
HAL Id: hal-00498870
https://hal.science/hal-00498870

Submitted on 8 Jul 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamic adaptation of parallel and distributed
components on Grid environments

Françoise André, Jérémy Buisson, Jean-Louis Pazat

To cite this version:
Françoise André, Jérémy Buisson, Jean-Louis Pazat. Dynamic adaptation of parallel and distributed
components on Grid environments. Eleventh International Conference on Advanced Computing and
Communications (ADCOM), 2003, Coimbatore, India. �hal-00498870�

https://hal.science/hal-00498870
https://hal.archives-ouvertes.fr

Dynamic adaptation of parallel and distributed
components on Grid environments

Françoise André1, Jérémy Buisson2 , and Jean-Louis Pazat2

1 IRISA/Universit é de Rennes 1
2 IRISA/INSA

Campus Universitaire de Beaulieu
Avenue du G én éral Leclerc

35042 RENNES Cedex - France

Abstract. Wireless communication based applications always need adaptation
techniques because the bandwidth and the resources of the network often change
during the execution of an application. These applications are characterized by
a low bandwidth, small data sets and low-end machines. At the opposite of the
spectrum, Grid applications use powerful supercomputers, high bandwidth net-
works and process large amount of data. However, during an application run, both
the bandwidth of the network and the computing resources may also vary. In this
paper, we show than despite the difference between these kinds of applications,
Grid applications can benefit from adaptation techniques primarily designed for
wireless applications.

1 Introduction

In wireless applications, resources are a key issue. An application cannot even
work if it is not able to take into account the constraints of dynamic resources.
An application have to be able to modify its behavior according to the state of
the environment which is reported by some hardware or software monitors. The
adaptation of the behavior may be a fairly simple operation such as the adjust-
ment of some parameters (level of data compression for example) or can be a
dramatic change in the application such as the replacement of the whole code
of the application. If adaptation mechanisms are embedded into the application
code, it may result in the writing of an awkward and unmanageable code. More-
over, each time a new application is designed, the whole adaptation mechanism
have to be though again, written and tested.

In order to separate the adaptation aspect from the application code itself
the ACEEL framework [1] which provides mechanisms for adaptation policies
description and implementation will be used as a basis for our study.

In most Grid applications, performance is a key issue. If an application
“works” but does not take advantage of the available resources, its overall per-
formance will be very low in many cases. Because application execution time

2 Françoise Andr é, J ér émy Buisson, and Jean-Louis Pazat

are critical in these environments, applications are often scheduled to the best
machines at start-up, but if new computing resources become available during
run-time nothing is done to take profit of this fact. This is due to the fact that
Grid application are parallel codes and the design of a parallel code is so difficult
by itself that programmer would not like to add adaptation mechanism. How-
ever, if an adaptation platform is used as a complement of a Grid infrastructure
such as OGSA [3] which provides tools for distributed and parallel computing,
the overall performance of codes may increase dramatically.

This paper describes a way to handle the problem of adapting parallel codes
to varying constraints on resources based on an adaptation framework primarily
designed for wireless applications.

2 Dynamic adaptation of sequential components

Wireless applications need to be able to adapt their behavior to heterogeneous
and volatile resources. A clear separation between the adaptation engine and the
application code makes programs easier to maintain and allows one to easily
change or improve the adaptation policy. In this section we describe the ACEEL
framework [1] that provides generic mechanisms for the adaptation process and
for the definition of the adaptation rules. This framework has been developed in
our laboratory as a successor of the MolèNE project [9].

ACEEL has been designed as a generic framework for adaptable compo-
nents. It separates the adaptive aspect from the functional part of the component,
as shown on figure 1.

Each ACEEL component is separated in two different levels: the base level
and the meta level.

The base level contains a set of implementations called behaviors among
which only one is active at a time and processes the incoming requests. Within
this level, the context holds the component’s state in order to make easier the
change of behavior. The context is also used as the only visible interface of the
component in order to be able to use implementations with different interfaces.

Each behavior have specific resource needs, so a policy has also to be pro-
vided as a set of event-based rules: each rule is a condition on the state of the
environment and is associated with a reaction which might be either the activa-
tion of another behavior or the adjustment of some parameters of the active one.
The policy is used at the meta level by a generic meta-object called the adapter
which decides which of the available behaviors should be used according to the
environment changes.

