
ANABSTRACTSCHEMAMODELINGADAPTIVITY
MANAGEMENT

Marco Aldinucci and Sonia Campa and Massimo Coppola and Marco Danelutto
and Corrado Zoccolo
University of Pisa

Department of Computer Science

Largo B. Pontecorvo 3, 56127 Pisa, Italy

aldinuc@di.unipi.it

campa@di.unipi.it

coppola@di.unipi.it

marcod@di.unipi.it

zoccolo@di.unipi.it

Francoise André and Jérémy Buisson
IRISA / University of Rennes 1

avenue du Général Leclerc, 35042 Rennes, France

fandre@irisa.fr

jbuisson@irisa.fr

Abstract Nowadays, component application adaptivity in Grid environments has been af-
forded in different ways, such those provided by the Dynaco/AFPAC framework
and by the ASSIST environment. We propose an abstract schemathat catches
all the designing aspects a model for parallel component applications on Grid
should define in order to uniformly handle the dynamic behavior of comput-
ing resources within complex parallel applications. The abstraction is validated
by demonstrating how two different approaches to adaptivity, ASSIST and Dy-
naco/AFPAC, easily map to such schema.

Keywords: Abstract schema, component adaptivity, Grid parallel component application.

1



2

1. AN ABSTRACT SCHEMA FOR ADAPTATION

Adaptivity is a concept that recent framework proposals for Computational
Grid take into great account. In fact, due to the unstable nature of the Grid
(nodes that disappear because of network problems, changesin user require-
ments/computing power, variations in network bandwidth, etc.), even assuming
a perfect initial mapping of an application over the computing resources, the
performance level could be suddenly compromised and the framework has to
be able to take reconfiguring decisions in order to keep the expected QoS.

The need to handle adaptivity has been already addressed in several projects
(AppLeS [6], GrADS [12], PCL [9], ProActive [5]). These works focus on
several aspects of reconfiguration, e.g. adaptation techniques (GrADS, PCL,
ProActive), strategies to decide reconfigurations (GrADS), and how to mod-
ify the application configuration to optimize the running application (AppLes,
GrADS, PCL). In these projects concrete problems posed by adaptivity have
been faced, but little investigation has been done on commonabstractions and
methodology [10].

In this work we discuss, at a very high level of abstraction, ageneral model of
the activities we need to perform to handle adaptivity in parallel and distributed
programs.

Our intention is to start drawing a methodology for designing adaptive com-
ponent environments, leaving in the meanwhile a high degreeof freedom in
the implementation and optimization choices. In fact, our model is abstract
with respect to the implemented adaptation techniques, monitoring infrastruc-
ture and reconfiguration strategy; in this way we can uncoverthe common
aspects that have to be addressed when developing a programming framework
for reconfigurable applications.
Moreover, we will validate our abstract schema by demonstrating how two
completely different approaches to adaptivity fit its structure. We will discuss
the Dynaco/AFPAC [7] approach and the ASSIST [4] approach and we will
show how, despite several differences in the implementation technologies used,
they can be firmly abstracted by the schema we propose.

Before demonstrating its suitability to the two implemented frameworks, we
exemplify its application in a significant case study: component-based, high-
level parallel programs. The adaptive behavior is derived by specializing the
abstract model introduced here. We get significant results on the performance
side, thus showing that the model maps to worthwhile and effective implemen-
tations [4].

This work is structured as follows. Sec. 2 introduces the abstract model.
The various phases required by the general schema are detailed with an exam-
ple in Sec. 3. Sec. 4 explains how the schema is mapped in the Dynaco/AFPAC
framework, where self-adapting code is obtained by semi automated restruc-



An abstract schema modeling adaptivity management3

� � � � � � � � � � � 	 � 
 � � �

 � 
 � � � � � � � �

� 	 � � � � 	 � � � � 
 �

� � � � � � � � � � �

� � � � � � � 
 � � �

� � 
 � � � � � � � � � � � � �� � � � � � �  ! " � # � "

$ ! � ! % � "

&   ' � " � ( � � �
�  ! " � # � " ) �  ' ! � ! � ( � ( � � � �  ! " � # � "

Figure 1 Abstract schema of an adaptation manager.

turing of existing code. Sec. 5 describes how the same schemais employed
in the ASSIST programming environment, exploiting explicit program struc-
ture to automatically generate autonomic dynamicity-handling code. Sec. 6
summarizes those two mappings of the abstract schema.

