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tDipartimento d’Ingegneria Strutturale, Universita’ di Roma ”La Sapienza”
Via Eudossiana 14,00184 ROMA ITALIA
iDipartimento di Energetica, Universita’ dell’Aquila,
Roio Poggio, 67040 L’AQUILA ITALIA

Abstract

In this paper is proved that the Gibbs-Tolman formula is universally valid
for a class of interfaces larger than that first described by Tolman [1]. The start-
ing assumption is that the interfaces between different phases can be modelled
by nonmaterial bidimensional 2D-continua whose independent constitutive vari-
ables are the temperature and the interfacial mass density. Unfortunately the
dependence of surface tension on curvature which is experimentally measured is
inconsistent with Tolman formula. Our result implies that in order to supply
theoretical forecasting consistent with experimental data it is useless to look for
new constitutive equations for interfacial free energy. To account experimental
evidence , it is necessary to construct 2D-continua endowed with more complex
structure.

1 Introduction

In his fundamental series of paper [1,2,3] Tolman, developing the ideas of W.Gibbs
[4], could obtain a formula (then generalized by Koenig [5] to the case of mixtures)
which relates the equilibrium surface tension acting on a liquid drop surrounded by
its vapour to its radius. The fundamental assumptions accepted by Tolman are:

T1) the vapour is a Van der Waals’ gas;

T2) the liquid phase incompressible;

T3) the interface is a mixture between liquid and vapour: all properties of this
mixture are postulated on a heuristic ground.

The utility of this formula, which in the literature is sometimes also called Gibbs-
Tolman formula, has been tested in many experimental conditions, but the depen-
dence of the surface tension on curvature as predicted from Tolman’s results is in
poor agreement with experimental data [6,7]. It is due to Defay and Prigogine [8] a
first effort to point out the theoretical reasons of quoted failure: they conjecture that
Tolman’s results have to be improved taking into account the dependence of equi-
librium surface mass density at the interface on the curvature. We remark explicitly
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here that if one accepts to model the interface with a bidimensional 2D-nonmaterial
continuum, this conjecture clearly implies that the constitutive assumption v = 7(19)
where 7 is the surface tension and 9 the interfacial temperature, which seems to be
generally accepted in the literature, has to be generalized as follows:

7= (9, p,) (1.1)

where p,is the interfacial surface mass density. We will call the 2D-continua for
which (1.1) is accepted Defay-Prigogine continua (DP-continua, see below for a more
precise definition) [9].

The aim of this paper is to prove, using the model for the interface between
different phases of the same material proposed in [10], that:

R) the Gibbs-Tolman formula is universally valid for the interfaces modelled as
DP-continua.

As by product of this result it si possible to prove also the following three asser-
tions:

R1) (1.1) implies Gibbs’ phase rule and allows, once a suitable choice of interfacial
free energy is made, a theoretical evaluation, in terms of the function pZp(¥9), of the
function p} (¥, H) i.e. the equilibrium interfacial surface mass density corresponding
to curvature and temperature fixed (obviously we have that p%p(9) = pz(9,0)).

R2) the assumption that v(J) is not consistent with the Gibbs’ phase rule;

R3) the function p} (), the equilibrium surface mass density for plane interfaces,
is determined once the functions v5(9) and E;p(9) (the equilibrium inner surface
energy per unit area for plane interface) are known.

We explicitly remark here that we supply a proof of Gibbs-Tolman formula which:
¢) is independent of the assumptions T'1) and 7'2): the only hypothesis we need is that
both liquid and vapour are perfect fluids; #¢) is independent also of the ”physically
grounded” assumption T'3): we only accept that the interface between phases is a
nonmaterial perfect DP-continuum; #i¢) is pretty independent of the classical one
supplied by Tolman: since the model used carefully ignores the concepts of Gibbs
surface excess and Gibbs dividing surface, our proof is simpler.

Moreover our proof implies that the models proposed in [10] need to be improved
in order to produce a theoretical treatment of the problem of curvature dependence
of surface tension which is consistent with experimental evidence. In the conclusion
some hints of future developments are sketched: following the ideas stemming from
the work of Capriz and Podio-Guidugli [11] (generalized to 2D-nonmaterial continua)
the introduction of further independent constitutive variables to describe the state
of the interface seems unavoidable. It rest to be cleared up which and how many of
these variables need to be introduced: indeed many are the possible choices.
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2 Constitutive equations for DP-continua. Gibbs’
phase rule.

