N
N

N

HAL

open science

An abstract schema modeling adaptivity management

Marco Aldinucci, Sonia Campa, Massimo Coppola, Marco Danelutto, Corrado

Zoccolo, Francoise André, Jérémy Buisson

» To cite this version:

Marco Aldinucci, Sonia Campa, Massimo Coppola, Marco Danelutto, Corrado Zoccolo, et al.. An
abstract schema modeling adaptivity management. CoreGRID Integration Workshop, Nov 2005, Pisa,

Italy. pp.89, 10.1007/978-0-387-47658-2_ 7 . hal-00498852

HAL Id: hal-00498852
https://hal.science/hal-00498852
Submitted on 8 Jul 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00498852
https://hal.archives-ouvertes.fr

AN ABSTRACT SCHEMA MODELING ADAPTIVITY
MANAGEMENT

Marco Aldinucciand Sonia Campa and Massimo Coppola andd/R@anelutto
and Corrado Zoccolo

University of Pisa

Department of Computer Science

Largo B. Pontecorvo 3, 56127 Pisa, Italy

aldinuc@di.unipi.it

campa@di.unipi.it

coppola@di.unipi.it

marcod@di.unipi.it

zoccolo@di.unipi.it

Francoise André and Jérémy Buisson

IRISA / University of Rennes 1

avenue du Général Leclerc, 35042 Rennes, France

fandre@irisa.fr

jbuisson@irisa.fr

Abstract Nowadays, component application adaptivity in Grid envinents has been af-
forded in different ways, such those provided by the Dyn&E&AC framework
and by the ASSIST environment. We propose an abstract sctierhaatches
all the designing aspects a model for parallel componenticgtions on Grid
should define in order to uniformly handle the dynamic betwawif comput-
ing resources within complex parallel applications. Thstidetion is validated
by demonstrating how two different approaches to adaptiiSIST and Dy-
naco/AFPAC, easily map to such schema.

Keywords: Abstract schema, component adaptivity, Grid parallel conemt application.

2
1. ANABSTRACT SCHEMA FOR ADAPTATION

Adapitivityis a concept that recent framework proposals for Compunatio
Grid take into great account. In fact, due to the unstablereadf the Grid
(nodes that disappear because of network problems, chamgessr require-
ments/computing power, variations in network bandwidtb,)eeven assuming
a perfect initial mapping of an application over the compgtiesources, the
performance level could be suddenly compromised and timeefreork has to
be able to take reconfiguring decisions in order to keep theard QoS.

The need to handle adaptivity has been already addressedarakprojects
(AppLeS [6], GrADS [12], PCL [9], ProActive [5]). These waKocus on
several aspects of reconfiguration, e.g. adaptation tgeabsi(GrADS, PCL,
ProActive), strategies to decide reconfigurations (GrAR®H how to mod-
ify the application configuration to optimize the runningoligation (AppLes,
GrADS, PCL). In these projects concrete problems posed bptadty have
been faced, but little investigation has been done on comabstractions and
methodology [10].

In this work we discuss, at a very high level of abstractiogemeral model of
the activities we need to perform to handle adaptivity irefiarand distributed
programs.

Our intention is to start drawing a methodology for desigraaptive com-
ponent environments, leaving in the meanwhile a high degfdszedom in
the implementation and optimization choices. In fact, owdsdi is abstract
with respect to the implemented adaptation techniquesjtorong infrastruc-
ture and reconfiguration strategy; in this way we can uncelvercommon
aspects that have to be addressed when developing a progrgritamework
for reconfigurable applications.

Moreover, we will validate our abstract schema by demotisttehow two
completely different approaches to adaptivity fit its stawe. We will discuss
the Dynaco/AFPAC [7] approach and the ASSIST [4] approadhwae will
show how, despite several differences in the implememagiohnologies used,
they can be firmly abstracted by the schema we propose.

Before demonstrating its suitability to the two implemehteameworks, we
exemplify its application in a significant case study: comgat-based, high-
level parallel programs. The adaptive behavior is derivedecializing the
abstract model introduced here. We get significant resulth® performance
side, thus showing that the model maps to worthwhile and&feimplemen-
tations [4].

