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Abstract When executing scientific applications, resources thatlmaysed can vary from
multi-core processors to grids. Therefore, abstractiegpiogramming model
enables portability on various resource infrastructuriégrthermore, software
component technology appears to be a very promising apptoateal with the
growing complexity of scientific applications. Hence, wepuosed a model to
improve the support ofmaster-workerparadigm in component models. Capi-
talizing on our experience of adaptability frameworks, wepwse to enhance
our model so thamaster-workerapplications can adapt at runtime to varying
conditions. This paper studies how to transparently intcedadaptability in our
model formaster-workegapplications, what impact it has on the model, and what
requirements it expects from the adaptability framework.

Keywords:  Software components, Grid, Master-worker, Dynamic evolytAdaptability
framework.
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1. Introduction

While computing grids are becoming more and more commorgukstion
of their programmability is raising attention. The undarty motivation not
only stems from the high complexity of grids that shall bedeid to program-
mers but it also comes from the increasing complexity ofiappbns. In order
to take advantage of the huge possibilities of grids, monegtex applications
like code coupling applications are getting popular.

Software component technology appears very promisingridleahe com-
plexity of both grids and applications. Code reuse enalddsuiid complex
applications based on validated building blocks while comgmt composition
provides a mechanism to support complex relationshipspienidently of the
architecture of the execution platform.

An example of such a relationship is thaster-workemparadigm. While it
is an algorithmic concept, its implementation varies qaiigt depending on the
execution platform. Hence, we defined a high level mastakeraelationship
between components [5, 4]. While it provides a model closthéoabstract
concept to the programmers, it can be configured by the exacetivironment
to fit to the actual resources. However, this previous wodkriht consider
dynamic adaptation. For example, the number of workers magge depend
ing on the number of incoming requests or the number of availaachines.
The goal of this paper is to study how to introduce adaptgbdlupport in a
master-worker paradigm and to evaluate the impact on ailapfeameworks.

The paper is organized as follows. Section 2 summarizes odehto handle
master-workel(M-W) relationship between components as well as an arglysi
of various levels of adaptability. Section 3 presents oapsability framework.
Section 4 discusses different strategies to introducetalgipy within the M-

W relationship. An example and its impact on the M-W modelaaralyzed in
Section 5. Section 6 concludes the paper and presents stume feorks.

2. A high-level master-worker composition model

We proposed in [5] to increase the abstraction level of camapbmodels
with respect to thenaster-worke(M-W) paradigm. Our motivation is twofold.
First, we aim to relieve programmers from dealing with reseulependencies,
such as the number wforkersto instantiate or request transport concerns. Sec-
ond, we target to reuse existimgaster-workerenvironments, likeDIET [7],
as they implement advanced request transport and schgdudjarithms.

The proposal defines a generic model, which we have projeotspecific
component models lik&'racTAL [5], CoMm and CcA [4]. In this paper, we
present it according to thErAcTAL formalism.
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Figure 1. Overview of themaster-workemodel from the user and framework points of view.

2.1 Overview

The model is based on the conceptcoflection which is defined as a set
of exposedports, bound to some internal component type ports. A cidiec
behaves like a component: it can be connected to other caenpsn How-
ever, such a composition is done byabstractarchitecture description, which
represents the user’s view of the application. Ideally, egildyment time, a
collection is turned into a composite by defining an initiahtber of internal
component instances and by selectinggguest transport patternA pattern
represents a request transport algorithm that may be usegd@masterand
worker components. It is a composite whose implementation shaeildione
by some experts and can or can not be based on software comgosiech as
DIET [7]. Requesttranspopatternsare defined independently of a collection.
Figure 1 presents an overview of the concepts of the proposetb!.

2.2  Need for dynamic behavior

The proposed model dealt with building a statiaster-workerapplication
because the translation of the abstract collection to aretecomposite fixes
the number of workers as well as a pattern at deployment titogever, such
choices have to be dynamic to take into account modificabbtiee application
behavior and/or of the resources. The application beh@aroompasses col-
lection level behaviors like the frequency and the kind obming requests, the
number of requests waiting for a worker, or the number of ected masters.
It also comprises application’s level behavior when theessaveral collections
within an application. Resource behaviors are made of atantbnsiderations
like availability, end of a resource reservation, etc.

For a collection, there are three elements that may be dyradisnmodified:
1) the number of worker<) the used pattern arf) the tuning of the pattern.

