N

HAL

open science

Dynamic adaptation for Grid computing

Jérémy Buisson, Francoise André, Jean-Louis Pazat

» To cite this version:

Jérémy Buisson, Frangoise André, Jean-Louis Pazat. Dynamic adaptation for Grid computing. Eu-
ropean Grid Conference, Feb 2005, Amsterdam, Netherlands. pp.538, 10.1007/11508380_55 . hal-

00498845

HAL Id: hal-00498845
https://hal.science/hal-00498845
Submitted on 8 Jul 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00498845
https://hal.archives-ouvertes.fr

Dynamic adaptation for Grid computing

Jérémy Buisson®, Francoise André? and Jean-Louis Pazat!

! TRISA/INSA de Rennes, Rennes, France
2 TRISA /Université de Rennes 1, Rennes, France

Abstract. As Grid architectures provide resources that fluctuate, ap-
plications that should be run on such environments must be able to take
into account the changes that may occur. This document describes how
applications can be built from components that may dynamically adapt
themselves. We propose a generic framework to help the developpers of
such components. In the case of a component that encapsulates a parallel
code, a consistency model for the dynamic adaptation is defined. An im-
plementation of a restricted consistency model allowed us to experiment
our ideas.

1 Introduction

Grid architectures differ from classical execution environments in that they are
mainly built up as a federation of pooled resources. Those resources include
processing elements, storage, network, and so on; they come from the inter-
connection of parallel machines, clusters, or any workstation. One of the main
properties of these resources is to have changing characteristics even during the
execution of an application. Resources may come and go; their capacities may
vary during the execution of the applications. Moreover, resources may be allo-
cated then reclaimed and reallocated as applications start and terminate on the
Grid. Thus, resource usage by applications cannot be static; neither can changes
in resource allocation be considered as faults. Grid-enabled application designers
must keep in mind that resources and resource management are highly dynamic
within Grid architectures.

Dynamic adaptation is a way to support evolving execution environments. It
aims at allowing applications to modify themselves depending on the available
resources. The key idea is that when the environment changes, the application
should also change to fit with it. To react softly, the application can negotiates
with its execution environment about resources, instead of undergoing the de-
cisions of the execution environment. Because taking adaptation into account
should not burden too much the application developpers, it is necessary to pro-
vide them adequate frameworks and mechanisms. That is our main research
objective.

Section 2 makes a tour of existing researches in areas close to adaptation.
Section 3 exposes how we model the dynamic adaptation of an application.
Section 4 shows the architecture we are currently building as a support to make
adaptable applications. Section 5 describes the consistency model we introduced

for the adaptation of components that encapsulate parallel codes. Section 6
presents the state of the experiments we have done with our consistency model.

2 Adaptation through existing works

Several projects use the word adaptation to describe themselves. As this section
presents, all of those projects have different views of what adaptation is, what
it consists in and why it should be used. Basically, the only common point is
that adaptation consists in changing some things in applications. This asks four
major questions: why adaptation should be done (section 2.1); where is it done
in the execution (section 2.2); how can it be done (section 2.3); when should it
be done (section 2.4). As the section shows, the several projects that exist have
different answers to these four questions.

2.1 Goal of the adaptation

With existing projects, two main views of what the goal of adaptation could
be opposed. In [1], the Grid.It project and its ASSIST [2] programming model
present adaptation as a way to achieve a specified level of performance. An
application should modify its structure or change the resources it has allocated
when performance contracts are not satisfied.

On the other hand, projects such as SaNS§ [3], GrADS [4] and PCL [5] consider
that applications should adapt themselves to optimize themselves. Adaptation
is a way for application to provide a “best effort” strategy. In this case, the
application chooses the best implementation given the allocated resources and
the properties of input data.

2.2 Location of the adaptation

Many projects such as SaNS, GrADS and GrADSolve [6] do the adaptation upon
invokation: when a function, method, procedure is called, the best algorithm is
chosen. Although this is not as static as the automatic optimization such as for
ATLAS [7], adaptation is not possible once the adaptable software has started
its execution. This approach is realistic only if the adaptable softwares are fine-
grained enough. In the case of SaNS, the targeted softwares are libraries of
numerical kernels. In this case, it is sufficient to adapt only at invokation time.

