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Abstract— As Grid architectures provide execution environ-
ments that are distributed, parallel and dynamic, applications
require to be not only parallel and distributed, but also able
to adapt themselves to their execution environment. This article
presents a model for designing self-adaptable parallel components
that can be assembled to build applications for Grid. This model
includes the definition of a consistency criterion for the dynamic
adaptation of SPMD components. We propose a solution to
implement this criterion. It has been evalued on both synthetic
and real codes to exhibit the behavior of the several proposed
strategies.
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I. I NTRODUCTION

Grid is an emerging architecture that we consider as a large-
scale federation of pooled resources. Those resources might
be processing elements, storage, and so on; they may come
from parallel machines, clusters, or any workstation. One of
the main properties of these resources is to have changing
characteristics even during the execution of an application.
Resources may come and go; their capacities may vary.
Moreover, resources may be allocated then reclaimed and
reallocated as applications start and terminate on the Grid.
To sum up, Grid is an architecture that is at the same time
distributed, parallel and dynamic. This is why we think that
the right application model to use in order to benefit from such
an environment should be distributed assemblies of parallel
self-adaptable components.

In our context, we just see the component as a unit that
explicitly specifies the services it provides (“provide ports”)
and the ones it requires (“use ports”). Required resources are
one kind of required services. Service specifications can be
qualitative (type specification); they can also be quantitative
(quality of the provided or used services). A parallel com-
ponent is simply a component that encapsulates a parallel
code. For example, GridCCM [1] extends CORBA Compo-
nent Model to support parallel components. A self-adaptable
component is a component that is able to modify its behavior
depending on the changes of the environment: it may use
different algorithms that use services differently and provide
different qualities of services. The choice of the algorithm is
a component-dependant problem and cannot be solved in a
general way at some middleware level. Nevertheless, some

generic mechanisms exist in adaptable components that are
independant of the component itself. Our research focuses on
the design of an adaptation framework for parallel components
that provides all those common mechanisms. One of the main
problems consists in providing a mechanism for choosing a
point in the execution to perform the adaptation in a consistent
manner. This article aims at addressing this problem.

SectionII presents our model of dynamic adaptation for par-
allel codes to set the context of this article up. SectionIII gives
few mathematical definitions that are useful in the remaining
of this paper. SectionsIV andV describe how the future of the
execution path is predicted to choose the adaptation point at
which the adaptation code is inserted. SectionVI discusses the
results obtained from our experiments. SectionVII compares
our work to others in the area of dynamic adaptation. It also
shows similarities with computation steering and fault toler-
ance. Endly, sectionVIII concludes this paper and presents
some perspectives.

II. M ODEL OF SELF-ADAPTABLE COMPONENTS

The dynamic adaptability of a component is its ability to
modify itself according to the execution environment on which
it is deployed. The goal is to help the component to give the
best performance given its allocated resources. Moreover, it
makes the component aware of changes in resource allocation.
Resources may be allocated and reclaimed dynamically during
the lifetime of the component.

A. Structure of a self-adaptable component

With our model of dynamic adaptation [2], parallel self-
adaptable components can split in several functional boxes
(some of them being independant of the component itself).
A parallel self-adaptable components contains five major
functional boxes: its service, reactions, policy, decider and
coordinator. Figure1 shows the connections between those
boxes. A short description of them follows.

• Service.The service of the component is what it provides.
The service can be implemented by several algorithms
that might be used to solve a single problem. Each of
these algorithms uses differently the resources; thus, there
is one preferred algorithm for each configuration of the
resources allocated to the component.



Fig. 1. Model of a parallel self-adaptable component

• Reactions.The reactions are the ways to modify the com-
ponent. They modify the way the service is implemented,
changing the algorithm with another one, adjusting its
parameters or anything else.

• Policy. The policy describes the component-specific in-
formation required to make the decisions. For example,
the policy can be an explicit set of rules or the collection
of the performance models of the algorithms.

• Decider. The decider makes the decisions. It decides
when and how the component should adapt itself. In order
to decide, it relies on the policy ; it may also embed
a feedback controller (for example to complement the
performance models of the policy).

• Coordinator. The coordinator synchronizes the service
with the reaction. To do so, it chooses a point (an
instantaneous statement that annotates a special state)
within the execution path in order to insert the reaction
chosen by the decider.