For example, let consider an increase of the number of vgargquests. If
the pattern is not the bottleneck, the solution is to add mamders if there are
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Figure 2. DyNAcoO as an assembly dfrACTAL components and their dependencies.

available resources. However, if the pattern is the battikneither the pattern
may by optimized or it has to be replaced by a more scalable one

In order to help decision making, validity constraints mayattached to a
pattern. For instance, a round-robin pattern can be adedorlbne or a few
connected masters, for equivalent request load and for genemus proces-
sors. If at least one of these conditions is not met, anotatem should be
considered, like for example a load-balancing pattern &TDI

A collection can also be modified to optimize resources uskgeinstance,
if there is a lot of workers compared to the number of requéstan be suit-
able to remove some workers to release resources. Last,coonglex situa-
tions occur when an application contains several instaofdbe master-worker
paradigm. In such a case, re-structuring a collection shbelcoordinated in
order not to be to the detriment of other collections.

3. A framework for adaptability

In a previous work [1, 6], we have studied how to make appboat suit
varying conditions relying on the notion of adaptabilityhi§ work led us to
develop a generic component framework for adaptabildy,NaAco. Bene-
fiting from a joint work with the university of Pisa [1], thisdmework splits
adaptability into four sub-functionalitiesl) the framework has to be able to
observecharacteristics of the environment in order to trigger &alaipty; 2)
when a change is detected, the framework hadettidean adaptation strat-
egy according to observed measurgsonce a strategy has been decided, the
framework has teplan actions to implement it; at last), planned actions have
to beexecutedsynchronously with the execution of applicative code. Gn th
left of Figure 2, each sub-functionality is captured by @ACTAL component.

Rather than reimplementing the components of the framewspekifically
to each application, developers are encouraged to focugmication-specific
issues, thanks to the reuse of existing generic enginesingt@nce, we have
experimented 3 generic engines fortieeidecomponent:1)aJ ava virtual ma-
chine, such that the decision procedure is implementedagibneral-purpose
language, allows easy implementations of intuitive decigirocedures?) the
JEss [10] expert system, such that the decision procedure iseespd with a
domain-specific rule language (i.e. as a collection of adeules that looks
like the following statement:decide a given strategy when an associated con-
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dition becomes trug); allows efficient implementations of complex rule-based
decision procedures; arj a genetic algorithm, such that the decision proce-
dure is expressed as a function to optimize (e.g. the pedioce model of the
application), allows to implement straightforwardly d#on procedures when
the application’s behavior is well formalized, possiblythwa higher runtime
cost. As described, each engine proposes a different tbfide-

The same applies to th@lan and executecomponents. For the former,
for instance, a pattern matching based mapping from stesteg predefined
plans suits well simple cases; while more sophisticatethétisms such as
STrIPS [12] (developers only declare the collection of possibléosis as pre-
and post-conditions) may be relevant when developers tamadefine plans
by hand. Similarly, synchronizing adaptation actions \tlith applicative code
depends mostly on the applicative programming model: we pasposed an
algorithm (Arpac [6]) for any SPMD application. Other algorithms could be
used such adssisT [3] when using itgparmodskeleton programming model.

The observecomponent does not adhere to the same desigmnitors are
facilities provided by the environment itself that are wyag into adapter com-
ponents, which gather, aggregate and preprocess raw resasut events to
their expected formats. The whadservecomponent is almost independent
from the application and does not heed any particular s|izsti@n.

As on the right of Figure 2, application-specific code is oagd inpolicy,
guideand a collection o&ctiors, which respectively specialize thecide plan
and executecomponents. Using generic engines in that way is what makes
Dynaco highly generic and open, while it encourages effective cedse.

4.  Design choicesfor adaptability in the M-W paradigm

This section studies how to make use of an adaptability frasrlesuch as
DynNAco in themaster-workeparadigm. It analyzes two major design choices
we haveidentified: the choice of the adaptability strategiat the architecture.
The discussion is done with respect to three criteria: mardy) accuracy, and
scalability. Modularity measures the possibility to compound strategies such
as at the collection level and at the pattern leyalcuracystands for the kinds
of allowed adaptations whilecalability refers to the number of components in
the collection.