Some projects such as Grit.It and PCL allows dynamic adaptation (namely,
adaptation of a software that is executing). This is necessary when the execution
time of the adaptable software is high. Moreover, the PCL project defines in [g]
a consistency model for the adaptation of parallel codes.

2.3 Means of the adaptation

When the adaptation is done exclusively at invokation time, adaptation is simply
the selection of one implementation of several that are available. This is what is
done with SaNS and GrADSolve.

In the case of dynamic adaptation, this is not sufficient. Adaptation either in-
volves parameterizable softwares or reflexive programming. For example, within
the ASSIST model of the Grid.It project, the parmod skeleton exposes several
parameters such as the degree of parallelism that can be changed dynamically;
the PCL project defines a framework for reflexive programming in distributed
and parallel applications. Dynamic aspect weavers (such as Arachne [9]) may
also be used as an alternative to reflexive programming to dynamically adapt
the software.

2.4 Decisions to adapt

Several approaches can be used to decide when a software should adapt itself
and what it should do. Within the ASSIST model, since adaptation is a way to
achieve the contracted performance level, adaptation is mostly triggered from
feedback control. On the other side, within the PCL project, the trigger is the
reception of external events generated by external monitors. The projects SaNS
and GrADSolve use performance models and a database of empirical measures
to choose the right implementation to use.

3 Model of dynamic adaptation

Our model for dynamic adaptation considers that dynamic adaptation should
occur in order to maximize the adequation between the application and its exe-
cution environment. Namely, this means that the purpose of dynamic adaptation
is to optimize the application whenever its execution environment changes. To
do so, it may use whatever means the developper is willing to.

The figure 1 shows the two kinds of curves for the progress of an adaptive
software. The two cases correspond to an adaptation that causes the execution
to slow down 1(a) and one that makes the application accelerates 1(b). The dis-
continuity reflects the cost of the adaptation. Although the adaptation optimizes
the application, the application may slow down. Indeed, this occurs when the
execution environment reclaims some resources. Even if the application slows
down, it is optimized compared to its execution if it has not been adapted: in
such a case, the application could even have crashed.

The application can adapt itself anywhere in the execution path. It can be
either at a past state or at a state in the future. The figure 2 shows how the
overall completion time conceptually behaves depending on the current state
and the one at which the adaptation is done. This curve directly translates that
the adaptation optimizes the application. Thus, in the future, the sooner it is
done, the better the completion time is. It reduces the time during which the
application is suboptimal. By symmetry, in the past, the earlier in the application
lifetime the adaptation is done, the bigger the computations to be redone are.
Adapting “just after now” is better than “just before now” because of the overhead
of restoring a past state.

A| — with adaptation A | — with adaptation L.
--- without adaptation --- without adaptation
) ® e
£) E
: : E /
S K S
= . =1 =
o 2 o s
o] o] oL
x d x L
fin] w /
® > ® »
Adaptation Execution path Adaptation Execution path
(a) Execution that is slowing (b) Execution that is speeding
down up

Fig. 1. Progress of an adaptive software

Completion time

+—— >
Adapts in the past Present Adapts in the future
Execution path

Fig. 2. Completion time depending on the state at which the adaptation is done

Adapting in the past has the advantage over adapting in the future that the
adaptation can occur immediatly once the decision has been made. Thus, there
is no transition during which the execution is suboptimal. Moreover, it does not
require the prediction of a point in the future of the execution path, which is an
undecidable problem in the general case.

On the other hand, adapting in the future does not require any instruction
to be reexecuted; neither it has the overhead due to checkpoint-taking.

4 Architecture of adaptable software

Applications are considered to be built as assemblies of software components.
Each of those components can encapsulate sequential or parallel codes. More-
over, each component can adapt itself. To do so, the component is supported
by a framework. Indeed, it appears that some of the mechanisms involved in
adaptation are independant of the component itself.