This work is structured as follows. Sec. 2 introduces thdrabsmodel.
The various phases required by the general schema areedetaih an exam-
ple in Sec. 3. Sec. 4 explains how the schema is mapped in th@dd¥AFPAC
framework, where self-adapting code is obtained by sentdraated restruc-

An abstract schema modeling adaptivity managemen8

Generic Adaptation Process
-~ & N ~N
~N

(Application -2 BN 0000 i
i " 1 | . I -
| specific Deglde Phase | : Commit Pl'nase Implementation specific |
: /// ! : : 7 \\ :
! Trigger Policy 0 , Plan Execute i
: | . I :
------------------- 1 | T |
i) = ~ SN

Domain specific 0 Mechanisms Timing]

Figure 1 Abstract schema of an adaptation manager.

turing of existing code. Sec. 5 describes how the same sciepraployed
in the ASSIST programming environment, exploiting explmiogram struc-
ture to automatically generate autonomic dynamicity-fiagdcode. Sec. 6
summarizes those two mappings of the abstract schema.

2. ADAPTIVITY

The abstract model of dynamicity management we proposeversim Fig. 1,
where high-level actions rely on lower-level actions andchamisms. The
model is based on the separation of application-orientettatiions and im-
plementation mechanisms, and is also deliberately speaifiminimal way, in
order not to introduce details that may constrain possihf@ementations. As
an example, the schema does not impose a strict time ordaringg its leaves.
The process of adapting the behavior of a parallel/digetbapplication to the
dynamic features of the target architecture is built of tvistidct phases: a
decision phase, and aommit phase, as outlined in Fig. 1. The outcome of
the decide phase is an abstract adaptation strategy thabthmit phase has
to implement. We separate the decisions on the strategy tsdu to adapt
the application behavior from the way this strategy is dbtyzerformed. The
decide phase thus represents an abstraction related to the dmplisructure

and behavior, whileommit phase concerns the abstraction of the run-time

support needed to adapt. Both phases are split into difféeens. Thedecide
phase is composed of:

m trigger—Itisessentially an interface towards the external waddessing
the need to perform corrective actions. Triggering eveasresult from
various monitoring activities of the platform, from the usequesting
a dynamic change at run-time, or from the application itesdicting to
some kind of algorithm-related load unbalance.

= policy — It is the part of the decision process where it is chosen loow t
deal with the triggering event. The aim of the adaptationcyas to find
out what behavioral changes are needed, if any, based omt¢iwdddge
of the application structure and of its issues. Policiesalaa differ in

the objectives they pursue, e.g. increasing performarmyracy, fault
tolerance, and thus in the triggering events they choosestct to.
Basic examples of policy are “increase parallelism dedréeiapplica-
tion is too slow”, or “reduce parallelism to save resource€hoosing
when to re-balance the load of different parts of the apptioeby redis-
tributing data is a more significant and less obvious policy.

In order to provide thedecide phase with gpolicy, we must identify in
the code a pattern of parallel computation, and evaluatsilplesstrategies to
improve/adapt the pattern features to the current targéitacture. This will
result either in specifying a user-defined policy or pickorge from a library
of policies for common computation patterns. Ideally, thla@ationpolicy
should depend on the chosen pattern and not on its impletimmtketails.

In thecommit phase, the decision previously taken is implemented. lerord
to do that, some assessgidn of execution has to be adopted.

= plan — It states how the decision can be actually implementedwinat

list of steps has to be performed to come to the new configurati the
running application, and according to which control flowtgter partial
order).

= execute — Once the detailed plan has been devisedeigeute phase

takes it in charge, relying on two kinds of functionalitiefstioe support
code
— the differentmechanisms provided by the underlying target archi-
tecture, and
— atiming functionality to activate the elementary steps in the plan,
taking into account their control flow and the needed synulaes
tions among processes/threads in the application.