Service, reactions and policy are specific to the component,
whereas the decider and the coordinator are independant of
the component. The decider and the coordinator should thus
be parts of an adaptation framework.

In the context of parallel components, the service can be
implemented either sequentially (exactly one execution thread)
or a parallelly (several communicating execution threads). In
the latter case, the coordinator must implement a parallel
algorithm.

B. Contracts between components

Because the quality of the services used by a component
is of greater importance to the adaptation, we attach to each
port link a contract that describes the effective quality of
the provided service. Moreover, for the sake of uniformity,
our model abstracts resources as “provide ports” of some
component called the environment. The execution environment
of a component is thus completely described by the contracts
attached to its “use ports”. Consequently, any change in
the execution environment is reflected by a change in those
contracts, triggering the adaptation.

Contracts are dynamically negotiated and renegotiated: a
component negotiates sufficient quality of service with its
subcontractors in order to respect the contracts with its clients;
it negotiates with its clients the quality of the provided services
according to the ones contracted with its subcontractors. In
that way, any renegotiation of one contract automatically
propagates to the entire assembly of components (the appli-
cation) to adjust the quality of all the provided services of

all components. Consequently, it propagates the trigger of the
adaptation to the components that require it.

C. Performance model

The goal of dynamic adaptation is to help the component
to give the best performance. Thus, the model assumes that
adaptation occurs when the component runs a non-optimal
service given its allocated resources. This means that the
completion time is worse than what it could be. In a general
way, the conceptual performance model of a single-threaded
component that adapts itself is shown by figure2. The x-axis
is the execution flow of the component; the curve gives the
expected completion time if the component adapts itself at the
corresponding point in its execution flow.

Fig. 2. Conceptual performance model of an adapting component

The adaptation can occur in either the future or the past
of the current state. In the case of adapting in the past, it
requires the restoration of a checkpoint (that has a costr on
the curve). The limit of adapting in the future is adapting once
the execution has ended (or equivalently not adapting at all);
the limit of adapting in the past is to restart from the begining
(purely static adaptation). It appears that whatever the search
direction, the best point will always be the nearest one from
the current state.

In the case of a parallel component, several curves are
superimposed. Because the threads of the component are not
necessarily synchronized, the curves are slightly shifted. The
global completion time is thus the maximum of the ones for
all threads. In this case, the best point can be in the future for
some threads and in the past for the others.

In this paper, we arbitrarily chose to consider only the search
direction that goes to the future of the execution. In the case
of a parallel component, we look for a global point that is in
the future of all threads.

D. Consistency model

In the case of a parallel service, the coordinator must
enforce the consistency of the adaptation. We defined one
consistency model we called the “same state” consistency
model. In this model, the adaptation is said to be consistent
if and only if all threads execute the reaction from the same
state (this logical synchronization does not require an effective
synchronization of the execution threads).

This model only makes sense in the case of SPMD codes
(parallel codes for which all threads share the same control
flow graph).



E. Scenario of dynamic adaptation

From time to time, possibly due to some external event, the
decider decides according to the policy that the component
should adapt itself. It thus orders the coordinator to execute
a specified reaction. The coordinator then chooses a point in
the future of the execution path at which the reaction can be
executed. When the service is parallel, the point is a global
state such that all threads are in the same state (“same state”
consistency model). At this point, the coordinator suspends the
service and executes the reaction.

In this paper, we will concentrate on the coordinator. Sec-
tion IV describes how the point can be computed; sectionV
depicts how an algorithm can be built. In the remaining of the
document, we will call “candidate points” the points at which
a reaction can be executed. The one that has been chosen by
the coordinator will be called the “adaptation point”.

III. D EFINITIONS

Definition 1 (poset):A poset (or partially-ordered set) is a
pair (P,R) whereP is a set andR is a binary relation over
P that is (1) reflexive, (2) antisymmetric and (3) transitive.