2. ADAPTIVITY

The abstract model of dynamicity management we propose is shown in Fig. 1,
where high-level actions rely on lower-level actions and mechanisms. The
model is based on the separation of application-oriented abstractions and im-
plementation mechanisms, and is also deliberately specified in minimal way, in
order not to introduce details that may constrain possible implementations. As
an example, the schema does not impose a strict time orderingamong its leaves.
The process of adapting the behavior of a parallel/distributed application to the
dynamic features of the target architecture is built of two distinct phases: a
decision phase, and acommit phase, as outlined in Fig. 1. The outcome of
the decide phase is an abstract adaptation strategy that thecommit phase has
to implement. We separate the decisions on the strategy to beused to adapt
the application behavior from the way this strategy is actually performed. The
decide phase thus represents an abstraction related to the application structure
and behavior, whilecommit phase concerns the abstraction of the run-time
support needed to adapt. Both phases are split into different items. Thedecide
phase is composed of:

trigger – It is essentiallyan interface towards the external world,assessing
the need to perform corrective actions. Triggering events can result from
various monitoring activities of the platform, from the user requesting
a dynamic change at run-time, or from the application itselfreacting to
some kind of algorithm-related load unbalance.
policy – It is the part of the decision process where it is chosen how to
deal with the triggering event. The aim of the adaptation policy is to find
out what behavioral changes are needed, if any, based on the knowledge
of the application structure and of its issues. Policies canalso differ in



4

the objectives they pursue, e.g. increasing performance, accuracy, fault
tolerance, and thus in the triggering events they choose to react to.
Basic examples of policy are “increase parallelism degree if the applica-
tion is too slow”, or “reduce parallelism to save resources". Choosing
when to re-balance the load of different parts of the application by redis-
tributing data is a more significant and less obvious policy.

In order to provide thedecide phase with apolicy, we must identify in
the code a pattern of parallel computation, and evaluate possible strategies to
improve/adapt the pattern features to the current target architecture. This will
result either in specifying a user-defined policy or pickingone from a library
of policies for common computation patterns. Ideally, the adaptationpolicy
should depend on the chosen pattern and not on its implementation details.

In thecommit phase, the decision previously taken is implemented. In order
to do that, some assessedplan of execution has to be adopted.

plan – It states how the decision can be actually implemented, i.e. what
list of steps has to be performed to come to the new configuration of the
running application, and according to which control flow (total or partial
order).
execute – Once the detailed plan has been devised, theexecute phase
takes it in charge, relying on two kinds of functionalities of the support
code

– the differentmechanisms provided by the underlying target archi-
tecture, and

– a timing functionality to activate the elementary steps in the plan,
taking into account their control flow and the needed synchroniza-
tions among processes/threads in the application.

The actual adapting action depends on both the way the application has
been implemented (e.g. message passing or shared memory) and the mecha-
nisms provided by the target architecture to interact with the running application
(e.g. adding and removing processes to the application, moving data between
processing nodes and so on). The general schema does not constrain the adap-
tation handling code to a specific form. It can either consistin library calls,
or be template-generated, it can result from instrumentingthe application or as
a side effect of using explicit code structures/library primitives in writing the
application. The approaches clearly differ in the degree ofuser intervention
required to achieve dynamicity.

3. EXAMPLE OF THE ABSTRACT DECOMPOSITION

We exemplify the abstract adaptation schema on a task-parallel computation
organized around a centralized task scheduler, continuously dispatching works
to be performed to the set of available processing elements.For this kind of



An abstract schema modeling adaptivity management5

pattern, both a performance model and a balancing policy arewell known, and
several different implementations are feasible (e.g. multi-threaded on SMP ma-
chines, or processes in a cluster and/or on the Grid). At steady state, maximum
efficiency is achieved when the overall service time of the set of processing
elements is slightly less than the service time of the dispatcher element.

Triggers are activated, for instance, when (1) the average inter-arrival time of
task incoming is much lower/higher than the service time of the system, (2) on
explicit user request to satisfy a new performance contract/level of performance,
(3) when built-in monitoring reports increased load on someof the processing
elements, even before service time increases too much.