4.1  Strategy level

The first choice concerns the way to logically design the tadem strategy;,
which can bamonolithig independenbr coordinated

Considering a singlenonolithic strategy, the global strategy should handle
any possible situation and adaptation for the whole catlact Especially, it
should consistently handle the adaptation at the levelssodollection, the pat-



6

tern and the pattern implementation. For instance, obsgn¥iat the request
gueue lengthens, instantiating new workers may increasbdterogeneity of
processors, such that the pattern should be replaced byeasuited one (e.g.
switching from round-robin tdIET). A monolithic strategy is able to han-
dle those two adaptations at once. Assuming now that théebetik is the
pattern, which may not be able to perform better, not eveh witlifferent
implementation nor with additional resources. Being avedial of the imple-
mented patterns, a monolithic strategy has sufficient kedge to detect such
a situation and prevent useless workers. Therefore, highracy is provided.
However, the major drawback is poor modularity. Indeed titjiet entangle-
ment between adaptations makes it particularly difficul&dol incrementally
the support for new patterns, as well as to maintain theegjyatas any local
modification may have an impact on the whole strategy. Wansthe case of
a multi-collection application, adaptations for all of tb@lections have to be
handled by a single strategy at the level of the whole apjpbica

Rather than designing the strategy as a whole, it may berbetiecompose
it such that the specification of the strategy for each adiapt& close to what
is adapted. Basically, in order to allow good modularizati® sub strategies
would be designed: thefirstone, attachedto the collecbamposite, adapts the
number of workers; the second one, attached to the pattdetts a convenient
pattern; and the last one, attached to the pattern implexti@nt optimizes the
pattern. Two alternatives can be derived from this compairategy. Each
sub strategy may bimdependenbr otherwise it may beoordinated In the
former case, independence means that no explicit interactcurs from one
sub strategy to the others. The latter case allows exptitgtactions between
sub strategies such that they can coordinate the adagatidhe elements of
the collection. Any technique can be used to implement tioedination, such
as triggering adaptations from other adaptations (prapagadaptations) or
running a negotiation protocol (agreeing on adaptations).

Focusing onthandependenapproach, let us consider first the above example
of adding worker instances that increase heterogeneitighwhay result from
different processors or from different implementationsddpendence implies
that the pattern switches its implementation on its own wihebserves that
heterogeneity increases, once the collection (indepeiyldras instantiated
new workers. Thus, despite their independence, the sutegia achieve
together the same adaptations as the single monolithiegytaHowever, that
way of observing effects of adaptations is not always endogimplement
accurate adaptations. Consider that the queue lengthenac@irate strategy
does not instantiate new workers if the pattern would notlide ® dispatch
requests at a sufficient pace; and it does not optimize therpaf there can'’t
be enough workers to handle requests. However, indepeadghthe sub
strategies prevents the collection from knowing whetherghttern would be
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Strategy Accuracy Modularity | Scalability
Collection | Application
Monolithic High None None Low
Independent Low Low High High
Coordinated High High High High

Figure 3. Summarized features of each alternative for the strategy.le

able or not to dispatch requests to additional workers; gor@vents the pattern
from knowing whether the collection would be able to ingtaetnew workers.
In such a situation, this strategy would desperately predhestatus quoeven
if the collection would be able to perform better; while loing accuracy may
lead to instantiate useless workers or to over-optimizep#iern.

Last, thecoordinatedstrategy promises to bring the advantages of the two
other strategies without their drawbacks (Figure 3). lisprees compound
strategies for modularity and scalability while lettinglatzal vision to be built
for accuracy. However, several adaptation modules have iotérconnected.

4.2  Achitecturelevel

The second design choice concerns the architecture of dpaddlity. Two
alternatives are identifiectentralizedanddistributed

A centralizedarchitecture locates the whole adaptability managemémgin
single location. With respectto the model presented in@e2t it has to be into
the membrane of the collection. Bindings are, neverthglagsent to enable
it to control the whole collection. Theentralizedapproach is compatible
with all adaptation strategies described in Section 4.laldbd simplifies the
implementation of theoordinatedstrategy as the communication between the
different strategies may be embedded into the same adaptimework.
However, it raises an issue for the compound strategies mggpect to the
composition of components: the adaptation part of sub comms needs to
be injected into the adaptation part of the collection. Hgribe connection
operator of the component model turns out to be more complexar as we
know, there is no standard component models that permits it.

With adistributedarchitecture, the adaptability management is spread over
the whole collection, and in particular in the membraneshefdollection, of
the pattern and of the pattern implementation componentse distributed
architecture is not straightfowardly compatible with tmenolithic strategy.
However, it perfectly fits with the counpound strategies/ted that the com-
munications of theoordinatedstrategy are quite simply done through some
ports. Considering the advantages of tuordinatedstrategy, we conclude
that this strategy with distributedarchitecture appears to be the best choice to
deal with dynamic change in a collection.
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4.3  Positionning

Only a couple of adaptability frameworks address the prabté coordi-
nating and distributing adaptation®lYNACO is neutral as it does not prevent
policies to coordinate on their own, but it does not providg specific support.

