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Introduction

Experiments on very small bubbles showed that classical Gibbs-Laplace theory on surface
tension cannot be applied when the dimension of the interface becomes comparable with
bubble radii [1]. On the other hand the pressure jump across the interface is from a exper-
imental point of view the most suitable quantity to be measured in order to know surface
tension and determine its dependence on curvature. Therefore Laplace formula needs to be
generalized to the case of very small bubbles. The theory of second gradient fluids (Ger-
main cf.[2]) accounts the effects of high density gradients (occurring in fluid interfaces) on
fluid pressure. In (3] it is shown that second gradient theory allows the determination of
the simplest consistent generalization of Laplace formula and an equivalent bubble theory in
which surface tension and radius of a bubble are determined in terms of the density spatial
field. This paper complements the quoted results analyzing them numerically. We find that
our model: i) predicts the existence of a (minimal) nucleation radius, i.e. a radius which
is a minimum possible for the equilibrium of a small bubble; 1) permits, through the new
Laplace formula, to evaluate the dependence of surface tension on curvature with results
very similar to actual experiments; iii) allows the determination of the range of validity of
classical Laplace formula and a theoretical prediction on the departure of experimental data
from it.

Equivalent bubbles in the theory of second gradient fluids.

In the theory of Laplace-Gibbs [4,5] we have that the nucleation energy w of bubbles of
radius R and surface tension o:

w=4rR% + %WR3[W(p.,) = Wi(p) — u(p)(pv — )] (1)
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where p; and p, are respectively the densities of the liquid and of the vapor, W is the free
energy for unit volume and g = @W/0p the chemical potential. The isothermal equilibrium

conditions are:
20

#(pr) = p(po) Ple) = Plo) = % @)
where P = pp — W denote the thermodynamical pressure. As a consequence it is easy to

prove that:
4

w= -erzo. (3)
So that one can conclude that the nucleation energy of the bubble is one third of the creation
energy of its interface. Second gradient theory, conceptually more straightforward than
Gibbs-Laplace theory, can be used to construct a theory of capillarity. In such theory the
internal mass energy ¢ is a function of the gradient of density Vp as well as density p.
The energy e characterizes both the compressibility and capillarity properties of the fluid,
independently of the bodies with which it is in contact. In the simplest models of second
gradient fluids [2,6,7,8] it is assumed that:

(5, B,) = colp) + %ﬂp (4)

where X is the so-called capillary constant and 8, = (Vp)2. In Eq.(4) the term 5’-‘;;@, is added
to the energy of the classical compressible fluid (we note that the thermodynamical pressure
is given by P = p%ep,). In absence of external forces the equilibrium equation is written:
V -8 =0 where S is the general stress tensor:

S=—pl— \Vp)®(Vp)T (5)

In (5) A, accounts for the capillarity effects of Vp in the equilibrium equation and p =
P-2A (%,3,, + pAp) is the mechanical pressure (which appears in boundary conditions [9]).
Equilibrium equation in terms of p becomes (cf. Rocard [9] and Blinowski [11]):

Mp = p(p) — p(p1) (6)

As the solution of Eq.(6) is the density profile p(r) of the bubble, we call it the Density
Profile Equation (DPE). In the theory of second gradient fluids [12], the nucleation energy
w takes into account also the capillary energy:

w= fD [W(P) - Wi(p) = ple)(p — p1) + %(Vp)z] dv (1)

We deal here with bubbles which are small with respect to the size of the liquid-vapour
interface phase. In this case the Gibbs results about the nucleation energy are found also
using the theory of second gradient fluids [2]. Indeed it can be demonstrated using the DPE
that:

*© A gl 2 4 [°) 22 4 52 [, 5

w =41r/ Y(p) + < pi| ridr = —7r/ Apiridr = 7R / Apldr (8)