Assuming we care first for computation performance and then resource uti-
lization, the adaptation policy could be like the following: i) when steady state
is reached, no configuration change is needed;ii) if the set of processing ele-
ments is slower than the dispatcher, new processing elements should be added
to support the computation and reach the steady stateiii) if the processing el-
ements are much faster than the dispatcher, reduce their number to increase
efficiency.

Applying this policy, the decide phase will eventually determine the in-
crease/decrease of a certain magnitude in the allocated computing power, inde-
pendently of the kind of computing resources.

This decision is passed to the commit phase, where we must produce a
detailed plan to implement it (finding/choosing resources,devising a mapping
of application processes where appropriate).

Assuming we want to increase the parallelism degree, we willoften come
up with a simple plan like the following:a) find a set of available processing
elements{Pi}; b) install code to be executed at the chosen{Pi} (i.e. application
code, code that interacts with the task scheduler and for dinamicity handling)
;c) register with the scheduler all the{Pi} for task dispatching;d) inform the
monitoring system that new processing element have joined the execution. It is
worthwhile that the given plan is general enough to be customized depending
on the implementation, that is it could be rewritten/reordered on the basis of
the desired target.

Once the detailed plan has been devised, it has to be executedand its actions
have to be orchestrated, choosing proper timing in order that they do not to
interfere with each other and with the ongoing computation.

Abstracttiming depends on the implementation of the mechanisms, and on
the precedence relationship that may be given in the plan. Inthe given example,
steps 1 and 2 can be executed in sequence, but without internal constraint
on timing. Step 3 requires a form of synchronization with thescheduler to
update its data, or to suspend all the computing elements, depending on actual
implementation of the scheduler/worker synchronization.For the same reason,



6

execution of step 4 also may/may not require a restart/update of the monitoring
subsystem to take into account the new resources.

We also want to point out that in case of data parallel computation (as a fast
Fourier transformation, as instance), we could again use policies like i)-iii and
plans likea-d.

4. DYNACO/AFPAC: A GENERIC FRAMEWORK FOR
DEVELOPERS TO MANAGE ADAPTATION

Dynaco is a framework allowing developers to add dynamic adaptability
to software components without constraining the programming paradigms and
tools that can be used. While Dynaco aims at addressing general adaptability
problems, AFPAC focuses on the specific case of parallel components.

4.1. DYNACO: GENERIC DYNAMIC ADAPTATION
FRAMEWORK

Dynaco provides the major functional decomposition of dynamic adaptabil-
ity. It is the part that is the closest from the abstract schema described in sec-
tion 2. Its design has benefited from the joint work about the abstract schema.
As depicted by Fig. 2, Dynaco defines 3 major functions for dynamic adaptabil-
ity: decision-making, planningandexecution. Coarsely, those decision-making
and execution functions match respectively thedecide andcommit phases of
the abstract schema.

For the decision-making function, thedeciderdecides whether the compo-
nent should adapt itself or not. If it should, a strategy is produced that describes
the configuration the component should adopt. The frameworkstates that the
decider is independent from the actual component: it is a generic decision-
making engine. It is specialized to the actual component by apolicy, which
plays the same role as its homonym in the abstract schema. While the abstract
schema reifies intrigger the events triggering the decision-making, Dynaco

Figure 2 Overall architecture of a Dynaco compo-
nent.

Figure 3 Architecture of AFPAC as
a specialization of Dynaco.



An abstract schema modeling adaptivity management7

does not: thedecideronly exports interfaces to the outside of the component.
Monitoring engines are considered to be external to the component and to its
adaptability, even if the component can bind to itself in order to be one of its
monitors.

The planning function is implemented by theplanner. Given astrategythat
has been previously decided, it aims at determining aplan that indicates how
to adopt thestrategy. Theplan matches exactly its homonym of the abstract
schema. Similarly to thedecider, theplanner is a generic engine that is spe-
cialized to the actual component by aguide.

While not being a phase in the abstract schema, planning has been promoted
to a major function within Dynaco, at the same level as decision-making and
execution. As a consequence, Dynaco introduces a planningguide in order
to specialize the planning function in the same way that there is apolicy that
specializes the decision-making function. On the contrary, the abstract schema
exhibits aplan which actually links thedecide and commit phases. This
vision is consistent with the goal of not constraining possible implementations.
Dynaco is one interpretation of the abstract schema, while another would have
been to have thedecide phase directly produce theplan, for example.