Orders execution of reactions

Coordinator

Executes

Modifies

o e[mme ¢ <

Fig. 3. Overall architecture of an adaptable component

4.1 Architecture of an adaptable component

The figure 3 shows the architecture of a parallel component. Five major func-
tional boxes have been identified that lie in three parts of an adaptable compo-
nent built with our adaptation framework.

— Functional part of the component.

e Behavior. This is the implementation of the services provided by the
component. An adaptable component is allowed to contain several be-
haviors that are alternative implementations.

— Component-specific part of the adaptation framework.

e Reaction. This is a code that modifies the behavior that is being ex-
ecuted by the component. A component can include several reactions.
The reactions can change some parameters of the behavior; replace the
behavior with another one; modify the behavior with the help of reflexive
programming or dynamic aspect weaving.

e Policy. This provides all the necessary information that are specific
to the component to make decisions concerning the adaptation. It ed-
dicts on which events the component should adapt and which reaction
it should use.

— Component-independant part of the adaptation framework.

e Coordinator. The coordinator is responsible for choosing where the re-
action is going to be executed within the execution path of the behavior.
The possible locations are called candidate points; the chosen one is the
adaptation point.

e Decider. The decider decides when the component should adapt itself
and chooses which reaction should be executed. To do so, it relies on the
information given by the policy.

The coordinator and the decider both make decisions regarding the adapta-
tion. However, they encapsulate separate concerns. The decider encapsulates the
goal of the adaptation and the criterium that is going to be optimized; whereas
the coordinator focuses on the mechanisms for enforcing the consistency of the
dynamic adaptation.

4.2 Scenario of the adaptation of a component

From time to time, the decider decides that the component should adapt itself
with one reaction. This may come from an external event (specified in the policy
of the component); this may be a spontaneous decision (as a result of feedback
control for example). Once the decision to adapt is made, the decider orders
the coordinator to execute the chosen reaction. Then, the coordinator chooses
one candidate point in the execution path of the behavior. It also starts to
monitor the execution of the behavior. When it reaches the adaptation point,
the coordinator suspends the execution of the behavior and gives the execution
control to the reaction. Once the reaction has finished, the behavior resumes its
execution.

In addition, the behavior of a component can be a parallel code. In this case,
the candidate points and the chosen adaptation point are global and represent
global states. A global point is composed of one local point for each concurrent
thread of the parallel behavior. Local points are identified by both their name
in a model of the functional code and the indices in the iteration spaces.

The decider relies on the policy to make its decisions. The policy may contain
an explicit set of rules: this can help the decider to choose the events to subscribe
to. The policy may also contain performance models to help to choose the right
reaction. Those performance models are parameterized with the content of the
contracts describing the quality of the used services and resources.

5 Consistency of the adaptation within parallel
components

When the component encapsulates a parallel code, the coordinator must choose a
global point. However, the result of the execution of the adapted component must
be semantically equivalent to the one of the component that does not adapt itself.
Thus, the chosen point should be consistent with respect to a given property
that garanties this semantic equivalence. The adaptation is said consistent if the
reaction is executed from such a point.

A simple example illustrates this: if the component does not dead-lock in
normal executions, it must not dead-lock when it adapts itself. Thus, choosing
the point at which the reaction can be executed requires to be aware of the
communications that occur in the behaviors and reactions of the component.

5.1 Consistency model

The global point is R-consistent if and only if it satisfies the R relation. It is a
n-ary relation if the parallel behavior is composed of n concurrent threads. This
relation is defined over the n sets of local points. It is specific to each component.

In our example about dead-lock, this R relation encapsulates the required
knowledge about communications within the component.

5.2 Classes of parallel components

Depending on the properties of the R relation, the parallel components can be
classified. There is four major classes of parallel components.

SPMD components. If the R relation is id the identity, a global point is consistent
if all the threads are locally at the same point. Regarding to the points, this
means that all the threads share the same set of points. This case corresponds
to the SPMD class of parallel applications.

Quasi-SPMD components. We consider that the R relation holds the following
property:

(R(p1,p2,---,Pn) NR(q1,G2,---,0n))
=P <@ Ap2<@A...App=<q,)
V(g <=p1iAG <=p2 Ao NG <)V (@i =P1A@2=p2A...N@n =Dn)

The < symbol denotes the strict “precede” relation over the sets of local points.
In the execution paths, this is a total order relation.