A monitoring engine is used by the platform to merge the observations of
different resources of the environment. When a change in the characteristics or

Dynamic adaptation of parallel components 3

Behavior2
− context

+ Interface()

��������������������������������

����������������������������

������������

���
�

Adapter
Detection
Notification

+ activatePolicy()
+ adaptBehavior()
+ bestBehavior()
+ add/delBehavior()

Interprets the

adaptation
policy

− listBehaviors
− envState, − context

Base level

Context

− state, − curBehavior
− adapter, − curFunc

+ Interface()
+ getAdapter()calls

Clients

Behavior

+ Interface()

− context

+ Interface()

− context

+ Interface()

Behavior3Behavior1

− context

Meta−level

Fig. 1. Architecture of an ACEEL component

availability of a resource happens, the monitoring engine notifies the adapter
of the components which depend on this resource according to their adaptation
policy.

3 Parallelism and components

One of the main issues of today’s programming techniques including parallel
programming is to build reusable software. Current approaches rely on ob-
ject oriented programming [6] and many developments now focus on compo-
nent technologies [10] such as CORBA CCM [7] or Enterprise Java Beans [5].
Within these programming techniques, one of the main issues is the so called
“separation of concerns” paradigm. Entities implementing distinct functionali-
ties should be located in different modules, objects, services or components.

We think that the adaptation of a parallel program should be considered as a
service for a component provided by a component server such as it is the case for
transactions. The first step of this approach is to find or build a parallel compo-
nent middleware/framework/architecture because the well known standard com-
ponent architectures such as EJB or CORBA do not take into account the fact
that an object may be implemented as a parallel code. The worst case is the EJB
architecture which considers explicitly that beans cannot be multithreaded. The
CORBA architecture allows to encapsulate parallel codes in CORBA objects
but this leads to performance degradations: the inability of the platform to take
into account the existence of several concurrent units in the component forces
the platform to serialize the communications between parallel components.

4 Françoise Andr é, J ér émy Buisson, and Jean-Louis Pazat

Some projects, such as PARDIS [4], PaCO++ [2] and GridCCM [8], have
focused on getting better performances out of a CORBA architecture. Those
projects are aimed at efficiently encapsulating SPMD code into high perfor-
mance CORBA objects or components. They consider a parallel object as a set
of identical sequential objects. When a parallel object has to process a request,
each object executes the part of the computation related to the data elements
it is in charge of. Parallelism comes from the distribution of the parameters of
the request. In order to rise the efficiency, an enhanced request protocol has been
defined: the server allows the clients to see its internal structure and distribution.
This allows the clients to send directly the data to the right sequential objects:
data do not transit via a single master object anymore. This multi-port commu-
nication mode allows to efficiently use the aggregated bandwidth of the network
which could not be used if only one centralized communication port was used.

These projects show that it is possible to include parallel codes into a com-
ponent architecture without losing performance. In the remainder of this paper
we will focus on the problem of using a generic adaptation mechanism to con-
trol and adapt parallel programs. Some practical component aspects will not
be detailed but the whole framework is designed in order to be included in an
existing or new component platform.

4 Modifying an adaptation platform for the Grid

The challenge is to use an adaptation framework devoted to wireless applica-
tions for parallel Grid components. The main difference is that the applications
we consider are both parallel and distributed whereas wireless applications are
mainly restricted to the client-server paradigm. The Grid applications consid-
ered here are built as an assembly of software components, each component
being a set of communicating processes running on a cluster of workstations
or on a parallel computer. We work here at the component level and we try to
adapt one parallel component to environment changes; we do not consider yet
the global adaptation of the whole application.

In our model, adaptation is a service that the platform gives to the compo-
nents it hosts. Figure 2 shows the overall architecture of the platform hosting a
parallel adaptable component.

4.1 Platform objects

The platform mainly provides two kinds of objects: the decider and the coordi-
nators. The decider is the object that makes the decisions (the initiative of the
adaptation and the choice of the reaction). It bases its decisions on the reports

Dynamic adaptation of parallel components 5

Platform

Parallel self-adaptable component

Decider

Policy

Monitors

State
Modifies

Notifies

Comportement 1Comportement 1Behavior 1

Reaction 2

Reaction 1

Comportement 1Comportement 1Comportement 1Comportement 1Behavior 2

Functional part

Reaction 3

Modifies

CoordinatorCoordinatorCoordinatorCoordinatorCoordinator Permits to execute reactions

 Executes

Executes

Decides for

 Agreement

Fig. 2. Overall architecture of the adaptation framework

given by the monitors that track any change in the state of the environment.
There is no major difference between a decider for wireless applications and for
Grid applications, except that the set of decision rules may be more complex in
the case of Grid applications.