(1) ∀x · (x ∈ P ⇒ xRx)
(2) ∀x, y ·

(
x, y ∈ P 2 ⇒ ((xRy ∧ yRx)⇒ x = y)

)
(3) ∀x, y, z ·

(
x, y, z ∈ P 3 ⇒ ((xRy ∧ yRz)⇒ xRz)

)
Definition 2 (supremum):Given a poset(P,R), the supre-

mum sup (S) of any subsetS ⊂ P of P is the least upper
boundu of S in P such that:

∀x · (x ∈ S ⇒ xRu)
∧∀v · (v ∈ P ⇒ ((∀x · (x ∈ S ⇒ xRv))⇒ uRv))

Definition 3 (infimum):Symmetrically to the supremum,
given a poset(P,R), the infimuminf (S) of any subsetS ⊂ P
of P is the greater lower boundl of S in P such that:

∀x · (x ∈ S ⇒ lRx)
∧∀v · (v ∈ P ⇒ (∀x · (x ∈ S ⇒ vRx))⇒ vRl)

The infimum ofS in the poset(P,R) is the supremum ofS
in

(
P,R−1

)
.

Definition 4 (lattice): A lattice L is a poset(P,R) such
that for any pairx, y ∈ P 2, both the supremumsup ({x, y})
and the infimuminf ({x, y}) exist. This defines two internal
composition laws:

sup ({x, y}) = x ∨ y (join)
inf ({x, y}) = x ∧ y (meet)

IV. COMPUTING THE FUTURE

The coordinator needs to find a global point such that it
represents the same state for all threads. As it restricts to points
in the future of execution paths this point should be the first
one in the future for all threads, given the assumption on the
performance model.

A. Local prediction of the next point

For each thread, the coordinator needs to find the next
candidate point in the future of the execution path. This point
would be the one at which the coordinator is going to execute
the reaction in the case of a single-threaded component.

1) General schema:An execution path can be seen as a
path in the control flow graph that models the code. If loops
are unrolled (for example by tagging nodes with indices in
iteration spaces), the control flow graph defines a “precedes”
partial order between the points of a code. Given this relation,
each thread of the parallel component is able to locally predict
its next point at least in trivial cases.

2) Uncertain predictions:Predicting the future of an ex-
ecution path is undecidable due to conditional instructions:
their behavior is unpredictable since it depends on runtime
computations. This occurs for both conditions and loops,
which appear as nodes having several successors in the control
flow graph.

Three strategies may be used when such a node is encoun-
tered during the computation of the adaptation point.

• Postpone.The computation of the adaptation point can be
postponed until the effective behavior of the instruction
is known. Once the unpredictable instruction has been
executed, the computation of the adaptation point resumes
with a new start point (the one that is being entered).

• Skip. The computation of the point can move forward in
the control flow graph until all control subflows merge. In
this case, the prediction jumps over loops and conditions.

• Force. The behavior of the conditional instruction can
be guessed when additional static information is avail-
able. With this strategy, one branch of the conditional
instruction is assumed accordingly to some application-
dependant knowledge; then some application-level mech-
anism enforces that the execution path respects this
assumption.

The two following examples illustrate the usage of the
“force” strategy. Firstly, it is possible for some loops to insert
unexpected empty iterations; in this case, it can be guessed
that the conditional instruction will execute the branch that
stay in the loop; this behavior can be enforced by making
one more empty iteration on-demand. Secondly, if the code
includes assertions to detect error cases, it could be reasonably
assumed that those assertions hold; in this case, it can be
guessed that the corresponding conditional instruction will
execute the branch leading to error-free cases.

B. Characterization of the chosen global point

The point that should be chosen is the supremumu,
if it exists, of the set S of the next local points for
each thread with respect to the “precedes” partial order
(noted�). Indeed, the property∀x · (x ∈ S ⇒ x � u) guar-
antees thatu is in the future of all threads; the property∀v ·
(v ∈ P ⇒ ((∀x · (x ∈ S ⇒ x � v))⇒ u � v)) means thatu
is the first point amongst those in the future of all threads.

Even if loops are unrolled, the control flow graph is not a
lattice as it may contain patterns such as the one of figure3(a).
In this example, the supremumsup ({P1, P2}) does not exist.
This pattern captures a subset of conditional instructions. The
three strategies that has been identified for locally predicting
the next point can be used to work-around non-existence of
the supremum.
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• Postpone.Postponing the computation of the adaptation
point until the unpredictable instruction has been executed
can be seen as inserting a special node that models that
instruction in the control flow graph. For example, on
figure 3(b), a nodeC has been inserted to represent the
conditional instruction. When such a node is chosen, a
new round for finding a satisfying point is started once
the corresponding instruction has been executed.