The execution function is realized by theexecutorthat interprets the instruc-
tions of theplan. Two kinds of instructions can be used inplans: invocations
of elementaryactions, which match themechanisms of the abstract schema;
and control instructions, which match thetiming functionality of the abstract
schema. While the former are provided by developers as component-specific
entities, the latter are implemented by theexecutorin a component-independent
manner.

4.2. AFPAC: DYNAMIC ADAPTATION OF PARALLEL
COMPONENTS

As seen by AFPAC, parallel components are components that encapsulate
a parallel code, such as GridCCM [11] components: they have several pro-
cesses that execute theservicethey provides. AFPAC is depicted by Fig. 3.
It is a specialization of Dynaco’sexecutorfor parallel components. Through
its coordinator component, which partly implements thetiming functionality
of the abstract schema, AFPAC provides an additional control instruction for
expressingplans. This instruction makes all ofserviceprocesses execute an
action in parallel. Such an action is labeledparallel action on Fig. 3. This
kind of instruction is particularly useful to execute redistribution in the case of
data-parallel applications.

AFPAC addresses the consistency problems of the global states from which
the parallelactions are executed. Those problems have been discussed in [7]; we
have proposed in [8] an algorithm that chooses the next upcoming consistent



8

Figure 4 Scenario of an adaptation with AFPAC

global state. To do so, it relies onadaptation points: a global state is said
consistent if every service process is at such a point. It also requires control
structures to be annotated thanks to aspect-oriented programming in order to
locateadaptation points as the execution progresses. The algorithm and the
consistency criterion it implements suits well to SPMD codes such as the ones
using MPI.

Fig. 4 shows the sequence of actions when a data-parallel code working on
matrices adapts itself thanks to AFPAC. In this example, theapplication spawns
2 new processes in order to increase its parallelism degree up to 4. Firstly, the
timing phase of the abstract schema is executed by thecoordinatorcomponent
concurrently to the normal execution of the parallel code. During this phase,
thecoordinator takes a rendez-vous with every executingserviceprocess at an
adaptation point. Whenserviceprocesses reach the rendez-vousadaptation
point, they execute the requestedactions. Once every action of theplan has
been executed, theservice resumes its normal execution. This experiment
shows well that most of the overhead lies in incompressibleactions like matrix
redistribution.

5. ASSIST: MANAGING DYNAMICITY USING
LANGUAGE AND COMPILATION APPROACHES

ASSIST applications are described by means of a coordination language,
which can express arbitrary graphs of (possibly) parallel modules, intercon-
nected by typed streams of data. A parallel module (parmod) coordinates a set
of concurrent activities calledVirtual Processes(VPs). Each VP execute a se-
quential function (that can be programmed using standard sequential languages
e.g. C, C++, Fortran) on input data and internal state.



An abstract schema modeling adaptivity management9

Groups of VPs are grouped together in processes calledVirtual Processes
Manager(VPM). VPs assigned to the same VPM execute sequentially, while
different VPMs run in parallel: therefore the actual parallelism exploited in a
parmodis given by the number of VPMs that are allocated.

Overall, aparmodmay behave in a data-parallel (e.g. SPMD/for-all/apply-
to-all) or task-parallel way (e.g. farm, pipeline), and it can nondeterministically
accept from one or more input streams a number of input items,which may
be decomposed in parts and used as function parameters to activate VPs. A
parmodmay also exploit a distributed shared state, which survivesbetween
VP activations related to different stream items. More details on the ASSIST
environment can be found in [13, 3].

An ASSIST module (or a graph of modules) can be declared as a component,
which is characterized byprovideanduseports (both one-way and RPC-like),
and byNon-Functionalports. The latter are responsible of specifying those
aspects related to the management/coordination of the computation, as well
as the required performance level of the whole application or of the single
component. As instance, among the non-functional interfaces there are those
related to QoS control (performance, reconfiguration strategy and allocation
constraints).

Each ASSIST module in the graph encapsulated by the component is con-
trolled by its own MAM (Module Adaptation Manager), a process that co-
ordinates the configuration and adaptation of the module itself. The MAM
dynamically decides the number of allocated VPMs and their mapping onto the
processing elements acquired through a retargetable middle-ware, that can be
adapted to exploit clusters as well as grid platforms.

Hierarchically, the set of MAMs is coordinated by the Component Adaptation
Manager (CAM) that manages the configuration of the whole component. At a
higher level, these lower-level entities are coordinated by a (possibly distributed)
Application Manager (AM), to pursue a global QoS for the whole application.