The actual adapting action depends on both the way the afiplichas
been implemented (e.g. message passing or shared memdriheamecha-
nisms provided by the target architecture to interact vinértinning application
(e.g. adding and removing processes to the applicationjngalata between
processing nodes and so on). The general schema does niparotie adap-
tation handling code to a specific form. It can either considibrary calls,
or be template-generated, it can result from instrumerttiegpplication or as
a side effect of using explicit code structures/librarymptives in writing the
application. The approaches clearly differ in the degreasafr intervention
required to achieve dynamicity.

3. EXAMPLE OF THE ABSTRACT DECOMPOSITION

We exemplify the abstract adaptation schema on a tasklgazamputation
organized around a centralized task scheduler, contitydispatching works
to be performed to the set of available processing elemdtasthis kind of

An abstract schema modeling adaptivity managemenb

pattern, both a performance model and a balancing policwaliknown, and
several different implementations are feasible (e.g.irtluleaded on SMP ma-
chines, or processes in a cluster and/or on the Grid). Adlgtstate, maximum
efficiency is achieved when the overall service time of theo$grocessing
elements is slightly less than the service time of the didpatelement.

Triggers are activated, for instance, when (1) the aversige-arrival time of
task incoming is much lower/higher than the service timéefdystem, (2) on
explicit user requestto satisfy a new performance coritexet of performance,
(3) when built-in monitoring reports increased load on safine processing
elements, even before service time increases too much.

Assuming we care first for computation performance and teeaurce uti-
lization, the adaptation policy could be like the followinywhen steady state
is reached, no configuration change is needi¢df the set of processing ele-
ments is slower than the dispatcher, new processing elemsbatild be added
to support the computation and reach the steady Btpi€éthe processing el-
ements are much faster than the dispatcher, reduce theleruim increase
efficiency.

Applying this policy, the decide phase will eventually detene the in-
crease/decrease of a certain magnitude in the allocateputomg power, inde-
pendently of the kind of computing resources.

This decision is passed to the commit phase, where we mudtipeoa
detailed plan to implement it (finding/choosing resourcksjsing a mapping
of application processes where appropriate).

Assuming we want to increase the parallelism degree, weofi¢h come
up with a simple plan like the followinga) find a set of available processing
elementd P, }; b)install code to be executed at the cho$&h; (i.e. application
code, code that interacts with the task scheduler and famdiicity handling)
;C) register with the scheduler all tHe?; } for task dispatchingd) inform the
monitoring system that new processing element have joimedtecution. Itis
worthwhile that the given plan is general enough to be cugtetndepending
on the implementation, that is it could be rewritten/reoedeon the basis of
the desired target.

Once the detailed plan has been devised, it has to be exexndet$ actions
have to be orchestrated, choosing proper timing in orddrttfey do not to
interfere with each other and with the ongoing computation.

Abstracttiming depends on the implementation of the mechanisms, and on
the precedence relationship that may be given in the platelgiven example,
steps 1 and 2 can be executed in sequence, but without ihtenatraint
on timing. Step 3 requires a form of synchronization with soheduler to
update its data, or to suspend all the computing elemerpggndéng on actual
implementation of the scheduler/worker synchronizatiéor. the same reason,

6

execution of step 4 also may/may not require a restart/epafahe monitoring
subsystem to take into account the new resources.

We also want to point out that in case of data parallel comjuuigas a fast
Fourier transformation, as instance), we could again ubeig®like i)-iii and
plans likea-d.

4. DYNACO/AFPAC: A GENERIC FRAMEWORK FOR
DEVELOPERS TO MANAGE ADAPTATION

Dynaco is a framework allowing developers to add dynamiqtedality
to software components without constraining the programgrparadigms and
tools that can be used. While Dynaco aims at addressing @jesmptability
problems, AFPAC focuses on the specific case of parallel coemts.

