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Abstract—As Grid architectures provide execution environ- generic mechanisms exist in adaptable components that are
ments that are distributed, parallel and dynamic, applications independant of the component itself. Our research focuses on
require to be not only parallel and distributed, but also able ,q gesign of an adaptation framework for parallel components

to adapt themselves to their execution environment. This article that id Il th hani o f1h .
presents a model for designing self-adaptable parallel components at provides all those common mechanisms. Une or the main

that can be assembled to build applications for Grid. This model Problems consists in providing a mechanism for choosing a
includes the definition of a consistency criterion for the dynamic point in the execution to perform the adaptation in a consistent
adaptation of SPMD components. We propose a solution to manner. This article aims at addressing this problem.
implement this criterion. It has been evalued on both synthetic Sectionll presents our model of dynamic adaptation for par-
and real codes to exhibit the behavior of the several proposed . : .

allel codes to set the context of this article up. Sectibigives

strategies.
Keswords— dynamic adaptation, consistency, parallel few mathematical definitions that are useful in the remaining
computing of this paper. Section® andV describe how the future of the

execution path is predicted to choose the adaptation point at
l. INTRODUCTION which the adaptation code is inserted. Sectbrdiscusses the

Grid is an emerging architecture that we consider as a largesults obtained from our experiments. Sectidh compares
scale federation of pooled resources. Those resources migiit work to others in the area of dynamic adaptation. It also
be processing elements, storage, and so on; they may cahews similarities with computation steering and fault toler-
from parallel machines, clusters, or any workstation. One afice. Endly, sectioWlll concludes this paper and presents
the main properties of these resources is to have changsmmne perspectives.
characteristics even during the execution of an application.
Resources may come and go; their capacities may vary.
Moreover, resources may be allocated then reclaimed andrhe dynamic adaptability of a component is its ability to
reallocated as applications start and terminate on the Gridodify itself according to the execution environment on which
To sum up, Grid is an architecture that is at the same tinids deployed. The goal is to help the component to give the
distributed, parallel and dynamic. This is why we think tha@est performance given its allocated resources. Moreover, it
the right application model to use in order to benefit from sughakes the component aware of changes in resource allocation.
an environment should be distributed assemblies of paralRg¢sources may be allocated and reclaimed dynamically during
self-adaptable components. the lifetime of the component.

In our context, we just see the component as a unit that
explicitly specifies the services it provides (“provide ports”)”
and the ones it requires (“‘use ports”). Required resources ar&Vith our model of dynamic adaptation [2], parallel self-
one kind of required services. Service specifications can 8daptable components can split in several functional boxes
qualitative (type specification); they can also be quantitati(féome of them being independant of the component itself).
(quality of the provided or used services). A parallel conf parallel self-adaptable components contains five major
ponent is S|mp|y a component that encapsu]ates a paraﬂ@'ﬂctionaj boxes: its service, reactions, policy, decider and
code. For example, GridCCM [1] extends CORBA Compgcoordinator. Figurel shows the connections between those
nent Model to support parallel components. A self-adaptap¥exes. A short description of them follows.
component is a component that is able to modify its behaviore Service.The service of the component is what it provides.
depending on the changes of the environment: it may use The service can be implemented by several algorithms
different algorithms that use services differently and provide that might be used to solve a single problem. Each of
different qualities of services. The choice of the algorithm is  these algorithms uses differently the resources; thus, there
a component-dependant problem and cannot be solved in a is one preferred algorithm for each configuration of the
general way at some middleware level. Nevertheless, some resources allocated to the component.

Il. M ODEL OF SELFADAPTABLE COMPONENTS

Structure of a self-adaptable component
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: Srdore Sxooution of renctions : all components. Consequently, it propag_ate; the trigger of the
i"““‘L Coordinator adaptation to the components that require it.