• Skip. Skiping the conditional block is equivalent to
compute the supremum within the subset defined by:

{a|∀y · ((∀x · (x ∈ S ⇒ x � y))⇒ (a � y) ∨ (y � a))}

This set contains the points that are related to all succes-
sors of all points inS. Those points are guaranteed to
be traversed by any execution thread starting from any
point in S. In the given example, it restricts to compute
the supremumsup ({P1, P2}) in {P1, P2, P5}; this
supremum exists.

• Force. Forcing one branch of a conditional instruction
removes all out edges but one of the corresponding
node. This is sufficient to make the supremum exist. For
example, on figure3(c), the conditional instruction that
follows P1 has been forced such that it always leads to
P3.

Each conditional instruction may use a distinct strategy. In
such a case, the several strategies are combined.

C. Comparison of the strategies

These three strategies have their own fall down. The “post-
pone” one shortens the time between choosing a point and
reaching the chosen point. It may result in an increase of the
risk that the execution thread tries to get through the locally
chosen point before it has been globally either confirmed or
evicted. The “skip” one chooses an adaptation point further in
the future of the execution path (and possibly falls back on
the end of the code). The “force” one modifies the code of
the execution thread.

V. BUILDING AN ALGORITHM

In order to solve the problem of finding a point in the case
of a parallel service, an algorithm has been designed.

A. Identification of the candidate points

Having a good identification system for the points is a key
issue. Indeed, as sectionIV-B showed, the case of parallel
self-adaptable components requires the computation of the
supremum of a set of points. This requires to be able to
compare easily candidate points with respect to the “precedes”
partial order. However, with naive point identification, decid-
ing whether a candidate point precedes, succeeds, or is not
related to another one requires the computation of the transitive
closure of the control flow graph. The same apply for the join
composition law. This is why smarter identification system for
the points is needed.

1) Description of the identification system:We think that
the good representation to use is a tree view of the hierarchical
task graph. Figure4 gives an example algorithm that has been
annotated with candidate points; figure5 shows the control
flow graph between annotated points; figure6 shows the
corresponding tree view. The edges of the tree are labelled
as follows:

• out edges of loop nodes are labelled with the value of the
indice within the iteration space of the loop;

• out edges of condition nodes are labelled with either the
symbol “then” (the condition is true) or the symbol “else”
(the condition is false);

• other edges (out edges of block nodes) are labelled with
the execution order number in the control flow.

Algorithm gcd (a, b) :
loop until ((a mod b) = 0)

if (a < b) then
// candidate pointP1
tmp← a
a← b
b← tmp

else
// candidate pointP2
a← (a mod b)

end if
end loop
// candidate pointP3
return (b)

Fig. 4. An example algorithm

Considering the tree view of the hierarchical task graph,
one can see that the nodes of the control flow graph are the
leaves of the tree. Each candidate point is identified by the
sequence composed of the labels of the edges traversed by
the path from the root to the node corresponding to it. For
example, the node “P3”is identified by〈2〉; the node “P1” is
identified by the sequence〈1, (a, b) , 1, else, 1〉.
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Fig. 6. Tree view of the hierarchical task graph of the algorithm4

2) Order on points: The set of edge labels in the tree is
E = N∪I∪{then, else}, whereN is the set of execution order
numbers (natural numbers) andI the iteration space partially
ordered by an application-specific relation�I . We define the
following partial order over the setE of edge labels of the
tree:

∀x, y ·
(
x, y ∈ E2 ⇒

(x �E y ⇔
((

x, y ∈ N2 ∧ x ≤ y
)

∨
(
x, y ∈ I2 ∧ x �I y

))))
Notably, the two constants “then” and “else” are set not
comparable to other values and values in iteration spaces
(such as(a, b) in the example) are partially ordered by an
application-specific relation.

The edges of the control flow graph (that represent the
“precedes” partial order between points) are (graphically)
transverse to those of the tree. Consequently, the lexico-
graphical partial order�n

E on the sequences is equivalent
to the partial order on points defined by the control flow
graph. Thus, with this identification system, deciding whether
a point precedes, succeeds, or is not related to another one

can be computed as a direct lexicographical comparison (not
requiring the computation of the transitive closure of the
control flow graph anymore). Moreover, this ordering directly
takes into account the loop indices in iteration spaces, whereas
the control flow graph does not.

3) Discussion:This identification system makes sense only
in the case of a parallel component into which all threads
are allowed to have different dynamic behaviors (different
behavior of conditionnal instructions and loop indices desyn-
chronization). Otherwise, a simple counting identification sys-
tem is sufficient. Furthermore, in the case of a non-parallel
component, no identification system is required.