4.1. DYNACO: GENERIC DYNAMIC ADAPTATION
FRAMEWORK

Dynaco provides the major functional decomposition of ayitsadaptabil-
ity. It is the part that is the closest from the abstract scheescribed in sec-
tion 2. Its design has benefited from the joint work about thetract schema.
As depicted by Fig. 2, Dynaco defines 3 major functions foragiyit adaptabil-
ity: decision-making, planning and execution. Coarsélyse decision-making
and execution functions match respectively deeide andcommit phases of
the abstract schema.

For the decision-making function, tlieciderdecides whether the compo-
nent should adapt itself or not. If it should, a strategy adoiced that describes
the configuration the component should adopt. The framewiates that the
decideris independent from the actual component: it is a generitsiber
making engine. It is specialized to the actual component pglay, which
plays the same role as its homonym in the abstract schemade Whiabstract
schema reifies inrigger the events triggering the decision-making, Dynaco

External
probes

-1
‘ Decider Planner }—+ Executor ‘ ‘ Executor Im‘
T CusN,)LH:LTJH(EUW‘u‘f:”:‘ Component-independent
‘ Policy ‘ ‘ Guide ‘ ‘ Action ‘ ‘ Action v }4—{ Parallel action ‘

Co

pecific Compo 7
-- Service --C Service
Functional Functional

Figure 2 Overall architecture of a Dynaco compo-Figure 3 Architecture of AFPAC as
nent. a specialization of Dynaco.

An abstract schema modeling adaptivity management

does not: thelecideronly exports interfaces to the outside of the component.
Monitoring engines are considered to be external to the oot and to its
adaptability, even if the component can bind to itself inesrth be one of its
monitors.

The planning function is implemented by thlanner Given astrategythat
has been previously decided, it aims at determinipdga that indicates how
to adopt thestrategy The plan matches exactly its homonym of the abstract
schema. Similarly to thdecider the planneris a generic engine that is spe-
cialized to the actual component byaide

While not being a phase in the abstract schema, planningdeasgyomoted
to a major function within Dynaco, at the same level as denisnaking and
execution. As a consequence, Dynaco introduces a plamuitgin order
to specialize the planning function in the same way thatetherapolicy that
specializes the decision-making function. On the contthgyabstract schema
exhibits aplan which actually links thedecide and commit phases. This
vision is consistent with the goal of not constraining pblesimplementations.
Dynaco is one interpretation of the abstract schema, whibtheer would have
been to have thdecide phase directly produce th@an, for example.

The execution function is realized by theecutorthat interprets the instruc-
tions of theplan. Two kinds of instructions can be usedplans: invocations
of elementaryactiors, which match thenechanisms of the abstract schema,;
and control instructions, which match thiening functionality of the abstract
schema. While the former are provided by developers as coemtespecific
entities, the latter are implemented by éxecutorin a component-independent
manner.

4.2. AFPAC: DYNAMIC ADAPTATION OF PARALLEL
COMPONENTS

As seen by AFPAC, parallel components are components tltapsuolate
a parallel code, such as GridCCM [11] components: they haveral pro-
cesses that execute tkervicethey provides. AFPAC is depicted by Fig. 3.
It is a specialization of Dynaco'executorfor parallel components. Through
its coordinator component, which partly implements ttiming functionality
of the abstract schema, AFPAC provides an additional cbimstruction for
expressingplans. This instruction makes all aferviceprocesses execute an
action in parallel. Such an action is labelga@rallel actionon Fig. 3. This
kind of instruction is particularly useful to execute redizution in the case of
data-parallel applications.

AFPAC addresses the consistency problems of the globakdtaim which
the parallebctiors are executed. Those problems have beendiscussedin[7]; we
have proposed in [8] an algorithm that chooses the next upgpoonsistent

spawned processes

1 second

c!

:3:
©
Q_
&

SRR &M N7 8 SRR }

matrix redistribution
initialization of spawned processes

- initial processes
Timing phase \‘ process spawn (with MPI_Comm_spawn)

R SBEBRSSIBRS %Mi N~ %55555555555555%% ST,

normal exection with 2 processes Execution of ada;}gﬂon mechanisms normal exection with 4 processes

Figure 4 Scenario of an adaptation with AFPAC

global state. To do so, it relies @adaptation poing: a global state is said
consistent if every service process is at such a point. @ @dgquires control
structures to be annotated thanks to aspect-orientedgimging in order to
locateadaptation poing as the execution progresses. The algorithm and the
consistency criterion it implements suits well to SPMD codach as the ones
using MPI.