The starting configuration is determined at load time by hierarchically split-
ting the user provided QoS contract between each component and module. In
case of a QoS contract violation during the application run,managing processes
react by issuing (asynchronous) adaptation requests to controlled entities [4].
According to the locality principle, violations and corrective actions are de-
tected and issued as near as possible to the leaves of the hierarchy (i.e. the
modules with their MAM). Higher-level managers are notifiedof violations
when lower-level managers cannot handle them locally. In these cases, CAMs
or the AM can coordinate the actions of several MAMs and CAMs (e.g. by re-
negotiating contracts with them) in order to implement a non-local adaptation
strategy.



10

* + , - - . + , / 0 . + 1 2 3 .

4 . 3 , 5 , 6 /
7 . 8 9 : 6 , 0 , / -

9 6 : , 3 , . 5 ;

< 8 . 3 = 0 , 6 /
7 . 8 9 : 6 , 0 , / -

> . 3 ? 2 / , 5 > 5 ;

@ A B C D A E E F G F E F H F B C I

J K L M K N L O P Q Q K O R

S K T U M V P Q W O X L P U M
T U Y Y X M Z R

[ U M P L U O P M Q Z X L X

\ K N ] U M L O X T L
^ V O U Y W R K O U O

O U U L Y X M X Q K O _ ` O P Q Q K O K Z a U J
Z X L X

b : 2 /

] U Y Y P L L K Z
Z K T P R P U M

\ K N
T U M V P Q W O X L P U M

Figure 5 ASSIST framework.

The corrective actions that can be undertaken in order to fulfill the con-
tracts, eventually lead to the adaptation of component configurations, in terms
of parallelism degree, and process mapping [4].

Reconfiguration requests to the adaptation mechanism are triggered by new
QoS needs or by monitoring feedbacks. Such requests flow in anautonomic
manner through the AM to the lower level managers of the hierarchy (or vice
versa). If the contract is broken a new configuration is defined by evaluating the
related performance model. It is then applied at each involved party (component
or module), in order to reach a state in which the contract is fulfilled.

The adaptation mechanisms adopted in ASSIST completely instantiates the
abstract schema provided above by organizing its leafs, left to right in an au-
tonomic control loop (see Fig.5). Thetrigger functionality is represented by
the collection of the stream of monitoring data. Such data come from the run-
ning environment and can cause a framework reaction if a contract violation is
observed. A component performance model is evaluated (policy phase) on the
basis of the collected monitoring data, according to a selected goal (currently,
in ASSIST we implemented two predefined policies, pursuing two different
goals; for special needs, user-defined policies can be programmed).

If the QoS contract is broken, adecision has to be taken about how to adapt
the component: such decision could involve a single component or a compound
component. In the latter case, the decision has to flow through the hierarchy
of managers in order to harmonize the whole application performance. The
decision phase uses the policies in order to reach the contract requirements.
Examples of policies are: reaching adesired service time(as seen above, it
could happen if one VPM becomes overloaded), or realizing the best effortin
the performance/resource trade-off (by releasing unused PE, as instance). The
decision phase result is a target for thecommit phase (increasing of computing



An abstract schema modeling adaptivity management11

 6

 7
 8
 9

VPMs aggregated power

QoS contract

 50  100  150  200

Wall Clock Time (s)

N
. o

f V
P

M
s

Ite
m

s/
s

N. of VPMs in parmod

 3
 4
 5

 6

Figure 6 MAM’s reaction to a contract violation

power, as an example). Such target is represented by a plan provided by the
homonymous phase that lists the actions (e.g. add or remove resource to/from
computation and computation remapping, with associated data migration and
global state consolidation) to be taken.

Finally, theexecute functionality exploits support code statically generated
by the ASSIST compiler, and coordinates it with services provided by the com-
ponent framework to interface to the middle-ware (e.g. for resource recruiting),
according to the schedule provided bytiming functionality.

Timing functionality is related to the so-calledreconf-safepoints [4], i.e.
points in the application code where the distributed computation and state are
known to be consistent and can be efficiently synchronized. Each mechanism
that is exploited to reconfigure the application at run time can take advantage
(e.g. can be optimized) of reconf-safe points to appropriately orchestrate syn-
chronizations in a transparent manner. Moreover, the generated code is tailored
for the given application structure and features, exploiting the set of concrete
mechanisms provided by the language run-time support. For instance, no
state migration code is inserted for stateless computations, and depending on
the parallelism pattern (e.g. stream versus data parallel), VPMs involved in the
synchronization can be a subset of those within the component being reconfig-
ured.

