
HAL Id: hal-00498872
https://hal.science/hal-00498872v1

Submitted on 8 Jul 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards dynamic adaptability support for the
master-worker paradigm in component based

applications
Françoise André, Hinde Lilia Bouziane, Jérémy Buisson, Jean-Louis Pazat,

Christian Pérez

To cite this version:
Françoise André, Hinde Lilia Bouziane, Jérémy Buisson, Jean-Louis Pazat, Christian Pérez. To-
wards dynamic adaptability support for the master-worker paradigm in component based applica-
tions. CoreGRID Symposium, Aug 2007, Rennes, France. pp.117, �10.1007/978-0-387-72498-0_11�.
�hal-00498872�

https://hal.science/hal-00498872v1
https://hal.archives-ouvertes.fr


TOWARDS DYNAMIC ADAPTABILITY SUPPORT
FOR THE MASTER-WORKER PARADIGM
IN COMPONENT BASED APPLICATIONS

Françoise André1, Hinde Lilia Bouziane2, Jérémy Buisson3, Jean-Louis Pazat3

and Christian Pérez2
(1) Université de Rennes 1/IRISA, Campus de Beaulieu, 35042Rennes cedex, France
(2) INRIA/IRISA, Campus de Beaulieu, 35042 Rennes cedex, France
(3) INSA de Rennes/IRISA, Campus de Beaulieu, 35042 Rennes cedex, France

{Francoise.Andre,Hinde.Bouziane,Jeremy.Buisson,Jean-Louis.Pazat,Christian.Perez}@irisa.fr

Abstract When executing scientific applications, resources that maybe used can vary from
multi-core processors to grids. Therefore, abstracting the programming model
enables portability on various resource infrastructures.Furthermore, software
component technology appears to be a very promising approach to deal with the
growing complexity of scientific applications. Hence, we proposed a model to
improve the support ofmaster-workerparadigm in component models. Capi-
talizing on our experience of adaptability frameworks, we propose to enhance
our model so thatmaster-workerapplications can adapt at runtime to varying
conditions. This paper studies how to transparently introduce adaptability in our
model formaster-workerapplications, what impact it has on the model, and what
requirements it expects from the adaptability framework.

Keywords: Software components, Grid, Master-worker, Dynamic evolution, Adaptability
framework.



2

1. Introduction

While computing grids are becoming more and more common, thequestion
of their programmability is raising attention. The underlying motivation not
only stems from the high complexity of grids that shall be hidden to program-
mers but it also comes from the increasing complexity of applications. In order
to take advantage of the huge possibilities of grids, more complex applications
like code coupling applications are getting popular.

Software component technology appears very promising to handle the com-
plexity of both grids and applications. Code reuse enables to build complex
applications based on validated building blocks while component composition
provides a mechanism to support complex relationships independently of the
architecture of the execution platform.

An example of such a relationship is themaster-workerparadigm. While it
is an algorithmic concept, its implementation varies quitea lot depending on the
execution platform. Hence, we defined a high level master-worker relationship
between components [5, 4]. While it provides a model close tothe abstract
concept to the programmers, it can be configured by the execution environment
to fit to the actual resources. However, this previous work did not consider
dynamic adaptation. For example, the number of workers may change depend-
ing on the number of incoming requests or the number of available machines.
The goal of this paper is to study how to introduce adaptability support in a
master-worker paradigm and to evaluate the impact on adaptation frameworks.

The paper is organized as follows. Section 2 summarizes our model to handle
master-worker(M-W) relationship between components as well as an analysis
of various levels of adaptability. Section 3 presents our adaptability framework.
Section 4 discusses different strategies to introduce adaptability within the M-
W relationship. An example and its impact on the M-W model areanalyzed in
Section 5. Section 6 concludes the paper and presents some future works.

2. A high-level master-worker composition model

We proposed in [5] to increase the abstraction level of component models
with respect to themaster-worker(M-W) paradigm. Our motivation is twofold.
First, we aim to relieve programmers from dealing with resource dependencies,
such as the number ofworkersto instantiate or request transport concerns. Sec-
ond, we target to reuse existingmaster-workerenvironments, likeDIET [7],
as they implement advanced request transport and scheduling algorithms.

The proposal defines a generic model, which we have projectedto specific
component models likeFractal [5], Ccm andCca [4]. In this paper, we
present it according to theFractal formalism.



Towards dynamic adaptability support for M-W component based applications 3

Figure 1. Overview of themaster-workermodel from the user and framework points of view.