Among the other framework$\CEEL [8] and PLAsMA [11], are fairly close
to the constructive approach defended here, i.e. buildiolgadj adaptations as
the collaboration of individual local adaptations. Withr puevious framework
ACEEL, each component contacts other components before adaiotiogler
to ensure consistent and synchronized adaptation of thievalseembly. With
PrAasMA, components impose their adaptations to the other onesghra
simpler propagation mechanism. The contract-driven agir@f AssisT [2]
is different. considering a hierarchical component modemposite compo-
nents divide their contract in order to assign recursivelycentracts to their
sub components. Coordination of adaptation is enforcechbystibmission
of contracts that are consistent with another. Howeves,dbproach requires
composite components to have precise understanding ofotin@asition of
their immediate subcomponents, in order to devise subacistr

Those frameworks are however tied to the programming mddelshich
they have been specifically designed, often restricted k&d tiollection of pre-
defined adaptations; while focusing only on adaptabilily,NAco integrates
gracefully to any programming modeDyNAcCO also allows to design more
specific and adequate solutions for each programming garathan other
general approaches. Hend&yNACO is a better start point.

5.  Adapation examplefor a master-worker application

Based on the preceding analysis, this section discussesigndexample
for adaptability of amaster-workerapplication. As outlined in Section 2.2,
the adaptation aims at preventing the request queue froeteptably grow-
ing, while making the queue contain enough requests to feetintiously the
workers. In order to enforce that objective, we propose dhieviiing intuitive
compound strategy, using the coordinated approach:

e at the level of the collection: if the request queue lengthens beyond a
threshold, if the pattern is able to increase its dispatth aacordingly and if
there are available resources, then instantiate new wrikéine request queue
shortens under a threshold, then terminate some workers.

e at thelevel of the pattern: if the number of masters or the variability of
request durations increases above a threshold, or if teedggineity of workers
increases beyond athreshold, then switch taXhET pattern; otherwise, under
a threshold switch to round-robin.

In this strategy, coordination (as it appears on Figure 4umcbefore the
collection instantiates new workers. It actually asks th&gmn whether it
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Figure 4. Introducing dynamic management in timaster-workemodel.

would be able to dispatch requests at a sufficient rate, &ante involving a
contract renegotiation protocol. The length of the reqgasue cannot always
be observed directly; lengthenings and shortenings casrtimless be deduced
from the comparison between arrival and service rates. r@thservations are
almostobvious. The example shows thatdberdinatedanddistributeddesign
suits well and that the necessary monitoring does not breachpsulation.

Now that an adaptation strategy is designed, the issue isrsider the
impact on the proposed M-W model. Achieving the objectivérahsparent
dynamic management, there is no need to modify the modekaighr view
level. The collection instantiation process seems to besnappropriate to
introduce an adaptability framework. A collectionimplentegion, in particular
the collection and pattern membranes, are determined sastage. Adding
adaptability framework as controllers in appropriate meanbs appears to
be straightforward. Then, only the implementation of adien and pattern
components are concerned by the use of an adaptability Warke However,
the diversity of resource infrastructures and resourceagement systems lead
to various adaptability policies. For instance, a policy ba more constrained
by resource availability when resource sharing is priethgotherwise it can
be more constrained by application requirements. As a cuesee, similarly
as for patterns, the framework has to do a selection from afssedaptability
implementations. Fortunately, the specificity bfrNACcoO to be component-
based allows the use of different implementations. master-workemmodel
extended with adaptability support is presented in Figure 4

6. Conclusion

The paper analyses how to design dynamic adaptability stijpacompo-
nent-basednaster-workerapplications. Among the discussed possibilities,
coordinating several distributed adaptations appeare thdbest-suited solu-
tion with regard to modularity, scalability and accuraagyatdition, integrating
adaptability at the level of thenaster-workerabstraction achieves the goal of
hiding the management of execution resources from the oleged’ sight.
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Among adaptability frameworks, none fully meets the regmients of our
proposal. Its genericity and openness makeNnaco be the best start point.
Based on the experience we gained in our previous work OreL [8-9], we
plan to extendyNAco with specific support for the coordination of distributed
adaptations, so that it meets the requirements. We will e@dsduate the pro-
posed model on syntheticaster-workebenchmarks as well as the possibilities
to write generic adaptation policies at the collection appliaation levels.
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