Our experiments [4] show that the adaptation mechanisms do not introduce
overhead with respect to non-adaptive versions of the same code, when no
configuration change is performed, and that issued adaptations are achieved
with minimal (of the order of milliseconds) impact on the ongoing computation.

Fig. 6 shows the behavior of an ASSIST parallel application with adaptivity
managers enabled, run on a collection of homogeneous Linux workstations
interconnected by switched Fast Ethernet. In particular, it shows the reaction of
a MAM to a sudden contract violation with respect to the number of VPMs. The
application represents a farm computing a simple function with fixed service



12

time on stream items flowing at a fixed input rate. In this scenario, a contract
violation occurs when one of the VPMs becomes overloaded, causing the VPMs
aggregated power to decrease. The MAM reacts to such decrement by mapping
as many VPMs as needed to satisfy the contract (only one in this case) onto
fresh computing resources.

In this example, whena new VPM mappingoccurs because of the overloading
of one (or more) of the allocated ones, removing the overloaded one does not
lead to a contract violation. Therefore the MAM, that is alsoresponsible to
manage over-dimensioned resource usage, removes the overloaded PE almost
immediately. The MAM can reduce resource usage also (not shown in this
example) when the incoming data rate decreases or the contract requirements
are weakened.

6. A COMPARATIVE DISCUSSION

As it is clear from the previous presentations, Dynaco (and its parallel-
component specialization AFPAC) and ASSIST fit the abstractschema pro-
posed in Section 2 in different manner. The frameworks have been developed
independently with each other but both aim at offering a platform to handle
dynamically adaptable components.
Dynaco can be seen as a pipelined implementation of the abstract schema
feeded by an external monitoring engine. In particular, thethree major func-
tions (decision-making, planning and execution) are specialized by component-
specific sub-phases. On the other hand, ASSIST provides a circular imple-
mentation of the schema leafs, whiledecision and commit can be seen as
macro-steps of the autonomic loop.
The decision-making functionalities are triggered by the external monitoring
engine in Dynaco, while in ASSIST the concept of performancecontract is
exploited in order to specify the performance level to be guaranteed.
In ASSIST the code related to the execution phase is automatically generated
at compile time, while the Dynaco developer is asked to provide the code
for policy, guide and action entities. Both the frameworks offer the possibil-
ity to configure certain points of the code as “safe-points” from which recov-
ery/reconfiguration is possible. In Dynaco such points are defined by aspect-
oriented technologies, while in ASSIST they are defined by the language se-
mantics, and determined by the compiler.

From the discussion above, it is clear that each framework affords the adap-
tivity problem by means of individual solutions. What we want to point out
in this work is that, despite their technological diversity, both solutions can be
inscribed in the general abstract schema presented in Section 2. Such schema
is general enough to abstract from any kind of implementative solution but it
is also sufficiently strong to catch the salient aspects a model has to consider



An abstract schema modeling adaptivity management13

while designing adaptive component frameworks. By summingup, it can be
seen as a reference guide for modeling adaptable environments independently
from the implementations, technologies, languages, constraints or architectures
involved.

7. CONCLUSIONS

We have described a general model to provide adaptive behavior in Grid-
oriented component-based applications. The general schema we have shown is
independent of implementation choices, such as the responsibility for inserting
the adaptation code (either left to the programmer, as it happens in the Dy-
naco/AFPAC framework, or performed by exploiting knowledge of the high
level program structure, as it happens in the ASSIST context). The model also
encompasses user-driven as well as autonomic adaptation.

The abstract model helps in separating application and run-time program-
mingconcerns of adaptation, exposing adaptive behavior asan aspect of applica-
tion programming, formalizing the concerns to be addressed, and encouraging
an abstract view of the run-time mechanisms for dynamic reconfiguration.

This formalization gives the basis for defining a methodology. The given
case study provide with valuable clues about how to solve different concerns,
and how to identify common parts of the adaptation that can begeneralized
in support frameworks. The model can be thus also usefully applied within
other programming frameworks, like GrADS, which do not enforce a strong
separation of adaptivity issues into design and implementation.