Following [10] we assume that the independent constitutive variable characterizing
the state of the interface are ¥ and p,. Therefore the interfacial free energy per unit
mass ¥, has to be determined as a function of (¢, p, ). Once this function is known the
entropy principle implies that all the other constitutive laws are determined. Indeed
in [10] the following relations are proved:

— 6¢”. _ . __za¢a
e = =357 € =P, + 01,5 v = P B p, (2.1)

where 7, and €, denote the interfacial entropy and inner energy per unit mass. If we
define the interface Gibbs’ potential per unit mass as follows:

2
Go = g — — (2.2)
We assume that: HO0) once fized 9, Eq.(2.1); determines a one-to-one correspondence
between v and p,. Moreover we assume: H1) both vapour and liquid phase are perfect
fluids. HO plus the Eq.s (2.1) trivially implies that {12]:
99, _ _1

S 2.3
oy Po (23)

Now we can state the definition of DP-continua:

Definition: We will call DP-continua those bidimensional nonmaterial continua
whose free energy verifies HO and whose entropy, inner energy and surface tension
verify Eq.s (2.1).

We will prove that Gibbs’ Phase Rule holds for DP-continua in all the cases of
planar or spherical interfaces. We start from the equilibrium condition deduced in
[10] from the reduced entropy inequality, particularized to the case of plane and
spherical interfaces:

2HY=pi—py; Gu=05 Go=9o (2.4)
where H is the curvature of the interface, p; and g;, p, and g, are respectively the
pressure and Gibbs’ potential in the liquid and in the vapour phases: in what follows
g1 and g, are assumed to be respectively function of ¥ and respectively of p; and p,.
The set § of the parametres which describe the equilibrium of a liquid and its vapour,
when capillarity phenomena cannot be neglected and the interface is plane or spher-
ical, is:

§= {ﬂ,H,PhPlvPv,Pu,Pa,V} (25)

We explicitly remark that because of perfect fluids and DP-continua hypothesis the
constitutive relations for the vapour, liquid and interfacial phases reduce the indepen-
dent variables to only five among that appearing in §. If H = 0, i.e. if the interface

329




is plane the four independent quantities appearing in (2.5) are constrained by the
three equations (2.4). If these equations are independent then there is a one-to-one
correspondence between one parameter chosen in § and the equilibrium states of the
system. In the following we assume that, together HO and H1, also the independence
of Eq.s (2.4) will be satisfied, we call this hypothesis H2. In what follows this pa-
rameter will always be the temperature 9. all the other quantities in & will become
function of ¥, which we will denote with the same letter with the superscript *and
the subscript p.

On the other hand if H is not vanishing then the degrees of freedom of the system
are two. This is exactly what forecast by the suitably generalized form of Gibbs’ Rule
(for more details cfr. Adamson [7], Gibbs [4] or Levine [13], and see also [14]).

In connection with the above cited assertion R2, we prove now the following:
Proposition: The assumption vy independent of p, is : t) not consistent with the
Gibbs’ Phase Rule; 1i) equivalent to the relation v = p,, which is often accepted in
the literature.
To prove 1) we remark that the hypothesis v = v(¢9) implies (because of (2.1)3) the
following relation:

be =224 G 0) (26)

Pa

where 1), (9) is a function of the variable 9 alone which does not depend on y. Eq.(2.6)
implies, together the definition (2.2), that:

9o(9, ps) = o () 27

The consequences of (2.7) are remarkably inconsistent with the Gibbs’ Phase Rule:
indeed, even if one could always believe that p, is very small or vanishing or negligible
so that he is not interested in determining its value at the equilibrium, however he
could never ignore (2.4); (which was established by Gibbs himself) which, together
with (2.7) would implies that: a) in the case of planar interfaces there exists an
unique equilibrium state characterized by a fixed couple of values for temperature
and pressure; b) in the case of spherical interfaces there exists for every radius an
unique equilibrium state.

Both the statements a) and b) are in cogent disagreement with the experimental
evidence which supports Gibbs’ Phase Rule.
To prove ii) it is sufficient to remark that Eq.(2.6) together with Eq.(2.1); leads to
the following implications

(Yo = —p(,‘;%’) & (Y, = %gl) & v 1s depending only on 9
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3 Proof of Gibbs-Tolman formula

Because of H1 the following equalities hold:

o= = (3.1)

From H2 once fized the temperature ¥ the choice of the variable p, determines the
equilibrium state of the system and therefore all the equilibrium values of the other
quantities in § — {#9}. We will denote H*, 7", p}, p}, piand p* the functions which
map (py,¥) in quoted equilibrium values. With our denotation Eq.s (2.3), (2.4); and
(3.1) implies the following chain of implications:

(9:(7(p) = 9u(p) ) & (St = B2 ) o (2 = —25) (3.2)

Moreover starting from Eq.s (2.3);2 we establish the hypothesis of the following
implication, whose thesis is obtained making use of Eq.(3.1) and the last equality in

(3.2):

%9y _ 8, 9P
{ it 8py ~ Opy dpy (dH* —_ (ﬁ(*—P;)‘I-ZHP;) (3 3)
ap; _ dH* xdy® dpy 2v*p} !
dpv 1+2dp«;7 +2H dpy

Finally the Gibbs’-Tolman formula is obtained evaluating the ratio of the last equal-

ities appearing in (3.2) and (3.3), after having remarked that the non-vanishing
expression we have obtained for the derivative %%* allows us to chose, instead of p,,

the variable H in order to characterize the equilibrium states:

& 25
dH ~ 1+4+2Hé (34)
where: .
S(H) = =L
Pl — Po

and where the upper tilde indicates the generic composed function f(H) := f*(p,(H)).
Trivial integration by parts allows us to obtain the following equivalent expression,
which can be more easily compared with those found in literature and in particular
in Tolman [1]:

eAH)
T TYs(H)E

where A(H) = [(1+ H6(H)) ' (H2 )dH and 4 is the value of 7 for H = 0.
Once obtained Eq.(3.5) the problem of determining the function §(H) arises. It is
easy to forecast, simply observing Eq.(2.4), that §(H), which is the ratio between
the functions p, and p; — p,, does not has many chances to be independent of the
constitutive law assigning the interfacial free energy ..

7 (3.5)
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4 Interfacial Free Energy and the dependence of
Interfacial Mass Density on Temperature and
Curvature.

4.1 Determination of Surface Mass Density for Plane Inter-
faces: the case of Compressible DP-Continua.

In this subsection we aim to present a relation among equilibrium surface mass den-
sity, surface tension and surface inner energy per unit area which we is valid in the
case of plane interfaces and which we could not find in the literature (cfr. assertion
R3 in the Introduction). In our opinion it could be very useful in determining ex-
perimentally an evaluation of the magnitude of interface mass density involved in
capillarity phenomena.

We prefer discuss directly the result, the reader interested to deduction of it can
refers to Appendix. We obtain:

Pip — Pup
(Ph)ip — (Ph)5p
where h is the enthalpy for unit mass.

We underline that some tables of measures for all equilibrium quantities which
appear in this equation, except the interfacial mass density, are available in the lit-
erature: therefore it is conceivable to use it to indirectly determine the interfacial
mass density. Before discussing shortly the prediction which could be drawn from
Eq.(4.1) it is necessary to shortly compare it with the theoretical results found in the
literature in order to warn the reader about a pitfall in which one should avoid to fall.
Indeed in the literature sometimes a little approximation is done: "as a good approz-
imation surface enthalpy per unit area and surface inner energy per unit area are not
distinguished” (cfr. pag.50 in Adamson [7]). The reasons of this statement, whose
exegesis we leave to those readers which are familiar with Gibbsian thermodynamics,
most likely can be found in the papers of Gibbs himself {4]. We limit ourselves to
remark that as a consequence of this statement we obtain that (cfr. Eq.(III-8) on

pag.50 in [7]):

dvp

(=y+9 70

Pop = + Ep) (4.1)

2p =01 (42)
which trivially implies that, because of Eq.(4.1): pip = 0. We can conclude that the
approximation quoted by Adamson consists of neglecting the interfacial mass density.
Two problems now arise: 1) it is not clear to us if Tolman in his papers accepts or not
quoted approximation, but it is certain that he needs to evaluate equilibrium surface
mass density as it appears in the definition of the function §( H); 2) when the tables
of measures are to be used one should check if the interfacial inner energy has been
measured directly or indirectly by means of (4.2) (as it seems the case for instance
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for the measures listed in Wolf [15]). If one makes use of tables of measures which
apparently do not use (4.2) (for instance see [16]) he can obtain some interesting
results, when organizing the data following Eq.(4.1). Indeed the numerical value
obtained for water at 20°C are of the order of magnitude of 1078 — 10~"g/em?, which
is the order of magnitude in general accepted as the most likely in the literature (for
a detailed discussion of this point see the series of papers of Alts and Hutter [17]).
However we do not believe it is wise to rely much on Eq.(4.1) as we are aware of the
simplicity of the model which allowed its deduction together with Tolman formula it
has to be generalized into a more reliable one once a more sophisticated model for
the interface will be available.