2.1 Overview

The model is based on the concept ofcollection, which is defined as a set
of exposedports, bound to some internal component type ports. A collection
behaves like a component: it can be connected to other components. How-
ever, such a composition is done by anabstractarchitecture description, which
represents the user’s view of the application. Ideally, at deployment time, a
collection is turned into a composite by defining an initial number of internal
component instances and by selecting arequest transport pattern. A pattern
represents a request transport algorithm that may be used betweenmasterand
worker components. It is a composite whose implementation should be done
by some experts and can or can not be based on software components, such as
DIET [7]. Request transportpatternsare defined independently of a collection.
Figure 1 presents an overview of the concepts of the proposedmodel.

2.2 Need for dynamic behavior

The proposed model dealt with building a staticmaster-workerapplication
because the translation of the abstract collection to a concrete composite fixes
the number of workers as well as a pattern at deployment time.However, such
choices have to be dynamic to take into account modificationsof the application
behavior and/or of the resources. The application behaviorencompasses col-
lection level behaviors like the frequency and the kind of incoming requests, the
number of requests waiting for a worker, or the number of connected masters.
It also comprises application’s level behavior when there are several collections
within an application. Resource behaviors are made of standard considerations
like availability, end of a resource reservation, etc.

For a collection, there are three elements that may be dynamically modified:
1) the number of workers,2) the used pattern and3) the tuning of the pattern.

For example, let consider an increase of the number of waiting requests. If
the pattern is not the bottleneck, the solution is to add moreworkers if there are



4

������ ���� ��������������

�������

����� ������	
 ����
������ ���� ����	
�������

�	�������������


���	��

��
���

����
��

�
��
��� ����

Figure 2. Dynaco as an assembly ofFractal components and their dependencies.

available resources. However, if the pattern is the bottleneck, either the pattern
may by optimized or it has to be replaced by a more scalable one.

In order to help decision making, validity constraints may be attached to a
pattern. For instance, a round-robin pattern can be adequate for one or a few
connected masters, for equivalent request load and for homogeneous proces-
sors. If at least one of these conditions is not met, another pattern should be
considered, like for example a load-balancing pattern or DIET.

A collection can also be modified to optimize resources usage. For instance,
if there is a lot of workers compared to the number of requests, it can be suit-
able to remove some workers to release resources. Last, morecomplex situa-
tions occur when an application contains several instancesof themaster-worker
paradigm. In such a case, re-structuring a collection should be coordinated in
order not to be to the detriment of other collections.

3. A framework for adaptability

In a previous work [1, 6], we have studied how to make applications suit
varying conditions relying on the notion of adaptability. This work led us to
develop a generic component framework for adaptability,Dynaco. Bene-
fiting from a joint work with the university of Pisa [1], this framework splits
adaptability into four sub-functionalities:1) the framework has to be able to
observecharacteristics of the environment in order to trigger adaptability; 2)
when a change is detected, the framework has todecidean adaptation strat-
egy according to observed measures;3) once a strategy has been decided, the
framework has toplanactions to implement it; at last,4), planned actions have
to beexecutedsynchronously with the execution of applicative code. On the
left of Figure 2, each sub-functionality is captured by aFractal component.

Rather than reimplementing the components of the frameworkspecifically
to each application, developers are encouraged to focus on application-specific
issues, thanks to the reuse of existing generic engines. Forinstance, we have
experimented3generic engines for thedecidecomponent:1)aJavavirtual ma-
chine, such that the decision procedure is implemented witha general-purpose
language, allows easy implementations of intuitive decision procedures;2) the
Jess [10] expert system, such that the decision procedure is expressed with a
domain-specific rule language (i.e. as a collection of ordered rules that looks
like the following statement:“decide a given strategy when an associated con-



Towards dynamic adaptability support for M-W component based applications 5

dition becomes true”), allows efficient implementations of complex rule-based
decision procedures; and3) a genetic algorithm, such that the decision proce-
dure is expressed as a function to optimize (e.g. the performance model of the
application), allows to implement straightforwardly decision procedures when
the application’s behavior is well formalized, possibly with a higher runtime
cost. As described, each engine proposes a different trade-off.

The same applies to theplan and executecomponents. For the former,
for instance, a pattern matching based mapping from strategies to predefined
plans suits well simple cases; while more sophisticated formalisms such as
Strips [12] (developers only declare the collection of possible actions as pre-
and post-conditions) may be relevant when developers cannot predefine plans
by hand. Similarly, synchronizing adaptation actions withthe applicative code
depends mostly on the applicative programming model: we have proposed an
algorithm (Afpac [6]) for any SPMD application. Other algorithms could be
used such asAssist [3] when using itsparmodskeleton programming model.