We expect that such a methodology will lead to more portable and under-
standable adaptive applications and components, and it will also promote lay-
ered software architectures for adaptation, simplifying implementation of both
the programming framework and the applications.

Acknowledgments

This research work is carried out under the FP6 Network of ExcellenceCoreGRIDfunded

by the European Commission (Contract IST-2002-004265), and it was partially supported by the

Italian MIUR FIRB projectGrid.it (n. RBNE01KNFP) on High-performance Grid platforms

and tools.

References

[1] M. Aldinucci, F. André, J. Buisson, S. Campa, M. Coppola, M. Danelutto,
and C. Zoccolo. Parallel program/component adaptivity management. In
Proc. of Intl. PARCO 2005: Parallel Computing, Sept. 2005.

[2] M. Aldinucci, S. Campa, M. Coppola, M. Danelutto, D. Laforenza, D. Pup-
pin, L. Scarponi, M. Vanneschi, and C. Zoccolo. Components for high



14

performance grid programming in grid.it. In V. Getov and T. Kielmann,
editors,Proc. of the Intl. Workshop on Component Models and Systems for
Grid Applications, CoreGRID series, pages 19–38, Saint-Malo, France,
Jan. 2005. Springer.

[3] M. Aldinucci, M. Coppola, M. Danelutto, M. Vanneschi, and C. Zoccolo.
ASSIST as a research framework for high-performance grid programming
environments. In J. C. Cunha and O. F. Rana, editors,Grid Computing:
Software environments and Tools, chapter 10, pages 230–256. Springer,
Jan. 2006.

[4] M. Aldinucci, A. Petrocelli, A. Pistoletti, M. Torquati, M. Vanneschi,
L. Veraldi, and C. Zoccolo. Dynamic reconfiguration of Grid-aware ap-
plications in ASSIST. In José. Cunha and Pedro D. Medeiros,editors,
Euro-Par 2005 Parallel Processing: 11th International Euro-Par Con-
ference, Lisbon, Portugal, August 30 - September 2, 2005. Proceedings,
volume 3648 ofLNCS, pages 711–781. Springer-Verlag, August 2005.

[5] F. Baude, D. Caromel, and M. Morel. On hierarchical, parallel and dis-
tributed components for Grid programming. In V. Getov and T.Kielmann,
editors,Workshop on component Models and Systems for Grid Applica-
tions, ICS ’04, Saint-Malo, France, June 2004.

[6] F. D. Berman, R. Wolski, S. Figueira, J. Schopf, and G. Shao. Application-
level scheduling on distributed heterogeneous networks. In Supercom-
puting ’96: Proc. of the 1996 ACM/IEEE Conf. on Supercomputing
(CDROM), page 39, 1996.

[7] J. Buisson, F. André, and J.-L. Pazat. Dynamic adaptation for grid comput-
ing. In P.M.A. Sloot, A.G. Hoekstra, T. Priol, A. Reinefeld,and M. Bubak,
editors,Advances in Grid Computing - EGC 2005 (European Grid Con-
ference, Amsterdam, The Netherlands, February 14-16, 2005, Revised Se-
lected Papers), volume 3470 ofLNCS, pages 538–547, Amsterdam, June
2005. Springer-Verlag.

[8] J. Buisson, F. André, and J.-L. Pazat. Enforcing consistency during the
adaptation of a parallel component. InThe 4th Int.l Symposium on Parallel
and Distributed Computing, July 2005.

[9] B. Ensink, J. Stanley, and V. Adve. Program control language: a program-
ming language for adaptive distributed applications.Journal of Parallel
and Distributed Computing, 63(11):1082–1104, November 2003.

[10] M. McIlhagga, A. Light, and I. Wakeman. Towards a designmethodology
for adaptive applications. InMobile Computing and Networking, pages
133–144, May 1998.

[11] Christian Pérez, Thierry Priol, and André Ribes. A parallel corba com-
ponent model for numerical code coupling.The International Journal of



An abstract schema modeling adaptivity management15

High Performance Computing Applications (IJHPCA), 17(4):417–429,
2003.

[12] S. Vadhiyar and J. Dongarra. Self adaptability in grid computing. Inter-
national Journal Computation and Currency: Practice and Experience,
2005. To appear.

[13] M. Vanneschi. The programming model ofASSIST, an environment
for parallel and distributed portable applications.Parallel Computing,
28(12):1709–1732, December 2002.


