromatography (SIC) $\pm 1.0 \times 10^{-4}$ 0.45 20.0 25 Miniaturized SIC $\pm 1.0 \times 10^{-4}$ 0.002 0.15-1.0 5	(MO) $\pm 2.0 \times 10^{-4}$ 6.0 30.0 15-25 scattering (SLS) $\pm 3.0 \times 10^{-4}$ 25.0 15.0-65.0 15 Size exclusion chromatography (SEC) $\pm 3.0 \times 10^{-4}$ 0.45 20.0 25 Self interaction chromatography (SIC) $\pm 1.0 \times 10^{-4}$ 0.45 20.0 25 Miniaturized SIC $\pm 1.0 \times 10^{-4}$ 0.002 0.15-1.0 5	(MO) $\pm 2.0 \times 10^{-4}$ 6.0 30.0 15_25 scattering (SLS) $\pm 3.0 \times 10^{-4}$ 25.0 15.0_65.0 15 Size exclusion chromatography (SEC) $\pm 3.0 \times 10^{-4}$ 25.0 15.0_65.0 15 Self interaction chromatography (SIC) $\pm 1.0 \times 10^{-4}$ 0.45 20.0 25 Miniaturized SIC $\pm 1.0 \times 10^{-4}$ 0.002 0.15_1.0 5					
Static light scattering (SLS) $\pm 2.0 \times 10^{-4}$ 6.0 30.0 15_25 Size exclusion chromatography (SEC) $\pm 3.0 \times 10^{-4}$ 25.0 15.0_65.0 15 Self interaction chromatography (SIC) $\pm 1.0 \times 10^{-4}$ 0.45 20.0 25 Miniaturized SIC $\pm 1.0 \times 10^{-4}$ 0.002 0.15_1.0 5	Static light scattering (SLS) $\pm 2.0 \times 10^{-4}_{-4}$ 6.0 30.0 15_25 Size exclusion chromatography (SEC) $\pm 3.0 \times 10^{-4}_{-4}$ 25.0 15.0_65.0 15 Self interaction chromatography (SIC) $\pm 1.0 \times 10^{-4}_{-4}$ 0.45 20.0 25 Miniaturized SIC $\pm 1.0 \times 10^{-4}_{-4}$ 0.002 0.15_1.0 5	Static light scattering (SLS) $\pm 2.0 \times 10^{-4}$ 6.0 30.0 15_25 Size exclusion chromatography (SEC) $\pm 3.0 \times 10^{-4}$ 25.0 15.0_65.0 15 Self interaction chromatography (SIC) $\pm 1.0 \times 10^{-4}$ 0.45 20.0 25 Miniaturized SIC $\pm 1.0 \times 10^{-4}$ 0.002 0.15_1.0 5	Static light scattering (SLS) $\pm 2.0 \times 10^{-4}$ 6.0 30.0 15_25 Size exclusion chromatography (SEC) $\pm 3.0 \times 10^{-4}$ 25.0 15.0_65.0 15 Self interaction chromatography (SIC) $\pm 1.0 \times 10^{-4}$ 0.45 20.0 25 Miniaturized SIC $\pm 1.0 \times 10^{-4}$ 0.002 0.15_1.0 5	Micro-osmometry	$\pm 1.0 \times 10^{-4}$	0.60	2.0_10.0	15
scattering (SLS) $\pm 3.0 \times 10^{-4}$ 25.0 15.0-65.0 15 Size exclusion chromatography (SEC) $\pm 1.0 \times 10^{-4}$ 0.45 20.0 25 Self interaction chromatography (SIC) $\pm 1.0 \times 10^{-4}$ 0.45 20.0 25 Miniaturized SIC $\pm 1.0 \times 10^{-4}$ 0.002 0.15-1.0 5	scattering (SLS) $\pm 3.0 \times 10^{-4}$ 25.0 15.0-65.0 15 Size exclusion chromatography (SEC) $\pm 1.0 \times 10^{-4}$ 0.45 20.0 25 Self interaction chromatography (SIC) $\pm 1.0 \times 10^{-4}$ 0.45 20.0 25 Miniaturized SIC $\pm 1.0 \times 