If this property is satisfied, the local points can be renamed such that R
becomes the identity relation. Thus, the component behaves like SPMD compo-
nents.

Synchronous MPMD components. We suppose that the R relation satisfies the
following property:

(R(p1:p2,---spn) ANR(q1,G25 -+, qn))

SP2aAPR2@A AP 2) V(@ 2P AG@ P2 AN ANy 2 Py)
The = symbol denotes the reflexive “precede” relation over the sets of local
points. In the execution paths, this is a total order relation.

In this case, the global points are still totally ordered in the execution path
by a “precede” relation. This reflects the synchronization of the threads within
the component. However, a local point can participate to several global points.
Those components can be rewritten as quasi-SPMD components by duplicating
such local points. This transformation restricts the consistency model.

Pessimistic parallel discrete event simulators belong to this class of compo-
nents.

Asynchronous MPMD components. If none of the preceding properties is sat-
isfied, the “precede” relation over global points in execution path is not a total
order relation.

This class of components includes in particular master-slaves codes.

5.3 Comparison with other consistency models

The model defined by PCL in [8] says that the adaptation is consistent if all
the threads reach the i-th point (same ¢ for all the threads) in the execution
path. Although it seems similar, this is not equivalent to our id-consistency.
Indeed, our model identifies points by name (identifier in the model of the code
augmented with indices in iteration spaces) whereas PCL explicitly uses the rank
of the point in the execution path.

Thus, our model accepts that the threads have different dynamic behaviors.
The threads are not expected to execute the same number of iterations or to
choose the same branch of conditional instructions. On the other hand, PCL
supposes that all the threads remain in sync.

6 Realisation

By the time, we have designed and implemented an algorithmic solution for the
coordinator. Our work restricts the model to the id-consistency in the case of
SPMD parallel components. The candidate global points are exclusively looked
for in the future of the execution path of the threads.

We have chosen to restrict to candidate points in the future. We worked
around the impossibility of predicting the next point in the future of the ex-
ecution path by introducing several strategies: the “postpone” strategy delays
the prediction until the conditional instruction is executed; the “skip” strategy
ignores the candidate points within the branches of the conditional instruction.

Figure 4 compares these two strategies. This experiment has been done with
the NPB 3.1 [10] FFT code on a 4 PCs cluster running PadicoTM [11], which
permits us to mix several middlewares such as MPI and CORBA within a single
application. Only the coordinator has been implemented: the reaction is empty
(no real adaptation); the decider is simulated by a trigger provided to the user.
The encapsulation within a component has not been done as it has no influence
for this experiment if we consider that the whole FFT code is within a single
component.

Each dot of figure 4 represents one trigger of the adaptation. It appears
on figure 4(a) that the “postpone” strategy generally chooses adaptation points
that come sooner than the “skip” strategy. On the other hand, the figure 4(b)
shows that the “postpone” strategy suspends more frequently the functional code
than the “skip” strategy. Indeed, we observe that most of the experiments with
the “skip” strategy causes no suspension (high density of dots at 0 s), whereas
the functional code is frequently suspended with the “postpone” strategy (high
density of dots up to about 0.5 s). These two observations exhibit the trade-off
between the precision of the prediction and the risk of suspending the functional
code.

15s ; - 3s
10s | :] 2s | -
© - | ®
5s e i 1st
- :
0s g i 0s . F
Postpone Skip Postpone Skip

(a) In regard to the delay before (b) In regard to time during which
adaptation the functional code is suspended

Fig. 4. Comparison of the “postpone” and the “skip” strategies

7 Conclusion

In this paper we have shown that adaptation of parallel components can be
achieved using our framework. Such an adaptation process needs to develop a
consistency model and an algorithm to enforce this consistency before adapta-
tion: the id-consistency model we developped shows the relevance of our consis-
tency model for the adaptation of SPMD parallel codes.

We have shown through the FFT example that there is a trade-off between
the precision of the choice of the point (best theoretical result) and the risk of
uselessly suspending the execution of the functional code.