Fig. 4 shows the sequence of actions when a data-parallelwotking on
matrices adapts itself thanks to AFPAC. In this exampleati@ication spawns
2 new processes in order to increase its parallelism degrée 41 Firstly, the
timing phase of the abstract schema is executed bgdbedinatorcomponent
concurrently to the normal execution of the parallel coderiiy this phase,
thecoordinatortakes a rendez-vous with every executiggviceprocess at an
adaptation point Whenserviceprocesses reach the rendez-vagsptation
point, they execute the requestadtiors. Once every action of thglan has
been executed, theerviceresumes its normal execution. This experiment
shows well that most of the overhead lies in incompressibt®rs like matrix
redistribution.

5. ASSIST: MANAGING DYNAMICITY USING
LANGUAGE AND COMPILATION APPROACHES

ASSIST applications are described by means of a coordimddioguage,
which can express arbitrary graphs of (possibly) paralletintes, intercon-
nected by typed streams of data. A parallel modpbthod coordinates a set
of concurrent activities calledirtual Processe¢VPs). Each VP execute a se-
quential function (that can be programmed using standayaesgial languages
e.g. C, C++, Fortran) on input data and internal state.

An abstract schema modeling adaptivity managemen®

Groups of VPs are grouped together in processes cHlltaial Processes
Manager (VPM). VPs assigned to the same VPM execute sequentialliewh
different VPMs run in parallel: therefore the actual pasiidim exploited in a
parmodis given by the number of VPMs that are allocated.

Overall, aparmodmay behave in a data-parallel (e.g. SPMD/for-all/apply-
to-all) or task-parallel way (e.g. farm, pipeline), anddtamondeterministically
accept from one or more input streams a number of input itevh&h may
be decomposed in parts and used as function parameterdvatadtPs. A
parmod may also exploit a distributed shared state, which survbetgeen
VP activations related to different stream items. More itletan the ASSIST
environment can be found in [13, 3].

An ASSIST module (or a graph of modules) can be declared aspaaent,
which is characterized byyrovideanduseports (both one-way and RPC-like),
and byNon-Functionalports. The latter are responsible of specifying those
aspects related to the management/coordination of the watigm, as well
as the required performance level of the whole applicatiomfahe single
component. As instance, among the non-functional intedfdbere are those
related to QoS control (performance, reconfiguration efgatand allocation
constraints).

Each ASSIST module in the graph encapsulated by the comp@eon-
trolled by its own MAM (Module Adaptation Manager), a prose$at co-
ordinates the configuration and adaptation of the modudgf.itsThe MAM
dynamically decides the number of allocated VPMs and thapping onto the
processing elements acquired through a retargetable enwdalle, that can be
adapted to exploit clusters as well as grid platforms.

Hierarchically, the set of MAMs is coordinated by the ComgoiAdaptation
Manager (CAM) that manages the configuration of the wholepmmment. Ata
higher level, these lower-level entities are coordinatea (possibly distributed)
Application Manager (AM), to pursue a global QoS for the vehapplication.

The starting configuration is determined at load time byarighically split-
ting the user provided QoS contract between each compondrhadule. In
case of a QoS contract violation during the application n@naging processes
react by issuing (asynchronous) adaptation requests toofled entities [4].
According to the locality principle, violations and cortiee actions are de-
tected and issued as near as possible to the leaves of tlaechier(i.e. the
modules with their MAM). Higher-level managers are notifigfdviolations
when lower-level managers cannot handle them locally. éseltases, CAMs
or the AM can coordinate the actions of several MAMs and CA®lg.(by re-
negotiating contracts with them) in order to implement a-lowal adaptation
strategy.