10^{-4}$ 0.002 0.15-1.0 5	scattering (SLS) $\pm 3.0 \times 10^{-4}$ 25.0 15.0-65.0 15 chromatography (SEC) $\pm 1.0 \times 10^{-4}$ 0.45 20.0 25 self interaction chromatography (SIC) $\pm 1.0 \times 10^{-4}$ 0.45 20.0 25 Miniaturized SIC $\pm 1.0 \times 10^{-4}$ 0.002 0.15-1.0 5	scattering (SLS) $\pm 3.0 \times 10^{-4}$ 25.0 15.0-65.0 15 Size exclusion chromatography (SEC) $\pm 1.0 \times 10^{-4}$ 0.45 20.0 25 Self interaction chromatography (SIC) $\pm 1.0 \times 10^{-4}$ 0.45 20.0 25 Miniaturized SIC $\pm 1.0 \times 10^{-4}$ 0.002 0.15-1.0 5	(MO)		[1	
scattering (SLS) $\pm 3.0 \times 10^{-4}$ 25.0 15.0-65.0 15 Size exclusion chromatography (SEC) $\pm 1.0 \times 10^{-4}$ 0.45 20.0 25 Self interaction chromatography (SIC) $\pm 1.0 \times 10^{-4}$ 0.45 20.0 25 Miniaturized SIC $\pm 1.0 \times 10^{-4}$ 0.002 0.15-1.0 5	scattering (SLS) $\pm 3.0 \times 10^{-4}$ 25.0 15.0-65.0 15 chromatography (SEC) $\pm 1.0 \times 10^{-4}$ 0.45 20.0 25 self interaction chromatography (SIC) $\pm 1.0 \times 10^{-4}$ 0.45 20.0 25 Miniaturized SIC $\pm 1.0 \times 10^{-4}$ 0.002 0.15-1.0 5	scattering (SLS) $\pm 3.0 \times 10^{-4}$ 25.0 15.0-65.0 15 Size exclusion $\pm 3.0 \times 10^{-4}$ 25.0 15.0-65.0 15 chromatography (SEC) $\pm 1.0 \times 10^{-4}$ 0.45 20.0 25 Self interaction $\pm 1.0 \times 10^{-4}$ 0.45 20.0 25 Miniaturized SIC $\pm 1.0 \times 10^{-4}$ 0.002 0.15-1.0 5	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Static light	$\pm 2.0 \times 10^{-4}$	6.0	30.0	15-25
Size exclusion $\pm 3.0 \times 10^{-4}$ 25.0 15.0-65.0 15 chromatography (SEC) $\pm 1.0 \times 10^{-4}$ 0.45 20.0 25 Self interaction $\pm 1.0 \times 10^{-4}$ 0.45 20.0 25 Miniaturized SIC $\pm 1.0 \times 10^{-4}$ 0.002 0.15-1.0 5	Size exclusion $\pm 3.0 \times 10^{-4}$ 25.0 15.0-65.0 15 chromatography (SEC) $\pm 1.0 \times 10^{-4}$ 0.45 20.0 25 Self interaction $\pm 1.0 \times 10^{-4}$ 0.45 20.0 25 Miniaturized SIC $\pm 1.0 \times 10^{-4}$ 0.002 0.15-1.0 5	Size exclusion $\pm 3.0 \times 10^{-4}$ 25.0 15.0-65.0 15 chromatography (SEC) $\pm 1.0 \times 10^{-4}$ 0.45 20.0 25 Self interaction $\pm 1.0 \times 10^{-4}$ 0.45 20.0 25 Miniaturized SIC $\pm 1.0 \times 10^{-4}$ 0.002 0.15-1.0 5	Size exclusion $\pm 3.0 \times 10^{-4}$ 25.0 15.0-65.0 15 chromatography (SEC) $\pm 1.0 \times 10^{-4}$ 0.45 20.0 25 Self interaction $\pm 1.0 \times 10^{-4}$ 0.45 20.0 25 Miniaturized SIC $\pm 1.0 \times 10^{-4}$ 0.002 0.15-1.0 5				1	