Theobservecomponent does not adhere to the same design:monitors are
facilities provided by the environment itself that are wrapped into adapter com-
ponents, which gather, aggregate and preprocess raw measures and events to
their expected formats. The wholeobservecomponent is almost independent
from the application and does not need any particular specialization.

As on the right of Figure 2, application-specific code is captured inpolicy,
guideand a collection ofactions, which respectively specialize thedecide, plan
andexecutecomponents. Using generic engines in that way is what makes
Dynaco highly generic and open, while it encourages effective codereuse.

4. Design choices for adaptability in the M-W paradigm

This section studies how to make use of an adaptability framework such as
Dynaco in themaster-workerparadigm. It analyzes two major design choices
we have identified: the choice of the adaptability strategy and of the architecture.
The discussion is done with respect to three criteria: modularity, accuracy, and
scalability. Modularity measures the possibility to compound strategies such
as at the collection level and at the pattern level.Accuracystands for the kinds
of allowed adaptations whilescalability refers to the number of components in
the collection.

4.1 Strategy level

The first choice concerns the way to logically design the adaptation strategy,
which can bemonolithic, independentor coordinated.

Considering a singlemonolithicstrategy, the global strategy should handle
any possible situation and adaptation for the whole collection. Especially, it
should consistently handle the adaptation at the levels of the collection, the pat-



6

tern and the pattern implementation. For instance, observing that the request
queue lengthens, instantiating new workers may increase the heterogeneity of
processors, such that the pattern should be replaced by a more suited one (e.g.
switching from round-robin toDIET). A monolithic strategy is able to han-
dle those two adaptations at once. Assuming now that the bottleneck is the
pattern, which may not be able to perform better, not even with a different
implementation nor with additional resources. Being awareof all of the imple-
mented patterns, a monolithic strategy has sufficient knowledge to detect such
a situation and prevent useless workers. Therefore, high accuracy is provided.
However, the major drawback is poor modularity. Indeed, thetight entangle-
ment between adaptations makes it particularly difficult toadd incrementally
the support for new patterns, as well as to maintain the strategy, as any local
modification may have an impact on the whole strategy. Worse,in the case of
a multi-collection application, adaptations for all of thecollections have to be
handled by a single strategy at the level of the whole application.

Rather than designing the strategy as a whole, it may be better to decompose
it such that the specification of the strategy for each adaptation is close to what
is adapted. Basically, in order to allow good modularization, 3 sub strategies
would be designed: the first one, attached to the collection composite, adapts the
number of workers; the second one, attached to the pattern, selects a convenient
pattern; and the last one, attached to the pattern implementation, optimizes the
pattern. Two alternatives can be derived from this compoundstrategy. Each
sub strategy may beindependentor otherwise it may becoordinated. In the
former case, independence means that no explicit interaction occurs from one
sub strategy to the others. The latter case allows explicit interactions between
sub strategies such that they can coordinate the adaptations of the elements of
the collection. Any technique can be used to implement the coordination, such
as triggering adaptations from other adaptations (propagating adaptations) or
running a negotiation protocol (agreeing on adaptations).

Focusingon theindependentapproach, let us consider first the above example
of adding worker instances that increase heterogeneity, which may result from
different processors or from different implementations. Independence implies
that the pattern switches its implementation on its own whenit observes that
heterogeneity increases, once the collection (independently) has instantiated
new workers. Thus, despite their independence, the sub strategies achieve
together the same adaptations as the single monolithic strategy. However, that
way of observing effects of adaptations is not always enoughto implement
accurate adaptations. Consider that the queue lengthens. An accurate strategy
does not instantiate new workers if the pattern would not be able to dispatch
requests at a sufficient pace; and it does not optimize the pattern if there can’t
be enough workers to handle requests. However, independence of the sub
strategies prevents the collection from knowing whether the pattern would be



Towards dynamic adaptability support for M-W component based applications 7

Strategy Accuracy Modularity Scalability
Collection Application

Monolithic High None None Low
Independent Low Low High High
Coordinated High High High High

Figure 3. Summarized features of each alternative for the strategy level.

able or not to dispatch requests to additional workers; and it prevents the pattern
from knowing whether the collection would be able to instantiate new workers.
In such a situation, this strategy would desperately preserve thestatus quo, even
if the collection would be able to perform better; while lowering accuracy may
lead to instantiate useless workers or to over-optimize thepattern.

Last, thecoordinatedstrategy promises to bring the advantages of the two
other strategies without their drawbacks (Figure 3). It preserves compound
strategies for modularity and scalability while letting a global vision to be built
for accuracy. However, several adaptation modules have to be interconnected.