10

New Contract Decision
(from user or 5 (exploiting Committed
root mana(r) Tri ’QQZ; etg QoS policies) decision
Triogerintertace n
Monitoring data Set new triggers Execution New
(exploiting configuration
mechanisms)

Reconfiguration
commands

Controlled elements

Figure 5 ASSIST framework.

The corrective actions that can be undertaken in order fdl fille con-
tracts, eventually lead to the adaptation of component gordtions, in terms
of parallelism degree, and process mapping [4].

Reconfiguration requests to the adaptation mechanismiggeted by new
QoS needs or by monitoring feedbacks. Such requests flow aueimomic
manner through the AM to the lower level managers of the heésa(or vice
versa). If the contract is broken a new configuration is deftmeevaluating the
related performance model. Itisthenapplied at each imdybarty (component
or module), in order to reach a state in which the contraailfgléd.

The adaptation mechanisms adopted in ASSIST completdigntiates the
abstract schema provided above by organizing its leafistdefght in an au-
tonomic control loop (see Fig.5). Thagger functionality is represented by
the collection of the stream of monitoring data. Such dataetrom the run-
ning environment and can cause a framework reaction if a@cntiolation is
observed. A component performance model is evaluatelicf phase) on the
basis of the collected monitoring data, according to a sadiegoal (currently,
in ASSIST we implemented two predefined policies, pursuing different
goals; for special needs, user-defined policies can be gmuged).

If the QOS contract is broken,decision has to be taken about how to adapt
the component: such decision could involve a single compiomea compound
component. In the latter case, the decision has to flow ttrolg hierarchy
of managers in order to harmonize the whole applicationoperdnce. The
decision phase uses the policies in order to reach the contract esgaints.
Examples of policies are: reachingdasired service timéas seen above, it
could happen if one VPM becomes overloaded), or realiziegést effortin
the performance/resource trade-off (by releasing unugg@®instance). The
decision phase result is a target for thbemmit phase (increasing of computing

An abstract schema modeling adaptivity managemeni 1

R R S A

N. of VPMs
o ~N 0O

‘ ‘ N of VPMs in pdrmod — A

VPMs aggregated power = = = -

NN
L J - : : :
/ 1 \ \/\J,/\z\—‘@*\\/,_\,:\‘,y___

Items/s

whaOo

7 V4 - 7

! QoS cohtract

50 100 150 200
Wall Clock Time (s)

Figure 6 MAM'’s reaction to a contract violation

power, as an example). Such target is represented by a paided by the
homonymous phase that lists the actions (e.g. add or rereseeirce to/from
computation and computation remapping, with associatéal mégration and
global state consolidation) to be taken.

Finally, theexecute functionality exploits support code statically generated
by the ASSIST compiler, and coordinates it with serviceviaied by the com-
ponent framework to interface to the middle-ware (e.g. ésource recruiting),
according to the schedule provided taying functionality.

Timing functionality is related to the so-calledconf-safepoints [4], i.e.
points in the application code where the distributed comjt and state are
known to be consistent and can be efficiently synchronizexthEnechanism
that is exploited to reconfigure the application at run tirae take advantage
(e.g. can be optimized) of reconf-safe points to approglgiadrchestrate syn-
chronizations in a transparent manner. Moreover, the géetcode is tailored
for the given application structure and features, expigithe set of concrete
mechanisms provided by the language run-time support. For instance, no
state migration code is inserted for stateless computgtiamd depending on
the parallelism pattern (e.g. stream versus data paraiBlyis involved in the
synchronization can be a subset of those within the compdiesng reconfig-
ured.

Our experiments [4] show that the adaptation mechanism®timmoduce
overhead with respect to non-adaptive versions of the sade, avhen no
configuration change is performed, and that issued adapsatire achieved
with minimal (of the order of milliseconds) impact on the oirgg computation.