chromatography (SEC) $\pm 1.0 \times 10^{-4}$ 0.4520.025Self interaction chromatography (SIC) $\pm 1.0 \times 10^{-4}$ 0.4520.025Miniaturized SIC $\pm 1.0 \times 10^{-4}$ 0.0020.15-1.05	chromatography (SEC) $\pm 1.0 \times 10^{-4}$ 0.4520.025Self interaction chromatography (SIC) $\pm 1.0 \times 10^{-4}$ 0.4520.025Miniaturized SIC $\pm 1.0 \times 10^{-4}$ 0.0020.15-1.05	chromatography (SEC) $\pm 1.0 \times 10^{-4}$ 0.4520.025Self interaction chromatography (SIC) $\pm 1.0 \times 10^{-4}$ 0.0020.15-1.05	chromatography (SEC) $\pm 1.0 \times 10^{-4}$ 0.4520.025Self interaction chromatography (SIC) $\pm 1.0 \times 10^{-4}$ 0.4520.025Miniaturized SIC $\pm 1.0 \times 10^{-4}$ 0.0020.15-1.05		$\pm 3.0 \times 10^{-4}$	25.0	15.0-65.0	15
(SEC) $\pm 1.0 \times 10^{-4}$ 0.4520.025Self interaction chromatography (SIC) $\pm 1.0 \times 10^{-4}$ 0.0020.15-1.05	(SEC) $\pm 1.0 \times 10^{-4}$ 0.4520.025Self interaction chromatography (SIC) $\pm 1.0 \times 10^{-4}$ 0.020.15-1.05	(SEC) $\pm 1.0 \times 10^{-4}$ 0.4520.025Self interaction chromatography (SIC) $\pm 1.0 \times 10^{-4}$ 0.0020.15-1.05	(SEC) $\pm 1.0 \times 10^{-4}$ 0.4520.025Self interaction chromatography (SIC) $\pm 1.0 \times 10^{-4}$ 0.0020.15-1.05					
Self interaction chromatography (SIC) $\pm 1.0 \times 10^{-4}$ 0.4520.025Miniaturized SIC $\pm 1.0 \times 10^{-4}$ 0.0020.15-1.05	Self interaction chromatography (SIC) $\pm 1.0 \times 10^{-4}$ 0.4520.025Miniaturized SIC $\pm 1.0 \times 10^{-4}$ 0.0020.15-1.05	Self interaction chromatography (SIC) $\pm 1.0 \times 10^{-4}$ 0.4520.025Miniaturized SIC $\pm 1.0 \times 10^{-4}$ 0.0020.15-1.05	Self interaction chromatography (SIC) $\pm 1.0 \times 10^{-4}$ 0.4520.025Miniaturized SIC $\pm 1.0 \times 10^{-4}$ 0.0020.15-1.05					
chromatography (SIC) 1.0×10^{-4} 0.0020.15-1.05	chromatography (SIC) 10×10^{-4} 0.002 $0.15 - 1.0$ 5	chromatography (SIC) 1.0×10^{-4} 0.0020.15-1.05	chromatography (SIC) 1.0×10^{-4} 0.0020.15-1.05		$+1.0 \times 10^{-4}$	0.45	20.0	25
(SIC) Miniaturized SIC $\pm 1.0 \times 10^{-4}$ 0.002 0.15-1.0 5	(SIC) $\pm 1.0 \times 10^{-4}$ 0.002 0.15-1.0 5	(SIC) Miniaturized SIC $\pm 1.0 \times 10^{-4}$ 0.002 0.15-1.0 5	(SIC) Miniaturized SIC $\pm 1.0 \times 10^{-4}$ 0.002 0.15-1.0 5				1	+ =
Miniaturized SIC $\pm 1.0 \times 10^{-4}$ 0.002 0.15-1.0 5	Miniaturized SIC $\pm 1.0 \times 10^{-4}$ 0.002 0.15-1.0 5	Miniaturized SIC $\pm 1.0 \times 10^{-4}$ 0.002 0.15-1.0 5	Miniaturized SIC $\pm 1.0 \times 10^{-4}$ 0.002 0.15-1.0 5					
					$+1.0 \times 10^{-4}$	0.002	0.15-1.0	5
					<u> </u>	0.002	0.15_1.0	