0 2 3 b 3 0
where Y(p) = W(p) — W(p) — u(p)(p — p1) and B’ is the mean value of r* with respect
to the measure p2dr. For a large bubble, i.e., when p; tends to plane interface value, B
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represents the radius. The surface tension for plane interface is f5° ApZdr (cf. [12]). Then
Eq.(8) extends Gibbs relation to microscopic bubbles and reduces to it in the case of large
bubbles. In second gradient theory stress tensor in the centre of a spherical bubble takes
the value 8 = —p,I where p, = P(p,) ~ A\p,Ap,—,,- The value p; and S = —p]I, where
pi = P(p1), of mass density and stress tensor in liquid phase are attained asymptotically. As
DPE implies Apy Apy=,, = pu[u(p) — p(p1)] we have: p, —pi = W(p1)—W(p,)+p(p1)(po—m1)
this difference is not equal to the difference of thermodynamical pressures as, for microscopic
bubbles, u(p) differs from p(p,). As the experimental results (see for instance [1]) deal with
measures of stresses, then we have to use p, — p; instead of P(p,) — P(p;) in the comparing
them with theoretical predictions. We can now define the surface tension and the radius
of a bubble by identifying the nucleation energies and the pressure differences computed in
Gibbs and second gradient:

Pv— D= % and g—erza' = %r[:o /\pfrzdr =
R=[23 [7 otrar| W)~ W) - mor)(or — ol (9)
o= [2 /Ow pfrzdr] ’ (W (p1) = W(p.) — (o)(pt — pu)) (9b)

Numerical solution of DPE.

The DPE for the normalized density p(r) reads (cf. [6,11,12]):

2
prr + = #(p) — poo (10)

where subscript means that the derivatives are taken with respect to the normalized length
variable r. Lengths and densities are normalized with respect: £ = \/»\_::EZ—C and critical
density. p is the normalized chemical potential and po, = u(p;). Z. and P, are the critical
compressibility ratio and pressure. We find a numerical solution of DPE, verifying the
boundary conditions that imply the physically meaningful density profile describing the
equilibrium of a bubble with its liquid: p.(0) = p,(c0) = 0. The numerical analysis is based
on a 'mechanical’ interpretation of Eq.(10) (cf. [13]). In fact DPE can be regarded as the
equation of a ’particle’ of mass one moving in the potential:

U(p, o) = —=(W(p) — oop) (11)

with the ’viscous’ time-depending force A(2/r)p,. We will call ‘'motion’ of this particle as the
solution of DPE starting from r = 0, i.e., at the time zero, with zero velocity and with a given
initial density, i.e., a given initial position, p(0). From this consideration it is evident that a
fundamental role in our problem is played by potential U(p, yio ). Therefore before describing
our numerical results we state some general considerations valid for any potential verifying
the following hypotheses of ’biconvexity’: in an interval I = (us"bu yspidror) Eq.(11) have
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two maxima separated by a minimum. It exists a value p23* € I that separates bubble case
from droplet case: for this value the interface is planar and the two maxima have the same
height (Maxwell rule). For u** < u . < u2%* the maximum values of the potential in the
high density (liquid) range for p is always lower than that in the low density (vapor) range.

From such assumptions is clear that a 'motion’ starting with initial position p(0) in the
region just at the right of the first maximum of the potential (bubble case) rolls down until
the minimum and then goes up towards the second maximum. If the velocity is exactly that
one sufficient to reach the second maximum (separatrix solution), then the ’particle’ reaches
the second maximum for r tending to co; as at the maximum the velocity is zero, boundary
conditions are verified. We will call py(tie) the value for p in which the potential attains
the second maximum. The force over the ’particle’ is zero when r tends to oo: from DPE
we have u(p2) = poo = p(p1). This implies that (as we assume that locally for large values

of density the function p(p) is invertible) p; = p;.

FIG.1
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Numerically evaluated solution of DPE Eq.(14) for van der Waals equation of state for
different values of uo, at T/T. = 0.85. We note that near the minimal nucleation radius (the
curve labelled by O) the bulk phase vapor practically disappear.