Fig. 6 shows the behavior of an ASSIST parallel applicatidth adaptivity
managers enabled, run on a collection of homogeneous Lirarkstations
interconnected by switched Fast Ethernet. In particulahaws the reaction of
a MAM to a sudden contract violation with respect to the nunab®PMs. The
application represents a farm computing a simple functidh fixed service

12

time on stream items flowing at a fixed input rate. In this sgenpa contract
violation occurs when one of the VPMs becomes overloadedicg the VPMs
aggregated power to decrease. The MAM reacts to such deatbsmnmapping
as many VPMs as needed to satisfy the contract (only one sncige) onto
fresh computing resources.

Inthis example, when a new VPM mapping occurs because oftréoading
of one (or more) of the allocated ones, removing the oveddazhe does not
lead to a contract violation. Therefore the MAM, that is atesponsible to
manage over-dimensioned resource usage, removes theaned PE almost
immediately. The MAM can reduce resource usage also (navrshio this
example) when the incoming data rate decreases or the corgguirements
are weakened.

6. A COMPARATIVE DISCUSSION

As it is clear from the previous presentations, Dynaco (dadparallel-
component specialization AFPAC) and ASSIST fit the abstsabema pro-
posed in Section 2 in different manner. The frameworks hawan leveloped
independently with each other but both aim at offering afptat to handle
dynamically adaptable components.

Dynaco can be seen as a pipelined implementation of theaabstchema
feeded by an external monitoring engine. In particular,ttiiee major func-
tions (decision-making, planning and execution) are gpheed by component-
specific sub-phases. On the other hand, ASSIST providesalairimple-
mentation of the schema leafs, whilecision and commit can be seen as
macro-steps of the autonomic loop.

The decision-making functionalities are triggered by tkeemnal monitoring
engine in Dynaco, while in ASSIST the concept of performaocetract is
exploited in order to specify the performance level to berguoteed.

In ASSIST the code related to the execution phase is autoatigtgenerated
at compile time, while the Dynaco developer is asked to pi®the code
for policy, guide and action entities. Both the frameworkgmothe possibil-
ity to configure certain points of the code as “safe-pointsirf which recov-
ery/reconfiguration is possible. In Dynaco such points afindd by aspect-
oriented technologies, while in ASSIST they are defined leylimguage se-
mantics, and determined by the compiler.

From the discussion above, it is clear that each framewddkds the adap-
tivity problem by means of individual solutions. What we wam point out
in this work is that, despite their technological divershigth solutions can be
inscribed in the general abstract schema presented ir8e&ttiSuch schema
is general enough to abstract from any kind of implemergasmution but it
is also sufficiently strong to catch the salient aspects aefriuals to consider

An abstract schema modeling adaptivity managemeni3

while designing adaptive component frameworks. By sumnuingit can be

seen as a reference guide for modeling adaptable envirdarmetependently
from the implementations, technologies, languages, caings or architectures
involved.

7. CONCLUSIONS

We have described a general model to provide adaptive bahiavisrid-
oriented component-based applications. The general scivenhave shown is
independent of implementation choices, such as the refpidgdor inserting
the adaptation code (either left to the programmer, as ip&ap in the Dy-
naco/AFPAC framework, or performed by exploiting knowledgf the high
level program structure, as it happens in the ASSIST cont@kte model also
encompasses user-driven as well as autonomic adaptation.

The abstract model helps in separating application anding-program-
ming concerns of adaptation, exposing adaptive behavar aspect of applica-
tion programming, formalizing the concerns to be addressed encouraging
an abstract view of the run-time mechanisms for dynamicngoration.

This formalization gives the basis for defining a methodgloghe given
case study provide with valuable clues about how to solvergifit concerns,
and how to identify common parts of the adaptation that cagdseralized
in support frameworks. The model can be thus also usefulblieg within
other programming frameworks, like GrADS, which do not eo#oa strong
separation of adaptivity issues into design and implentienta

We expect that such a methodology will lead to more portabbtk under-
standable adaptive applications and components, and ilad promote lay-
ered software architectures for adaptation, simplifymglementation of both
the programming framework and the applications.

Acknowledgments

This research work is carried out under the FP6 Network oelenceCoreGRIDfunded
by the European Commission (Contract IST-2002-00426%) jtamas partially supported by the
Italian MIUR FIRB projectGrid.it (n. RBNEO1KNFP) on High-performance Grid platforms
and tools.