4.2 Achitecture level

The second design choice concerns the architecture of the adaptability. Two
alternatives are identified:centralizedanddistributed.

A centralizedarchitecture locates the whole adaptability management into a
single location. With respect to the model presented in Section 2, it has to be into
the membrane of the collection. Bindings are, nevertheless, present to enable
it to control the whole collection. Thecentralizedapproach is compatible
with all adaptation strategies described in Section 4.1. Italso simplifies the
implementation of thecoordinatedstrategy as the communication between the
different strategies may be embedded into the same adaptation framework.
However, it raises an issue for the compound strategies withrespect to the
composition of components: the adaptation part of sub components needs to
be injected into the adaptation part of the collection. Hence, the connection
operator of the component model turns out to be more complex.As far as we
know, there is no standard component models that permits it.

With a distributedarchitecture, the adaptability management is spread over
the whole collection, and in particular in the membranes of the collection, of
the pattern and of the pattern implementation components. The distributed
architecture is not straightfowardly compatible with themonolithic strategy.
However, it perfectly fits with the counpound strategies provided that the com-
munications of thecoordinatedstrategy are quite simply done through some
ports. Considering the advantages of thecoordinatedstrategy, we conclude
that this strategy with adistributedarchitecture appears to be the best choice to
deal with dynamic change in a collection.



8

4.3 Positionning

Only a couple of adaptability frameworks address the problem of coordi-
nating and distributing adaptations.Dynaco is neutral as it does not prevent
policies to coordinate on their own, but it does not provide any specific support.

Among the other frameworks,Aceel [8] andPlasma [11], are fairly close
to the constructive approach defended here, i.e. building global adaptations as
the collaboration of individual local adaptations. With our previous framework
Aceel, each component contacts other components before adapting, in order
to ensure consistent and synchronized adaptation of the whole assembly. With
Plasma, components impose their adaptations to the other ones through a
simpler propagation mechanism. The contract-driven approach ofAssist [2]
is different: considering a hierarchical component model,composite compo-
nents divide their contract in order to assign recursively subcontracts to their
sub components. Coordination of adaptation is enforced by the submission
of contracts that are consistent with another. However, this approach requires
composite components to have precise understanding of the composition of
their immediate subcomponents, in order to devise subcontracts.

Those frameworks are however tied to the programming modelsfor which
they have been specifically designed, often restricted to a fixed collection of pre-
defined adaptations; while focusing only on adaptability,Dynaco integrates
gracefully to any programming model.Dynaco also allows to design more
specific and adequate solutions for each programming paradigm than other
general approaches. Hence,Dynaco is a better start point.

5. Adapation example for a master-worker application

Based on the preceding analysis, this section discusses a design example
for adaptability of amaster-workerapplication. As outlined in Section 2.2,
the adaptation aims at preventing the request queue from unacceptably grow-
ing, while making the queue contain enough requests to feed continuously the
workers. In order to enforce that objective, we propose the following intuitive
compound strategy, using the coordinated approach:
• at the level of the collection: if the request queue lengthens beyond a

threshold, if the pattern is able to increase its dispatch rate accordingly and if
there are available resources, then instantiate new workers; if the request queue
shortens under a threshold, then terminate some workers.
• at the level of the pattern: if the number of masters or the variability of

request durations increases above a threshold, or if the heterogeneity of workers
increases beyonda threshold, thenswitch to theDIETpattern; otherwise, under
a threshold switch to round-robin.

In this strategy, coordination (as it appears on Figure 4) occurs before the
collection instantiates new workers. It actually asks the pattern whether it



Towards dynamic adaptability support for M-W component based applications 9

Figure 4. Introducing dynamic management in themaster-workermodel.

would be able to dispatch requests at a sufficient rate, for instance involving a
contract renegotiation protocol. The length of the requestqueue cannot always
be observed directly; lengthenings and shortenings can nevertheless be deduced
from the comparison between arrival and service rates. Other observations are
almost obvious. The example shows that thecoordinatedanddistributeddesign
suits well and that the necessary monitoring does not breachencapsulation.