The coordinators execute the directives given by the decider: they serve as
intermediaries between the code of the component and the platform. Whereas
there is no need for coordinators in the wireless case, they are of major (impor-
tance) for parallel codes. Their role is to synchronize the adaptation mechanism
with the functional code and to coordinate the execution of the reactions.

4.2 Components parts

In return for the adaptation service it provides, the platform expects from the
component to conform to a given structure. A component is separated in two
parts : a functional part and a meta-level part.

At the functional level, a parallel adaptable component should provide to
its clients services specified by the interface such as an ordinary component. In
addition, an adaptable component should include a set of behaviors allowing
the component to be well suited for most environment changes. Each behavior
contains a complete implementation of the component. Contrarily to wireless
applications, each behavior might be either a sequential or a parallel implemen-

6 Françoise Andr é, J ér émy Buisson, and Jean-Louis Pazat

tation. At any time, one and only one behavior is active, the one that processes
the incoming requests. A behavior is a stateless object making it easier to keep
the state in a separate place of the component. This is useful to switch easily
from one behavior to another.

At the meta-level of the component, reaction steps should be provided by
the programmer as the means given to the platform to modify the component:
to react to a change in the environment, the component can execute on demand
a sequence of reaction steps. Our model does not give any special semantic to
these reaction steps except that it provides a way to modify a behavior or switch
between behaviors.

The component must provide the platform with an adaptation policy, which
is the component-specific counterpart of the decider. The purpose of the adapta-
tion policy is to define when the adaptation mechanism should be triggered and
what should be the associated reaction. It is mostly a set of event-based rules.
Each rule associates a reaction to a specific event. Events are conditions on the
state of the environment. For example, an adaptation policy can include the
rule: “if the number of nodes is increased, spawn new processes and redistribute
arrays”.

The behavior can be safely modified at anytime while the component is in-
active, whereas it is not the case while the component is processing a request. It
must be suspended in such a state that it remains consistent after the execution of
the reaction. Since this consistency completely depends on the component and
on its implementations, the developer has to explicitly specify those states. The
developer should provide the adaptation points which indicate states at which
the execution of reaction steps preserves the consistency of the component. Re-
action steps must guaranty that those states of the component remains consis-
tent. Adaptation points define states through which the processes of a behavior
run. For a given component, several behaviors may run through a common state.
In such a case, the component can resume its execution with any of these be-
haviors. The existence of those common states defines the semantic correctness
of behavior replacement.

In the case of a parallel program, the previous definition of Adaptation
points can be used as local Adaptation points to each process. They are thus
not sufficient to specify global states at which the behavior can be modified.
This is why the developer has to explicitly specify global adaptation points
through a correspondence relationship between the local adaptation points of
each process of the behavior.

Dynamic adaptation of parallel components 7

4.3 Coordination of the reactions

Because behaviors can be parallel and state distributed, the reactions cannot be
executed by a single central object. Each process of the active behavior and of
the state must participate to the execution of the reactions. If the reactions are ex-
ecuted independently by each process, the consistency of the component cannot
be guaranteed. The component can also lock itself if processes are not coordi-
nated, trying to reach unreachable states that do not correspond to any global
adaptation point. This can be for example the case of an SPMD code like the
one shown on figure 3. Say that when they receive a request to adapt the com-

Adaptation point i+1

Process 1 Process 2

Waits for a message from 2

Reaction of process 2

Waits for a message from reaction of 1
Adaptation point i

Adaptation request

Fig. 3. Case where a component can dead-lock itself if the processes are not coordinated

ponent, one of the processes have already executed the adaptation point i and
the second have not. Without a coordination mechanism, the first process never
reach another adaptation point because the second is waiting at the adaptation
point i, executing the reaction. The component is thus dead-locked. This is why
coordinators have been introduced in the model. Their purpose is to coordinate
the action of every processes for the execution of the reactions.