References

[1] M. Aldinucci, F. André, J. Buisson, S. Campa, M. Coppdta Danelutto,
and C. Zoccolo. Parallel program/component adaptivity agament. In
Proc. of Intl. PARCO 2005: Parallel Computin§ept. 2005.

[2] M.Aldinucci, S. Campa, M. Coppola, M. Danelutto, D. Leémza, D. Pup-
pin, L. Scarponi, M. Vanneschi, and C. Zoccolo. Componeatshigh

14

[3]

[4]

[5]

[6]

[7]

performance grid programming in grid.it. In V. Getov and Telhann,
editors,Proc. of the Intl. Workshop on Component Models and Systams f
Grid Applications CoreGRID series, pages 19-38, Saint-Malo, France,
Jan. 2005. Springer.

M. Aldinucci, M. Coppola, M. Danelutto, M. Vanneschi,&g&. Zoccolo.
ASSIST as aresearch framework for high-performance gddnamming
environments. In J. C. Cunha and O. F. Rana, editerg] Computing:
Software environments and Toothapter 10, pages 230-256. Springer,
Jan. 2006.

M. Aldinucci, A. Petrocelli, A. Pistoletti, M. TorquatiM. Vanneschi,
L. Veraldi, and C. Zoccolo. Dynamic reconfiguration of Gadrare ap-
plications in ASSIST. In José. Cunha and Pedro D. Mede&dgprs,
Euro-Par 2005 Parallel Processing: 11th International BtiPar Con-
ference, Lisbon, Portugal, August 30 - September 2, 200&cd@dings
volume 3648 oLLNCS pages 711-781. Springer-Verlag, August 2005.

F. Baude, D. Caromel, and M. Morel. On hierarchical, fatand dis-
tributed components for Grid programming. In V. Getov anli&lmann,
editors,Workshop on component Models and Systems for Grid Applica-
tions ICS '04, Saint-Malo, France, June 2004.

F.D.Berman, R. Wolski, S. Figueira, J. Schopf, and G &kgplication-

level scheduling on distributed heterogeneous networksSulpercom-
puting '96: Proc. of the 1996 ACM/IEEE Conf. on Superconmmti
(CDROM) page 39, 1996.

J. Buisson, F. André, and J.-L. Pazat. Dynamic adamtdtr grid comput-
ing. In P.M.A. Sloot, A.G. Hoekstra, T. Priol, A. Reinefelthd M. Bubak,
editors,Advances in Grid Computing - EGC 2005 (European Grid Con-
ference, Amsterdam, The Netherlands, February 14-16, Ré&%sed Se-
lected Papers)volume 3470 of. NCS pages 538-547, Amsterdam, June
2005. Springer-Verlag.

[8] J. Buisson, F. André, and J.-L. Pazat. Enforcing cdasisy during the

[9]

[10]

[11]

adaptation of a parallel component.The 4th Int.| Symposium on Parallel
and Distributed Computingluly 2005.

B. Ensink, J. Stanley, and V. Adve. Program control laauggt a program-
ming language for adaptive distributed applicatiodsurnal of Parallel
and Distributed Computings3(11):1082—-1104, November 2003.

M. Mcllhagga, A. Light, and |. Wakeman. Towards a degigethodology
for adaptive applications. IMobile Computing and Networkingages
133-144, May 1998.

Christian Pérez, Thierry Priol, and André Ribes. Aglkel corba com-
ponent model for numerical code couplinthe International Journal of

An abstract schema modeling adaptivity managemeni5

High Performance Computing Applications (IJHPCAY(4):417-429,
2003.

[12] S. Vadhiyar and J. Dongarra. Self adaptability in grignputing. Inter-
national Journal Computation and Currency: Practice andoEsence
2005. To appear.

[13] M. Vanneschi. The programming model ASSIST, an environment
for parallel and distributed portable applicationBarallel Computing
28(12):1709-1732, December 2002.