So the solution of DPE corresponding to a phase transition is found if the *motion’ starting
with an initial data p(0) is ezactly the separatrix one. So for a fixed g the only unknown
quantity is the ’initial data’ p(0) that we determine numerically solving DPE. We integrate
this system by a Bulirsh-Stoer integrator [14] starting from an arbitrary guess value of p(0)
with p,(0) = 0. The values of p(0) are then adapted with a sequence of integrations until
a good approximation to the separatrix is reached. At the saturation the accuracy of the
method is limited by the machine precision because the starting density differs from first
maximum density by progressively smaller quantities. We were limited by the usual double
precision (107¢) of our computing device. This precision is sufficiently high to catch the
main features of the approach to the saturation. Typical density profiles are shown in Fig.1
for the van der Waals equation of state. The homogeneous nucleation and the growth of the
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bubble approaching the saturation, are clearly seen in this figure. The density profile tends
to be diffuse towards the spinoidal limit and the density jump p — p(0) goes to zero.

FIG.2
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Departure from classical Laplace formula in van der Waals small bubbles at T/T, = 0.85,
0.9 and 0.95. Pressure difference on y-axis is normalized to critical pressure P,; the arrows
marks the points corresponding to the minimal nucleation radius.

Approaching the saturation a region of bulk vapor phase appears before the phase tran-
sition region and the density jump is practically constant. In Fig.2 we plot the departure
from the classical Laplace formula for three reduced temperatures as function of p,,. The
departure have a maximum very close to the minimal nucleation radius (cf. Fig.3 below)
and can reach significative fractions (10%) of P, just for T/T, = 0.85.

FIG.3
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Normalized surface tension ¢ /0, with o, = p. RmT.L vs normalized equilibrium radius
R/L of van der Waals bubbles at T'/T, = 0.85, 0.9 and 0.95.
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In Fig.3 we show the dependence of ¢ on R numerically evaluated by Eq.s(9) at the same
reduced temperatures of Fig.2. The results are qualitatively similar: for small values of pioo
(i.e. the lower part of the curve) o, initially vanishing, grows slowly whereas the radius
decreases towards a minimal value that we identify as the minimal nucleation radius Rr,.
At R, the surface tension suddenly increases and the density at the center of the bubble
reaches the range of the vapor phase (cf. also Fig.1). Above the minimal nucleation radius
o reaches within few minimal radii the planar interface value and as shown by experiments
(1] remains substantially constant.

Acknowledgments

We gratefully thank prof. H.Gouin for having discussed with us the content of this pa-
per and for his wise advice. We thank prof. A.Di Carlo and MCD P.Seppecher for their
criticism.

t Permanent address: Dipartimento di Energetica, Facoltd di Ingegneria,
Universita dell‘Aquila, Roio Poggio 67040, L‘Aquile, ITALY.

1. L.R.Fisher and J.N.Israelachvili, Chem.Phys.Lett.76, 325 (1980);

P.Germain, J.de Mecanique, 12, 235 (1972);

Dell'Isola et al., C.R.Acad.Sci.Paris in print (1997);

J.W.Gibbs, Collected works, vol.1, Yale Univ. Press (1948);

. R.C.Tolman, J.Chem.Phys.17, 333 (1949);

. P.Casal, Cahier du groupe Francais de rhéologie, CNRS VI, 3, 31 (1961)

. P.Casal, C.R.Acad.Sci.Paris 274, Série A, 1571 (1972);

. P.Casal and H.Gouin, C.R.Acad.Sci.Paris 300, Série II, 231 (1985);

9. P.Seppecher, These, Université Paris VI and E.IN.S.T.A_;

10. Y.Rocard, Thermodynamique, Masson, Paris (1967);

11. A.Blinowski, Arch.Mech.(Warsaw), 26, 953 (1974)

12. J.W.Cahn and J.E.Hilliard, J.Chem.Phys.28, 258 (1958); ibid.31, 688 (1959);
13. N.G.Van Kampen, Phys.Rev.135, A362 (1964);

14. W.H.Press et al., Numerical Recipes, Cambridge Univ. Press, Cambridge (1986);

00 O W