Coordinators are the intermediaries between the adaptation mechanism, the
functional part of the component and the reaction. They are totally passive ob-
jects: their activity comes from both the meta-level and the functional part of the
component. They can be seen as a three part object: one part is directly plugged
in each process of the functional part and implements adaptation points; the
second part is more or less a singleton that is connected to the decision maker
of the component, that is to say the decider; the third drives the execution of the
reactions.

8 Françoise Andr é, J ér émy Buisson, and Jean-Louis Pazat

4.4 Sketch of an adaptation

When a monitor reports some interesting change in the environment, for exam-
ple the presence of new available nodes, it notifies the decider, which in turn
broadcasts an adaptation initiative to the coordinators. If one suppose that the
active behavior is a SPMD behavior, the coordinators choose the adaptation
points before the next operation to be executed. At the end of the current oper-
ation, the coordinators execute the reaction: they spawn a new process on the
new node, then redistribute the data. The functional code can then resume its
execution and benefit from the presence of the new node.

5 Conclusion

A first experiment based on a generic SPMD code shows that the overcost of the
adaptation is very low and that better performance can thus be gained through
adaptation. Our application is a generic vector iteration ; vectors are distributed
with a block scheme ; communications use MPI. The adaptation policy is to use
as many nodes as the monitor reports, spawning new processes when nodes are
inserted in the system. We placed an adaptation point between each iteration. In
order to evaluate the gain obtained by the adaptation, we increased the number
of nodes from 4 to 6 while the test application was running. The figure 4 shows
the elapsed time at the end of each iteration. The execution of the reaction oc-

Fig. 4. Execution time of an adaptable application

curred between iterations 12 and 13 ; this appears as a break on the curve. This

Dynamic adaptation of parallel components 9

figure shows that the adaptable version of the application needs some iterations
after the reaction has been executed to become effectively better than the orig-
inal one. This is due to the cost of the data redistribution and is not due to the
platform itself. If the adaptation takes place early during the execution of the
program there is a dramatic gain of performance.

This work is a first step toward the integration of a dynamic adaptation
framework into a component based platform for Grid applications. In this pa-
per, we have shown that it was possible to reuse the ideas developed for the
adaptation of wireless application in a different application world. Our current
prototype uses the ACEEL framework but is not yet included in a component
infrastructure.

To our knowledge this is one a the first attempt to separate the adaptation
mechanism from the functional code in the context of Grid applications. We
think that it makes it far easier to build efficient applications for not only wire-
less or Grid environments but any environment with unknown and/or dynamic
characteristics.

In our future works, we are planning to define more formally the properties
that the component is required to satisfy in order to be able to adapt itself. This
includes the properties of global states in which the adaptation is allowed to
occur and the relation between fault tolerance and adaptation techniques. The
constraints on behavior replacement should also be studied.

References

1. Djalel Chefrour and Françoise Andr é. D éveloppement d’applications en environnements
mobiles à l’aide du modèle de composant adaptatif aceel. In Langages et Modèles à Objets
LMO’03. Actes publiés dans la Revue STI, série L’objet, volume 9, Vannes, France, February
2003.

2. Alexandre Denis, Christian P érez, and Thierry Priol. Portable parallel CORBA objects: an
approach to combine parallel and distributed programming for grid computing. In Proc.
of the 7th Intl. Euro-Par’01 Conference (EuroPar’01), pages 835–844, Manchester, UK,
August 2001. Springer.

3. I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The physiology of the grid: An open grid
services architecture for distributed systems integration. In Global Grid Forum, June 2002.

4. Katarzyna Keahey and Dennis Gannon. PARDIS: A parallel approach to CORBA. In HPDC,
pages 31–39, 1997.

5. B. McLaughlin. Java Enterprise Applications, volume 1. O’Reilly, 2002.
6. B. Meyer. Object-Oriented Software Construction, Second Edition. Prentice Hall, 1997.
7. OMG. Corba components, June 2002. Document formal/02-06-65.
8. C. P érez, T. Priol, and A. Ribes. A parallel corba component model. Rapport de recherche

4552, INRIA, September 2002.
9. Maria-Teresa Segarra. Une plate-forme à composants adaptables pour la gestion des envi-

ronnements sans fil. PhD thesis, IRISA/IFSIC, 2000.
10. C. Szyperski. Component software: beyond object oriented programming. Addison Wesley,

1998.