Futur works around the coordinator will consist in extending our implemen-
tation of the consistency model for non-SPMD components.

We plan to fully implement our framework, including a smart decider. This
decider will be organized as a rule-based system. We will study how to repre-
sent usefull information for decision-making, such as states or changes of the
environment. The representation of the adaptation policy have also to be de-
fined. For this work we plan to rely on previous works on monitoring such as
Delphoi [12] or SAJE/RAJE [13] and on our previous works on adaptation for
mobile computing [14].

Another direction of our work is the study of the adaptation of assemblies of
components for complete Grid applications. It is clear that in many applications,
one component will not be able to adapt itself without taking into account the
other components of the application. The role of the decider will be extended to
include negotiation with deciders of other components of the application.

References

10.
11.
12.

13.

14.

. Aldinucci, M., Campa, S., Coppola, M., Danelutto, M., Laforenza, D., Puppin, D.,

Scarponi, L., Vanneschi, M., Zoccolo, C.: Components for high performance grid
programming int the grid.it project. In: Workshop on Component Models andd
Systems for Grid Applications. (2004)

Aldinucci, M., Coppola, M., Danelutto, M., Vanneschi, M., Zoccolo, C.: Assist
as a research framework for high-performance grid programming environments.
Technical Report TR-04-09, Universita di Pisa, Dipartimento di Informatica, via
F. Buonarroti 2, 56127 Pisa, Italy (2004)

Dongarra, J., Eijkhout, V.: Self-adapting numerical software for next generation
application (2002)

. Kennedy, K., Mazina, M., Mellor-Crummey, J., Cooper, K., Torczon, L., Berman,

F., Chien, A., Dail, H., Sievert, O., Angulo, D., Foster, I., Gannon, D., Johnsson, L.,
Kesselman, C., Aydt, R., Reed, D., Dongarra, J., Vadhiyar, S., Wolski, R.: Toward
a framework for preparing and executing adaptive grid programs. In: Proceedings
of NSF Next Generation Systems Program Workshop (IPDPS). (2002)

Adve, V., Lam, V.V., Ensink, B.: Language and compiler support for adaptive
distributed applications. In: ACM SIGPLAN Workshop on Optimization of Mid-
dleware and Distributed Systems (OM 2001), Snowbird, Utah (2001)

Vadhiyar, S., Dongarra, J.: GrADSolve: RPC for high performance computing on
the grid. In: Euro-Par 2003: Parallel Processing. Volume 2790. (2003)

Whaley, R.C., Petitet, A., Dongarra, J.J.: Automated empirical optimizations of
software and the ATLAS project (2000)

Ensink, B., Adve, V.: Coordinating adaptations in distributed systems. In: 24th
International Conference on Distributed Computing Systems. (2004) 446-455
Ségura-Devillechaise, M., Menaud, J.M., Muller, G., Lawall, J.: Web cache
prefetching as an aspect: Towards a dynamic-weaving based solution. In: Proceed-
ings of the 2nd international conference on Aspect-oriented software development,
ACM Press (2003) 110-119

: Nas parallel benchmark. (http://www.nas.nasa.gov/Software/NPB/)

: PadicoTM. (http://www.irisa.fr/paris/Padicotm/welcome.htm)

Maassen, J., van Nieuwpoort, R.V., Kielmann, T., Verstoep, K.: Middleware adap-
tation with the delphoi service. In: AGridM 2004 - Proceedings of the 2004 Work-
shop on Adaptive Grid Middleware, Antibes Juan-Les-Pins, France (2004)
Guidec, F., Sommer, N.L.: Towards resource consumption accouting and control
in java: a practical experience. In: Workshop on Resource Management for Safe
Language, ECOOP 2002, Malaga, Spain (2002)

Chefrour, D., André, F.: Développement d’applications en environnements mobiles
a l’aide du modéle de composant adaptatif aceel. In: Langages et Modéles & Objets
LMO’03. Actes publiés dans la Revue STI. Volume 9 of L’objet. (2003)

	Dynamic adaptation for Grid computing
	Jérémy Buisson, Françoise André and Jean-Louis Pazat