Formatted: Font: Not Bold, Not Superscript/ Subscript
Formatted: Font: Not Bold
Formatted: Font: Not Bold, French (France)
Formatted: Font: Not Bold
Deleted: ml
Deleted:
Formatted: Font: Not Bold
Formatted: Font: Not Bold
Deleted:
Deleted: ml
Formatted: Font: Not Bold, French (France)
Formatted: French (France)
Deleted: -1
Formatted: Font: Not Bold, French (France)
Deleted: x
Deleted:
Deleted: -
Deleted: x
Deleted:
Deleted: -
Deleted: x
Deleted:
Deleted: -
Deleted: x
Deleted:
Deleted: x
Deleted:
Deleted: -

1	
1	
2 3 4 5 6 7 8 9 101 12 13 14 15 16 17 18 2	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
20 27	
28	
29	
30	
19 20 21 22 23 24 25 26 27 28 30 31 32 33 34 35 36 37 38	
32	
33	
34	
35	
36	
37	
30 39	
39 40	
40	
42	
43	
44	
45	
46	
47 48	
48	
49 50	
50 51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

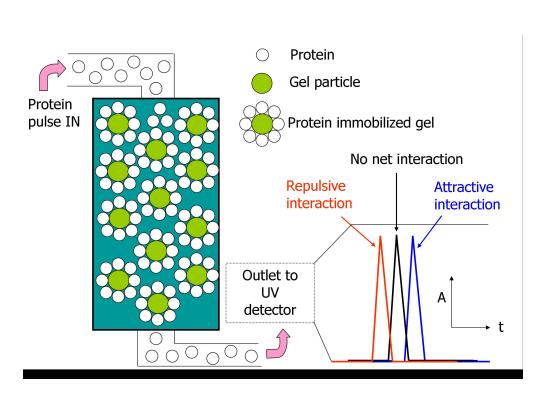
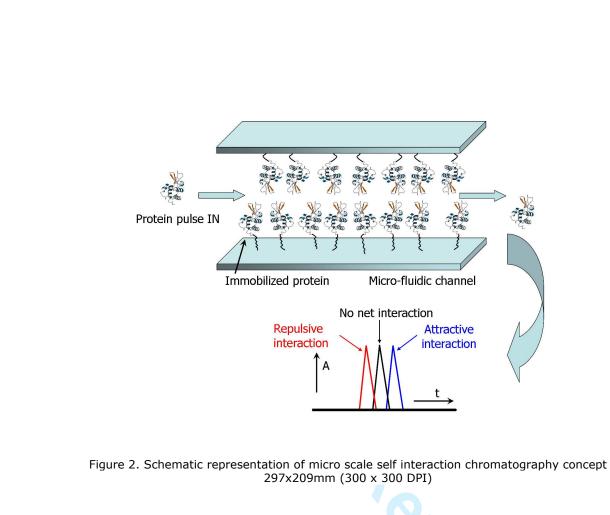
Page 28: [1] Deleted	MPI	5/31/2009 5:05:00 PM
Page 28: [1] Deleted	MPI	5/31/2009 5:06:00 PM
,		
Page 28: [1] Deleted	MPI	5/31/2009 5:06:00 PM
Biophysical		
Page 28: [1] Deleted	MPI	5/31/2009 5:06:00 PM
ournal,		
Page 28: [2] Deleted	MPI	5/31/2009 5:06:00 PM
,		
Page 28: [2] Deleted	MPI	5/31/2009 5:06:00 PM
,		
Page 28: [2] Deleted	MPI	5/31/2009 5:06:00 PM
Biophysical		
Page 28: [2] Deleted	MPI	5/31/2009 5:06:00 PM
istry,		
Page 28: [3] Deleted	MPI	5/31/2009 5:06:00 PM
,		
Page 28: [3] Deleted	MPI	5/31/2009 5:06:00 PM
Biochemical		
Page 28: [3] Deleted	MPI	5/31/2009 5:06:00 PM
Engineering		5,51,2005 5100100 111
Page 28: [3] Deleted	MPI	5/31/2009 5:06:00 PM
ournal		0,01,2009 9.00.00 FM
Page 28: [3] Deleted	MPI	5/31/2009 4:40:00 PM
raye 20. [J] Deleteu	ML.	5/31/2009 4:40:00 PM
Dama 201 [4] Dalata J	LADT	
Page 28: [4] Deleted	MPI	5/31/2009 5:07:00 PM