Relies on Executes

Policy C. Performance model
Modifies the implementation|of . . .
The goal of dynamic adaptation is to help the component
ol e e < 0 gi
give the best performance. Thus, the model assumes that
Fig. 1. Model of a parallel self-adaptable component adaptation occurs when the component runs a non-optimal

service given its allocated resources. This means that the
completion time is worse than what it could be. In a general

« Reactions.The reactions are the ways to modify the comway, the conceptual performance model of a single-threaded
ponent. They modify the way the service is implementedpmponent that adapts itself is shown by figdréThe x-axis
changing the algorithm with another one, adjusting itis the execution flow of the component; the curve gives the
parameters or anything else. expected completion time if the component adapts itself at the

« Policy. The policy describes the component-specific irsorresponding point in its execution flow.
formation required to make the decisions. For example,
the policy can be an explicit set of rules or the collection
of the performance models of the algorithms.

« Decider. The decider makes the decisions. It decides
when and how the component should adapt itself. In order
to decide, it relies on the policy ; it may also embed
a feedback controller (for example to complement the
performance models of the policy). 7 —o———C——

« Coordinator. The coordinator synchronizes the service Adaptsinthepast  Present Adapts in the future

with the reaction. To do so, it chooses a point (an _ .
. . Fig. 2. Conceptual performance model of an adapting component
instantaneous statement that annotates a special state)

within the executio.n path in order to insert the reaction 1,4 adaptation can occur in either the future or the past
chosen by the decider. of the current state. In the case of adapting in the past, it
Service, reactions and policy are specific to the componefdquires the restoration of a checkpoint (that has a cast
whereas the decider and the coordinator are independant curve). The limit of adapting in the future is adapting once
the component. The decider and the coordinator should thig execution has ended (or equivalently not adapting at all);
be parts of an adaptation framework. the limit of adapting in the past is to restart from the begining
In the context of parallel components, the service can gurely static adaptation). It appears that whatever the search
implemented either sequentially (exactly one execution threagection, the best point will always be the nearest one from
or a parallelly (several communicating execution threads). {Re current state.
the latter case, the coordinator must implement a parallelin the case of a parallel component, several curves are
algorithm. superimposed. Because the threads of the component are not
necessarily synchronized, the curves are slightly shifted. The
global completion time is thus the maximum of the ones for
Because the quality of the services used by a compongitthreads. In this case, the best point can be in the future for
is of greater importance to the adaptation, we attach to eagme threads and in the past for the others.
port link a contract that describes the effective quality of | this paper, we arbitrarily chose to consider only the search
the provided service. Moreover, for the sake of uniformityjrection that goes to the future of the execution. In the case

our model abstracts resources as “provide ports” of sorgea parallel component, we look for a global point that is in
component called the environment. The execution environmepé future of all threads.

of a component is thus completely described by the contracts )

attached to its “use ports”. Consequently, any change fh Consistency model

the execution environment is reflected by a change in thosdn the case of a parallel service, the coordinator must

contracts, triggering the adaptation. enforce the consistency of the adaptation. We defined one
Contracts are dynamically negotiated and renegotiatedcensistency model we called the “same state” consistency

component negotiates sufficient quality of service with itnodel. In this model, the adaptation is said to be consistent

subcontractors in order to respect the contracts with its clienifsand only if all threads execute the reaction from the same

it negotiates with its clients the quality of the provided servicestate (this logical synchronization does not require an effective

according to the ones contracted with its subcontractors. $pnchronization of the execution threads).

that way, any renegotiation of one contract automatically This model only makes sense in the case of SPMD codes

propagates to the entire assembly of components (the apfpiarallel codes for which all threads share the same control

cation) to adjust the quality of all the provided services dfow graph).

»
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Completion time

B. Contracts between components



E. Scenario of dynamic adaptation 1) General schemaAn execution path can be seen as a

From time to time, possibly due to some external event, tRéth in the control flow graph that models the code. If loops
decider decides according to the policy that the componéh unrolled (for example by tagging nodes with indices in
should adapt itself. It thus orders the coordinator to exectgration spaces), the control flow graph defines a “precedes”
a specified reaction. The coordinator then chooses a pointP@tial order between the points of a code. Given this relation,
the future of the execution path at which the reaction can B&ch thread of the parallel component is able to locally predict
executed. When the service is parallel, the point is a glodi} Next point at least in trivial cases.
state such that all threads are in the same state (“same state?) Uncertain predictions:Predicting the future of an ex-
consistency model). At this point, the coordinator suspends eution path is undecidable due to conditional instructions:
service and executes the reaction. their behavior is unpredictable since it depends on runtime