4.2 Spherical Interfaces: the Kelvin formula for vapour pres-
sure and the influence of Surface Free Energy on Surface
Mass Density

In order to simplify the comparison between the theoretical results and experimental
data in the literature instead of the vapour pressure p, all equilibrium quantities
are often expressed as functions of the variable H. While this choice is legitimate
(at least in the framework of the model we use in this paper, see considerations
after (3.3)) it leads, even when the simplest constitutive assumptions are made, to
some technical problems in the explicit calculation of quoted equilibrium function.
A typical example of this situation is represented by the relationship between the
curvature H and the vapour pressure, which in the literature is named after Kelvin.
Deriving Eq.s (2.4); ; respect the variable H and using Eqgs.(3.1) with simple algebra
we obtain: & p
Pi Pv ~

( - pu) Fi —E(ZH'y) (4.3)
If we assume that: C1) the liquid phase is incompressible; C2) the vapour is a perfect
gas so that the following relation holds: p, = R,9,p; then from (4.3) we obtain:

d . . .
E(PIRW In(p,) + p, —2H7) =0
which becomes ( as p,(9,0) = pip(d)):

pROIn (E) = (p}p — pu) + 2HF (4.4)

Equation (4.4) is exactly Kelvin formula: we remark that already under the particular
constitutive assumption C1) — C2) the function mapping H into p, is transcendent.
Moreover in (4.4) the unknown function § appears, as p, depends on it. When more
general constitutive equations are to be introduced we can regard (4.4) as an equation
which generalizes Kelvin formula.

In order to obtain some suggestions concerning the dependence of surface mass den-
sity on vapour pressure and an interesting expression for % we assume C1), C2) and
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C3) the interface is a linearly compressible bidimensional fluid whose Gibbs potential
is given by:

95(9, po) = 9u(Pip(9), 9) + a(9) In ( 2% (4.5)
The function a(¥), to our knowledge, was never introduced in the literature neither
we could find some experimental data which could, suitably reinterpreted, allow its
determination. However (4.5) is clearly related, via the thermodynamical relation-
ships (2.1) to Eétvos relation (I1I-10) in Adamson [7]. Because of C2) we have that

(9, 2.) = 9u(Prp(9),9) + RV In (532457 ) (4.6)

so that F¢.(2.4); implies that:

O
(@)™ = () (47)

Finally we add the following assumption (cf. the experimental data listed by Fisher-
Israelachvili in [18]) that: C'4) in the range of considered measures p, << p;.
Therefore because of the definition of 4, the perfect gas law and Eq.s (2.4)3, (4.3),
(4.5) we have:

s 1 P \ d¥

dH " 5 <“ R,,z9> dH
which, taking account of (3.5) and (4.4) (in which first addend on LHS can be ne-
glected in the range of measures performed by Fisher- Israelachvili), represents an
equation which determines 6.

(4.8)

5 Conclusion

In this paper some classical results of chemical physics are generalized making use
of the simple model for the interface between the phases of a material proposed
in [10] In our opinion the relative simplicity of our deduction compared with those
proposed by Tolman [2] or Adamson [7] is due to our use of the methods of Ra-
tional Thermodynamics exposed by Truesdell in his classical work [19]. We remark
explicitly here that the classical treatment due to Tolman hides this circumstance
behind some Gibbsian reasoning which does not seem neither logically nor physically
deeply grounded. However it is our belief that these ”Gibbsianism” could be made
understandable (and the dependence of §(H) on 1, explicit).

We can indicate here two improvements of the model proposed in [10] which
could improve our understanding of quoted phenomena, at least for what concerns
the influence on capillarity of curvature.