B. Computation of the local adaptation point

Because we restricted to candidate points in the future of
the execution path, the local adaptation point is the next point
in the path. Computing this point simply consists in following
the edges of the control flow graph. This corresponds to a
depth-first traversal of the tree from the left to the right. This
traversal begins at a start point that is at least the one being
executed at the time of the computation.

C. Instrumentation of the code

In order to predict the next candidate point in the future
of the execution path, the coordinator must be able to locate
the actual execution progress in the space of the candidate
points. As it must be able to build the sequence identifying the
candidate point that is being executed by the execution thread,
the coordinator requires an instrumentation of the code.

The instrumentation of the code consists in inserting some
pieces of code at each node of the tree view of the hierarchical
task graph as presented at the preceding section. The figure7
shows an example of an instrumented algorithm.

Algorithm instrumented_gcd (a, b) :
enter_function (gcd (a, b))
enter_loop (a, b)
loop until (leave_loop ((a mod b) = 0))

iteration_loop (a, b)
if (enter_condition (a < b)) then

candidate_point (P1)
tmp← a
a← b
b← tmp

else
candidate_point (P2)
a← (a mod b)

end if
leave_condition ()

end loop
candidate_point (P3)
return (leave_function (b))

Fig. 7. Instrumented version of the algorithm4

The process of inserting the instrumentation statements in
the source code of the component can be largely automated



using aspect-oriented programming (AOP [3]) techniques. In
this case, the join points are the nodes of the tree representation
of the code previously described.

D. Protocol for computing the supremum

Many trivial protocols might be designed to compute this
supremum (for example, centralized). Many already exist to
compute a maximum (in particular for leader election); they
can easily be modified to compute a supremum instead of a
maximum. However, we think that a specific protocol suits
better this case.

1) Motivation for designing a specific protocol:The full
set of the local adaptation points is not always necessary
to compute the supremum. The idea is to superimpose the
agreement protocol and the local computations of the next can-
didate point in order to exempt some of the execution threads
from computing their local adaptation point. In particular, it is
interesting to exempt those whose prediction is postponed due
to conditional instructions. Indeed, it allows the computation
of the local adaptation point to resume sooner with a start point
that is further in the execution path. Moreover, superimposing
the protocol and the computation evicts the earliest adaptation
points sooner than if the whole set of local adaptation points
must be computed. This avoids situations in which the execu-
tion thread tries to execute through a locally chosen point that
has not been either confirmed or evicted yet.

2) Informal description of the protocol:The key idea of
the protocol is to let the threads negotiate. Each thread can
propose to the others its view of what the common adaptation
point is, namely the point it has chosen locally. If it has
not chosen one (because of unpredictable instructions such as
conditions), it can give clues to the other threads. These clues
can be for example the root node of the subtree representing
the conditional block. When a thread receives a proposition
or a clue, it may take different actions depending on how it
compares to its own proposition.

• If its own proposition is better (that is to say in the future
of the received one), it rejects the received proposition.

• If the received one is better, it is adopted.
• If both are not comparable, the thread retracts its propo-

sition and computes a new one that takes into account the
two previous ones. The computation starts at the point at
which the control subflows merge (the supremum of the
two points).

• If both propositions are the same, the thread agrees with
the other one.

The protocol also progresses when an execution thread pro-
vides new information. For example when the functional
thread executes a conditional instruction, it may retract its clue
and propose a new one.

The protocol ends when all threads agree with each other’s
and when the agreement is on a true proposition (not just a
clue). This means that they all have adopted the same point.

3) Anatomy of the protocol:We have designed a specific
protocol to solve this problem. This protocol is based on
a unidirectional ring communication scheme. Each thread

confronts its proposition with the one of its predecessor and
sends it only to its successor in the ring. The end of the
protocol, namely the reach of the agreement, is detected
using a Dijkstra [4]-like termination algorithm. Our protocol
distinguishes strong propositions (values that can be chosen by
the agreement) from weak propositions (values that forbid the
agreement to conclude, previously called clues). The protocol
allows threads to retract their proposition. It strictly defines
the criteria of the consistency of retraction.