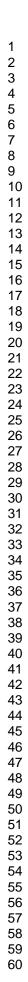
1 2 3 4 5
0 7 8 9 10 11 12
$\begin{array}{c} 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 2 \\ 3 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 12 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 29 \\ 31 \\ 32 \\ 33 \\ 34 \\ 56 \\ 37 \\ 8 \\ 36 \\ 37 \\ 38 \\ 36 \\ 37 \\ 38 \\ 38 \\ 36 \\ 37 \\ 38 \\ 38 \\ 38 \\ 38 \\ 38 \\ 38 \\ 38$
19 20 21 22 23 24 25
25 26 27 28 29 30 31
32 33 34 35 36 37
39 40 41 42 43
44 45 46 47 48 49
50 51 52 53 54 55 56
57 58 59 60

,

Page 28: [4] Deleted	MPI	5/31/2009 5:07:00 PM
Pharmaceutical		3/31/2003 3.07.00 114
i narmacearea		
Page 28: [4] Deleted	MPI	5/31/2009 5:07:00 PM
earch		
Page 28: [4] Deleted	MPI	5/31/2009 4:40:00 PM
,		
Page 28: [5] Formatted	MPI	5/31/2009 5:07:00 PM
Font: Italic	PIF 1	3/31/2009 3.07.00 PM
	MDT	E /21 /2000 E-00-00 PM
Page 28: [5] FormattedFont: Times New Roman, 12 pt	MPI	5/31/2009 5:08:00 PM
-		
Page 28: [5] Formatted	MPI	5/31/2009 5:08:00 PM
Font: Times New Roman, 12 pt		
Page 28: [6] Deleted	MPI	5/30/2009 9:16:00 AM
Figure		
Page 28: [6] Deleted	MPI	5/31/2009 5:11:00 PM
normal		
Dage 29: [6] Deleted	MDT	E /21 /2000 E:11:00 DM
Page 28: [6] Deleted self interaction chromatography	MPI	5/31/2009 5:11:00 PM
sen interaction enrollatography		
Page 28: [7] Deleted	MPI	5/30/2009 9:16:00 AM
Figure		
Page 28: [7] Deleted	MPI	5/31/2009 5:12:00 PM
micro		
Dama 20: [7] Dalatad	MDT	F/24/2000 F.42.02 PM
Page 28: [7] Deleted self interaction chromatography	MPI	5/31/2009 5:13:00 PM
sen interaction enrollatography		
Page 28: [8] Deleted	MPI	5/30/2009 9:17:00 AM
Figure		
Page 28: [8] Deleted	MPI	5/31/2009 5:13:00 PM
self-interaction chromatography		2,01,2009 512500 114
······································		

Page 28: [9] Deleted	MPI	5/31/2009 5:13:00 PI
рН		
Page 28: [9] Deleted	MPI	5/31/2009 5:13:00 PI
D 20- [40] F	MDT	E /20 /2000 0.47-00 A
Page 28: [10] Formatted Font: Not Bold	MPI	5/30/2009 9:17:00 AI
Page 28: [11] Deleted	MPI	5/31/2009 5:13:00 PI
эΗ		
Page 28: [11] Deleted	MPI	5/31/2009 5:13:00 PI
O		
Page 28: [12] Deleted	MPI	5/31/2009 5:13:00 PI
оН		
Page 28: [12] Deleted	MPI	5/31/2009 5:13:00 PI
Page 28: [13] Deleted	MPI	5/31/2009 5:13:00 PI
pH		
Page 28: [13] Deleted	MPI	5/31/2009 5:14:00 PI
рН		
Page 28: [14] Deleted	MPI	5/31/2009 5:14:00 PI
рН		4
Page 28: [14] Deleted	MPI	5/31/2009 5:14:00 PI
Page 28: [15] Deleted	MPI	5/31/2009 5:14:00 PI
рН		
Page 28: [15] Deleted	MPI	5/31/2009 5:14:00 PI