Now that an adaptation strategy is designed, the issue is to consider the
impact on the proposed M-W model. Achieving the objective oftransparent
dynamic management, there is no need to modify the model at the user view
level. The collection instantiation process seems to be more appropriate to
introduce anadaptability framework. A collection implementation, inparticular
the collection and pattern membranes, are determined at this stage. Adding
adaptability framework as controllers in appropriate membranes appears to
be straightforward. Then, only the implementation of collection and pattern
components are concerned by the use of an adaptability framework. However,
the diversity of resource infrastructures and resource management systems lead
to various adaptability policies. For instance, a policy can be more constrained
by resource availability when resource sharing is privileged, otherwise it can
be more constrained by application requirements. As a consequence, similarly
as for patterns, the framework has to do a selection from a setof adaptability
implementations. Fortunately, the specificity ofDynaco to be component-
based allows the use of different implementations. Themaster-workermodel
extended with adaptability support is presented in Figure 4.

6. Conclusion

The paper analyses how to design dynamic adaptability support for compo-
nent-basedmaster-workerapplications. Among the discussed possibilities,
coordinating several distributed adaptations appears to be the best-suited solu-
tion with regard to modularity, scalability and accuracy. In addition, integrating
adaptability at the level of themaster-workerabstraction achieves the goal of
hiding the management of execution resources from the developers’ sight.



10

Among adaptability frameworks, none fully meets the requirements of our
proposal. Its genericity and openness makeDynaco be the best start point.
Based on the experience we gained in our previous work onAceel [8–9], we
plan to extendDynaco with specific support for the coordination of distributed
adaptations, so that it meets the requirements. We will alsoevaluate the pro-
posed model on syntheticmaster-workerbenchmarks as well as the possibilities
to write generic adaptation policies at the collection and application levels.

References

[1] M. Aldinucci, F. André, J. Buisson, S. Campa, M. Coppola, M. Danelutto, and C. Zoccolo.
An abstract schema modelling adaptivity management. In Sergei Gorlatch and Marco
Danelutto, editors,Integrated Research in GRID Computing, CoreGRID. Springer, 2007.

[2] M. Aldinucci, M. Danelutto, and M. Vanneschi. Autonomicqos in assist grid-aware
components. In14th Euromicro International Conference on Parallel, Distributed and
Network-based Processing, February 2006.

[3] M. Aldinucci, A. Petrocelli, E. Pistoletti, M. Torquati, M. Vanneschi, L. Veraldi, and
C. Zoccolo. Dynamic reconfiguration of grid-aware applications in assist. In José C.
Cunha and Pedro D. Medeiros, editors,Proceedings of the 11th International Euro-Par
Conference, volume 3648 ofLecture Notes in Computer Science, pages 771–781, Lisbon,
Portugal, September 2005. Springer.

[4] G. Antoniu, H. L. Bouziane, M. Jan, C. Pérez, and T. Priol. Combining data sharing with
the master-worker paradigm in the common component architecture. InThe 15th IEEE
International Symposium on High Performance Distributed Computing (HPDC), Paris,
France, June 2006.

[5] H. L. Bouziane, C. Pérez, and T. Priol. Modeling and executing master-worker applications
in component models. In11th International Workshop on High-Level Parallel Program-
ming Models and Supportive Environments (HIPS), Rhodes Island, Greece, April 2006.

[6] J. Buisson, F. André, and J.-L. Pazat. Afpac: Enforcingconsistency during the adaptation
of a parallel component.Scalable Computing: Practice and Experience, 7(3):83–95,
September 2006. electronic journal (http://www.scpe.org/).

[7] E. Caron, F. Desprez, F. Lombard, J.M. Nicod, M. Quinson,and F. Suter. A Scalable Ap-
proach to Network Enabled Servers. In B. Monien and R. Feldmann, editors,Proceedings
of the 8th International EuroPar Conference, volume 2400 ofLecture Notes in Computer
Science, pages 907–910, Paderborn, Germany, August 2002. Springer-Verlag.

[8] D. Chefrour.Plate-forme de composants logiciels pour la coordination des adaptations
multiples en environnement dynamique. PhD thesis, Université Rennes 1, November 2005.

[9] D. Chefrour and F. André. Développement d’applications en environnements mobiles à
l’aide du modèle de composant adaptatif ACEEL. InLangages et Modèles à Objets. Actes
publiés dans la revue STI, volume 9 ofsérie L’objet, Vanne, France, 2003.

[10] Jess, the rule engine for the java platform. http://herzberg.ca.sandia.gov/jess/.

[11] O. Layaida and D. Hagimont. Designing self-adaptive multimedia applications through
hierarchical reconfiguration. In L. Kutvonen and N. Alonistioti, editors,DAIS’05, volume
3543 ofLNCS, pages 95–107. Springer, 2005.

[12] N. Nilsson and R. Fikes. STRIPS: a new approach to the application of theorem proving
to problem solving.Artificial Intelligence, 2(3–4):189–208, 1971.