i) In the literature (see for instance [6,18]) it is often stated that is conceivable
an influence of the thickness of the interface on equilibrium surface tension. For this
reason Choi et Al. [20] develop a theoretical method (using statistical mechanics) to
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define a dividing thickness between different phases of some carbon compound and an
experimental method to determine so defined thickness. However these results, when
used together with Tolman’s ones, lead to some results inconsistent with experimental
data. In [21] an heuristic method is proposed to add more detailed structure to
bidimensional nonmaterial continua introduced to describe capillarity phenomena.
In this contest a concept of thickness is also introduced, which plays a relevant
réle in determining the behaviour of considered continua: however we think that its
physical nature is pretty different from that introduced by Choi et Al. Indeed in Ref.
[21] the spatial region in which is localized the interface can be identified with the
region in which the material in consideration shows a behaviour of the type Korteweg
(see [22]) or of the type of second gradient (see [23,24]). To make complete, from a
physical point of view, the set of equations proposed in [21] it is necessary to specify
the properties of the interfacial layer. This is done: a) introducing one further
surface scalar field modelling the thickness of the thin but macroscopic capillarity
region (such a region is studied for instance by Seppecher in [24]); b) postulating (or
deducing in the sense of [21]) the evolution equation for such a field. The interfacial
free energy for bidimensional continua endowed of this structure will depend also on
the thickness, and this circumstance could lead to a solution of proposed problem.
Unfortunely just in the static case the non-linearity of the problem posed in term
of second gradient theory make the solution very difficoult, though we can get novel
insight about the behavior of interface. A very preliminar study shown that: i) 7 is
a non-monodromic function of equilibrium paramenter (whenever this is p, or H); ii)
exists a minimal radius for a small vapour bubble in liquids; iii) a thickness for the
interface can be defined rely on thermodynamic (a la Gibbs) quantities and second
gradient quantities. In conclusion this approach seems suitable for the description of
the behaviour of the interfaces between fluid phases.

ii) Following the ideas developed by Di Carlo et Al. [25] one could introduce non-
material constrained bidimensional continua, similar to those material bidimensional
continua introduced in the theory of shells. Together with surface stress tensor a
couple-stress tensor and a suitably complex family of directors (spins, etc..) describe
the state of the interface. One of these directors could model the direction of the flux
of mass through the interface: a first formulation of the model could assume that this
vector always coincides with the normal direction to the interface thus introducing
some unknown reaction part of both surface stress and' couple-stress tensor. In this
model the dependence of interfacial free energy on curvature is allowed by the second
principle of thermodynamics: it seems therefore possible to obtain, suitably choosing
a constitutive equation for it, a generalized Tolman formula more consistent with
experimental evidence. This approach seems more reasonably founded for describing
the interfaces, for instance, between solid crystals and their melt.
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Appendix: deduction of Eq.(4.1)

We start remarking that, because of our definition, Eqs.(2.1) and Eq.(2.4); we obtain
(recall that the pedex P refers to the circumstance that all equilibrium functions
which we consider are relative to plane interfaces, and that all considered function
have as unique variable the temperature 9):

* * * * * * 6¢0 :
EaP = PoPCop = poPllba'P - paP’[9 ( 99 ) (Al)
P
* * a/ff
o =i (5] (42)
* * a’lpa i * *
Yopt Pop (%)P =9up = Gip (A.3)

where we used the denotations g}p(9) := g,(pip(9),9) and g/p(¥) = gi(pp(9),d)
and the relations (arising from (2.4) ;)

Pop(P) =pip(P)  gu(pip(9),9) = gi(pip(9), V) (A.3),
On the other hand, using the chain rule for the derivation of composed functions, we

have that: . .
3¢a — dlbsp _ azpa dp:P
od P dd 0ps p @V

(A.4)
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Then, from Eqgs.(A.2) and (A.3), with simple algebra we obtain:

Yrp = gop + 5 (05p) 7" (A.5)
i 8%)“

—vp(pip) = [ 22 A6

ve(Pop) <3pa . (A.6)

Finally combining the above equations from (A.1) to (A.6) is possible to find the
following interesting relation:

* * dg: * d’y* *
Pop (guP -4 dﬂp> =—7p + ’&F{;z + EaP (A7)

The LHS can be simplified further calculating the derivative:

dg:P (% * \—1 agl agv i
49 - (plP - puP) <P1 99 - Pu EX) . (Ag)

Last expression is obtained with simple algebra, deriving both equations appearing
in (A.3); and recalling Eq.(3.1) and (2.4),. In order to make clearer the final step of
our derivation it is useful to recall that the partial derivatives appearing in Eq.(A.8)
are evaluated with the variables p; and p, fixed.

Indeed as a consequence of Eq.(3.1), if ¢ and €, denote the inner energy per unit
mass in the liquid and vapour phase, we have that

69; . agv_
gg—-—’ﬂaﬂ-—él'%])l/ﬂl, gu—ﬁaﬁ—fu‘l'}?u/Pv

and therefore (using (A.8) and again recalling (2.4),) we obtain:

* dgr; * * * * * * —
wp =¥ dﬁP = (pipeip — Pip€op) ((Plp = pip) ™) (4.9)

and (here the enthalpy per unit mass h is introduced in both phases) pjpefp—pipeip =
Piphip — piphip. In conclusion we obtain the Eq.(4.1):

dvp
dv

PP Z PP (_y 4 9=IP | pr ) (4.1)
P

PoP = (ohYp — (phY:
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