Our protocol is pessimistic. If an execution thread tries to
get through a point thought to be the chosen one, the algorithm
refuses to speculate whether it should allow the execution
thread to continue or execute the reaction. It rather suspends
the execution thread until it gets certainty. As a result, because
the “postpone” strategy eases such situations (as described
in section IV-C), this strategy tends to increase the risk of
suspending the execution thread.

VI. EXPERIMENTS

The experiments presented here aim at comparing the strate-
gies described at sectionIV-A.2 with regard to functional code
suspension and delay before the execution of the reaction. The
goal is to exhibit and validate the expected behaviors described
in sectionIV-C. This characterization would help developers
to choose the right strategy depending on their code.

Three experiments has been made: synthetic loop code,
synthetic condition code and NAS Parallel Benchmark 3.1 [5]
FFT code. Only the results of the latter will be presented and
discussed.

A. Experimental protocol

The experimental protocol consists in trigerring adaptation
many times at random intervals (with uniform distribution to
avoid implicit synchronization between the functional code
and the adaptation trigger) while the code is being executed by
a 4 processors cluster. Experiments result in two data series:
one indicates for each adaptation the time elapsed between the
trigger and the effective execution of the reaction; the other
gives the time during which the functional thread has been
suspended while choosing the point at which to adapt. For
each data serie, one curve is drawn that gives an approximate
measure of the density of samples for each observed value.

B. Observations

Figures8 and 9 show the results with the FFT code. This
experiment aims at comparing the “postpone” and “skip”
strategies for conditional instructions within a main loop. The
main loop has the “force” strategy so that the synchronization
and communication statements induced by our algorithm are
exclusively related to the inner instructions. This prevents
distortions of the observations.

Figure8 shows that the “postpone” strategy tends to select
an adaptation point that arrives sooner in the execution path
than the “skip” strategy. Conversly, figure9 shows that the
“postpone” strategy tends to suspend the functional code for
a longer time than the “skip” strategy. Indeed, the “postpone”
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strategy leads to higher density of samples up to about 0.5 s of
functional code suspension. However, this observation has to
be balanced as it appears that both strategies do not suspend
the functional code in most of the samples.

C. Discussion

These results and those we obtained with synthetic codes
confirm the behaviors we expected at sectionIV-C. Namely,
the choice between the “postpone” and the “skip” strategies,
is a trade-off between the precision of the prediction and the
risk to uselessly suspend the functional code.

The observations are explained by the fact that the “post-
pone” strategy tends to delay the agreement in order to
choose a more precise point (closer to the current state), in
comparision to the “skip” strategy. It makes the “postpone”
strategy increase the risk for other threads to reach that point
before the agreement is made, and thus to suspend their
execution. On the other side, the “skip” strategy tends to
choose a point that is further in the future of the execution
path; it results in a lower risk for other threads to reach that
point before the agreement is made and thus to suspend their
execution.

Consequently, if the time between a conditional instruction
and the following point is large enough to balance the delay
of the agreement, the “postpone” strategy should be preferred
as it results in a sooner adaptation. Otherwise, the “skip”
strategy should be used in order to avoid the suspension of
the execution thread.

VII. R ELATED WORKS AND DOMAINS

A. Other projects about dynamic adaptation of parallel codes

Most of the projects that faced the problem of dynamic
adaptation such as DART [6] do not consider parallelism.
Other projects such as SaNS [7] and GrADSolve [8] build
adaptive components for Grid. Those projects target adaptation
only at the time of component invocation. This supposes a
fine-grain encapsulation in components; otherwise, if meth-
ods are too long, adaptation is defeated because it cannot
occur during an execution. Within the context of Commercial-
Off-The-Shelf (COTS) component concept, sufficiently fine-
grained encapsulation for the dynamic adaptation to make
sense only at invocation level does not appear valuable enough;

whereas sufficiently coarse-grained encapsulation for valuable
COTS components are not able to really dynamically adapt
themselves if they do so only at each invocation. This is why
we think that components should be able to adapt themselves
not only at method calls, but also during the execution of
methods.

The Grid.It project [9] also faces the problem of dynam-
ically adapting parallel components. The followed approach
is based on structured parallelism provided by high-level lan-
guages. The compiler generates code for virtual processes that
are mapped to processing elements at run-time. An adaptation
consists in dynamically modifying this mapping. This adap-
tation can be done within language constructs transparently
to the developper. In this case, the consistency enforcement
mechanism can rely on assumptions on the overall structure
of the program as it is generated by a compiler.