Figure 1. Schematic representation of a normal scale self interaction chromatography concept 246x169mm (300 x 300 DPI)

200 P

Attractive

interaction

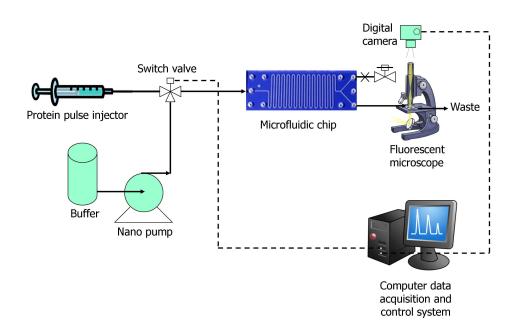
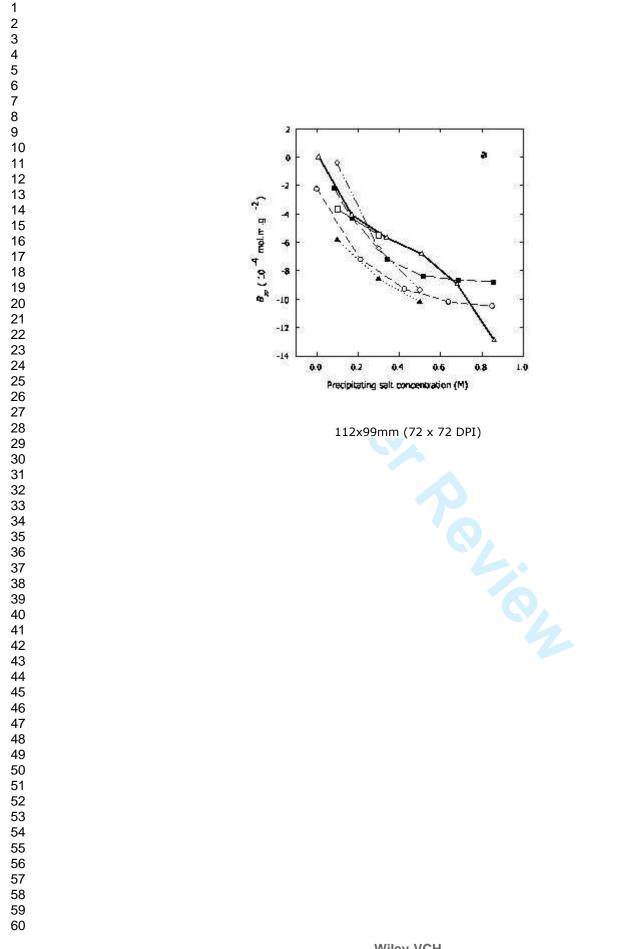
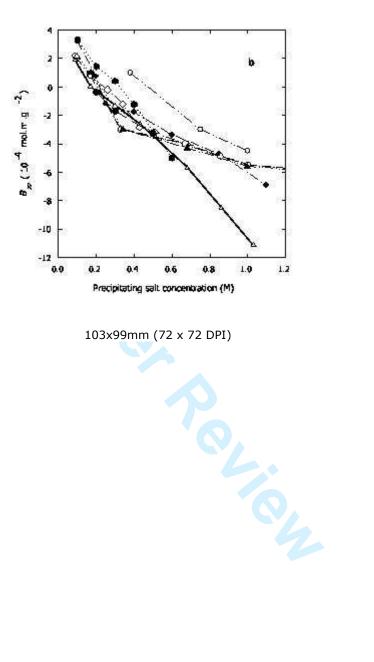




Figure 3. Schematic description of setup used for micro fluidic self-interaction chromatography runs. 244x155mm (300 x 300 DPI)