In this paper, we will concentrate on the coordinator. Segomputations. This occurs for both conditions and loops,
tion IV describes how the point can be computed; section which appear as nodes having several successors in the control
depicts how an algorithm can be built. In the remaining of téow graph. _
document, we will call “candidate points” the points at which Three strategies may be used when such a node is encoun-
a reaction can be executed. The one that has been choseffgd during the computation of the adaptation point.

the coordinator will be called the “adaptation point”. « Postpone.The computation of the adaptation point can be
postponed until the effective behavior of the instruction

o . _ is known. Once the unpredictable instruction has been
Definition 1 (poset):A poset (or partially-ordered set) is a executed, the computation of the adaptation point resumes

IIl. DEFINITIONS

pair (P, R) where P is a set andR is a binary relation over with a new start point (the one that is being entered).

P that is (1) reflexive, (2) antisymmetric and (3) transitive. o Skip. The computation of the point can move forward in
(1) Vz-(z € P = zRx) thg control flow grgph un.tiI all control subflows merge. In
(2) Vz,y-(z,y € P2 = ((xRy AyRz) = z = y)) this case, the predpﬂon jumps over Ioop; and cgndltlons.
() Va,y,z- (z,y,2 € PP = ((zRy A yRz) = 2Rz) » Force. The behavior of the conditional instruction can
Definition 2 (supremum)Given a poset P, R), the supre- be guessed when additional static information is avail-

mum sup (S) of any subsetS ¢ P of P is the least upper able. With this strategy, one branch of the conditional

boundw of S in P such that: instruction is assumed accordingly to some application-

dependant knowledge; then some application-level mech-

Vr - S=zR ; . .
ze(ze zhu) anism enforces that the execution path respects this

AYv-(veP=(Vx-(xe€S=xRv)) = uRv))

Definition 3 (infimum): Symmetrically to the supremum, assumption. _ _
given a posetP, R), the infimuminf (S) of any subsef C P The two following examples illustrate the usage of the
of P is the greater lower boundof S in P such that: “force” strategy. Firstly, it is possible for some loops to insert

unexpected empty iterations; in this case, it can be guessed
Vo (z € § = IRx) that the conditional instruction will execute the branch that
AV (ve P = (Yo (2 €5 = vRr)) = vRl) stay in the loop; this behavior can be enforced by making
The infimum of S in the poset P, R) is the supremum of one more empty iteration on-demand. Secondly, if the code
in (P, R—l). includes assertions to detect error cases, it could be reasonably
Definition 4 (lattice): A lattice £ is a poset(P, R) such assumed that those assertions hold; in this case, it can be
that for any pairz,y € P?, both the supremunsup ({z,y}) guessed that the corresponding conditional instruction will
and the infimuminf ({z,y}) exist. This defines two internal execute the branch leading to error-free cases.

ition laws: — .
composition laws B. Characterization of the chosen global point

S.up({l’_’y}) =zVy (oin) The point that should be chosen is the supremum
inf ({,y}) =z Ay (mee) if it exists, of the setS of the next local points for
IV. COMPUTING THE FUTURE each thread with respect to the “precedes” partial order

The coordinator needs to find a global point such that (poted <). Indeed, the propertyz - (z € S = = < u) guar-
represents the same state for all threads. As it restricts to pof#f§ees that is in the future of all threads; the property -
in the future of execution paths this point should be the firt € P = ((Vz - (z € S = 2 Zv)) = u X v)) means that
one in the future for all threads, given the assumption on tiethe first point amongst those in the future of all threads.

performance model. Even if loops are unrolled, the control flow graph is not a
o ) lattice as it may contain patterns such as the one of fig(ag
A. Local prediction of the next point In this example, the supremusp ({P1, P2}) does not exist.

For each thread, the coordinator needs to find the nélttis pattern captures a subset of conditional instructions. The
candidate point in the future of the execution path. This poititree strategies that has been identified for locally predicting
would be the one at which the coordinator is going to executlge next point can be used to work-around non-existence of
the reaction in the case of a single-threaded component. the supremum.