PCL [10] focuses on the reflexive programming tools for
the dynamic adaptation of parallel applications. This project
considers dynamic adaptation as modifications on a static task
graph modeling the code and provides at runtime primitive
operators on that graph. It gives a full framework for reflex-
ive programming that is useful to implement reactions. The
problem of the coordination of the reaction and the execution
threads of the functional code has been studied with PCL
in [11]. Their approach to the problem of the coordination is
similar to ours: the adaptation is scheduled to be executed at an
adaptation point in the future of the execution path. However,
the problem of dealing with unpredictable conditional instruc-
tions is not addressed. Furthermore, the consistency model is
different from ours. In PCL, each reaction is triggered at any
point of the specified region. For example, on figure10, tasks
B andD are not distinguished. According to the consistency
model, in a two-threads component, if one is executingA and
the otherC, a “region in” reaction targeting regionRGN1 is
scheduled at theA → B edge for the first thread and at the
C → D edge for the second one. We think that it is a better
consistency model to schedule the reaction at theC → D
edge for both threads (our “same state” consistency). One
solution might be to putB and D in two different regions;
but in this case, PCL fails specifying that the reaction can
be scheduled either beforeB or beforeD, but at the same
edge for all threads. Furthermore, PCL is unable to handle the



case of thread desynchronization in loops (one thread doing
more iterations than another does) for regions being in such a
loop. The simple region counter is not sufficient to solve this
problem.

B. Computation steering

The problem of steering a parallel component is very close
to our problem of adapting this component. Indeed, in both
cases, we need to insert dynamically code at some global state.
The EPSN project [12] aims at building a platform for online
steering and visualization of numerical simulations. In [13],
the authors describe the infrastructure they built to do the
steering. Their structured dates is similar to our candidate
point identification system. Both systems are based on similar
representations of the code. Moreover, steering like dynamic
adaptation tries to find the next candidate point in the future of
the execution path. Thus, computation steering and dynamic
adaptation may benefit from fusionning in a single framework.

C. Fault tolerance

Fault tolerance might be seen as a particular case of dynamic
adaptation. Indeed, it is the adaptation to the “crash” of
some of the allocated resources. However, things are not that
simple. Fault tolerance encompasses two different problems:
the recovery of the fault and the adaptation to the new
situation. Only the second one really belongs to the problem
of dynamic adaptation. Many strategies can be used to recover
from faults. The closest one from dynamic adaptation is
probably checkpointing in the sense it requires some global
points. Whereas dynamic adaptation can look for a point in
the future of the execution path, checkpointing requires a point
in the past. Nevertheless, mechanisms required by dynamic
adaptation may be useful to implement recovery strategies
based on checkpointing. The instrumentation of the code can
be used as hooks at which checkpoints can be taken. Indeed, it
implicitly statically coordinates the checkpoints of all threads,
avoiding the problem of computing a global consistent state.
Reciprocally, dynamic adaptation can take advantage of the
techniques that have been developped to checkpoint and restart
computations in the area of fault-tolerance.

VIII. C ONLUSION

In this paper, we have briefly described the overall model we
introduced to build self-adaptable parallel components. This
paper essentially focuses on the coordinator functional box.
This coordinator is responsible for scheduling the reaction in
the execution path of the several execution threads.

The protocol we designed follows an pessimistic approach
with regard to the fact that the execution thread may go
through a confirmed point. In the future of our work, we
will study how optimistic approaches can be designed. For
example, when the functional code reaches a point suspected to
be chosen but not yet confirmed, it may continue its execution
instead of waiting for the point to be either confirmed or
evicted. If at the end that point is confirmed, the situation
may be repaired by rolling-back the functional code.

Moreover, our coordinator searches adaptation points exclu-
sively in the future of the execution path. However, this is an
arbitrary choice that has no other justification than simplifying
algorithms. In the future, it would search in both directions
(future and past) to find the best adaptation point. We will
study how algorithms can be generalized.

Endly, our “same state” consistency model has to be
extended to the case of non-SPMD components: we have
already thought of another consistency model defined by a
customizable correspondence relation between the candidate
points of the threads.

As a longer term research, we are working on completing
our architecture in order to build a platform. In particular, we
are investigating protocols for adaptation within assemblies of
components. We are also studying how a resource manager
could take advantage of applications able to adapt themselves.
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