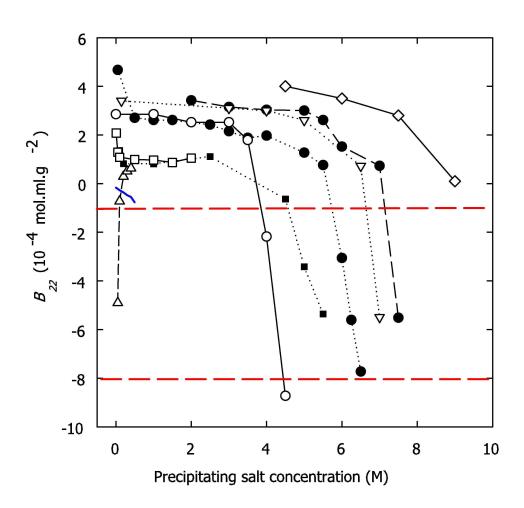


Figure 5: Osmotic second virial coefficients (B22) as a function of precipitating salt concentration. Dashed red lines denote the upper and lower boundaries of the crystallization slot. Myoglobin at pH

7.4 (white circle with solid line) [29]; myoglobin at pH 7.0 (black circle with dotted line) [29]; myoglobin at pH 6.0 (black circle with short dash line) [29]; BSA at pH 7.0 (white square with solid line) [71]; BSA at pH 6.2 (black square with dotted line) [71]; chymotrypsinogen at pH 6.8 (white triangle with short dash line) [34]; malate dehydrogenase at pH 8.0 (white diamond with solid line) [72]; ovalbumin at pH 6.0 (white inverted triangle with dotted line) [70]; peptide "Enfuvirtide" at pH 9.0 (solid blue line, no symbols) [38].

115x117mm (600 x 600 DPI)

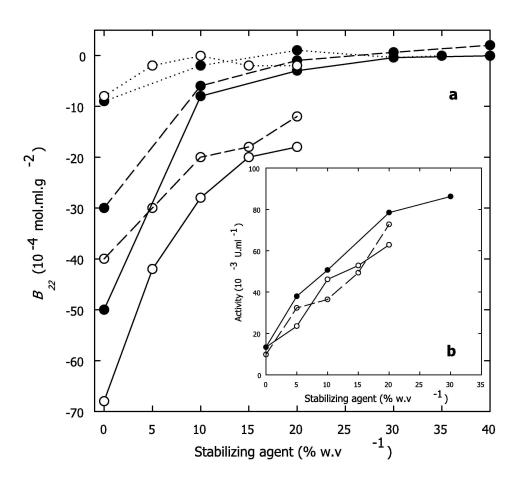


Figure 6 (a) Effect of stabilizing agents on Amylase osmotic second virial coefficient (B22) values estimated by SIC. (b) Activity of Amylase as a function of stabilizing agents. Sucrose (black circles) and Sorbitol (white circles); 1% (w/v) NaCl at pH 6.00 (dotted line); 5% (w/v) NaCl at pH 4.43 (short dash line); and 1% (w/v) NaCl at pH 4.53 (solid line) [39]. 118x115mm (600 x 600 DPI)

Short CV Marcel Ottens

Marcel Ottens received his MSc in Bio- Chemical Engineering from Groningen University, his Professional Doctorate in Engineering on Process Design from Twente University, and his PhD in Chemical Engineering from Amsterdam University on a topic on Transport Phenomena (the Netherlands). He is currently Assistant Professor Bioseparation Technology at the Delft University of Technology (the Netherlands), and group leader Micro BioSystems Technology. He is Visiting Professor at the Beijing University of Chemical Technology and Editor of Food and Bioproducts Processing. He published over 45 peer reviewed scientific papers and holds several patents, presented dozens of (invited) lectures at international conferences. He is board member of the Dutch Biotechnological Society, working party Product Isolation and Purification and member of the EFB (European Federation of Biotechnology), the ACS (American Chemical Society), and the KNCV (Dutch Chemical Society), chairman of the committee on ACS-BIOT – ESBES collaboration. He is (co)organizer of several international conferences (e.g. BPP2005, EFB-DSP2007, ACS-BIOT2009). He is board member of the successful annual International Advanced Course on Downstream Processing (Delft). His current research interests are protein separations; micro bio systems technology & bioprocess miniaturization; fast conceptual bioprocess design; crystallization/precipitation, or more in general phase behavior, of biomaterials; process chromatography (Simulated Moving Bed technology) of biologicals, and more in general transport J. phenomena and bioseparation science.