(a) Pattern
which prevents
the supremum
from existing

Fig. 3. Example of control flow graph with non-existent supremum

« Postpone.Postponing the computation of the adaptatio
point until the unpredictable instruction has been execut
can be seen as inserting a special node that models

(b) Inserting
nodes for
conditionals

(c) Removing
branches of
conditionals

V. BUILDING AN ALGORITHM

In order to solve the problem of finding a point in the case
of a parallel service, an algorithm has been designed.

A. ldentification of the candidate points

Having a good identification system for the points is a key
issue. Indeed, as sectidh-B showed, the case of parallel
self-adaptable components requires the computation of the
supremum of a set of points. This requires to be able to
compare easily candidate points with respect to the “precedes”
partial order. However, with naive point identification, decid-
ing whether a candidate point precedes, succeeds, or is not
related to another one requires the computation of the transitive
closure of the control flow graph. The same apply for the join
composition law. This is why smarter identification system for
the points is needed.

1) Description of the identification systerie think that
the good representation to use is a tree view of the hierarchical
fkk graph. Figurd gives an example algorithm that has been

Bafotated with candidate points; figuseshows the control

instruction in the control flow graph. For example, OBiow graph between annotated points; figeshows the

figure 3(b), @ nodeC' has been inserted to represent the, resnonding tree view. The edges of the tree are labelled
conditional instruction. When such a node is chosen,ag follows:

new round for finding a satisfying point is started once
the corresponding instruction has been executed.

Skip. Skiping the conditional block is equivalent to
compute the supremum within the subset defined by:

{alVy - (Vz-(reS=x=y))=(a=2y) V(y=<a)}

« out edges of loop nodes are labelled with the value of the
indice within the iteration space of the loop;

« out edges of condition nodes are labelled with either the
symbol “then” (the condition is true) or the symbol “else”
(the condition is false);

« other edges (out edges of block nodes) are labelled with

This set contains the points that are related to all succes- the execution order number in the control flow.

sors of all points inS. Those points are guaranteed to
be traversed by any execution thread starting from any
point in S. In the given example, it restricts to compute
the supremumsup ({P1, P2}) in {P1, P2, P5}; this
supremum exists.

Force. Forcing one branch of a conditional instruction
removes all out edges but one of the corresponding a+b
node. This is sufficient to make the supremum exist. For
example, on figured(c), the conditional instruction that
follows P1 has been forced such that it always leads to

P3.

Algorithm gcd (a,b) :
loop until ((a modb) = 0)
if (a < b)then
// candidate point’1
tmp «— a

b« tmp
else
// candidate point2
a «— (a modb)
end if

Each conditional instruction may use a distinct strategy. In
such a case, the several strategies are combined.

C. Comparison of the strategies

These three strategies have their own fall down. The “post-
pone” one shortens the time between choosing a point and

reaching the chosen point. It may result in an increase of theConsidering the tree view of the hierarchical task graph,
risk that the execution thread tries to get through the localbne can see that the nodes of the control flow graph are the
chosen point before it has been globally either confirmed l@aves of the tree. Each candidate point is identified by the
evicted. The “skip” one chooses an adaptation point further s@quence composed of the labels of the edges traversed by
the future of the execution path (and possibly falls back dhe path from the root to the node corresponding to it. For
the end of the code). The “force” one modifies the code ekample, the nodeP3"is identified by (2); the node P1” is
identified by the sequendd, (a,b),1,else 1).

the execution thread.

end loop
// candidate point3
return (b)

Fig. 4. An example algorithm




(amodb) =0
&&
a<b

(amod b)=0

Fig. 6. Tree view of the hierarchical task graph of the algorithm

can be computed as a direct lexicographical comparison (not
requiring the computation of the transitive closure of the
control flow graph anymore). Moreover, this ordering directly
takes into account the loop indices in iteration spaces, whereas
the control flow graph does not.

3) Discussion:This identification system makes sense only
in the case of a parallel component into which all threads
are allowed to have different dynamic behaviors (different
behavior of conditionnal instructions and loop indices desyn-
chronization). Otherwise, a simple counting identification sys-
tem is sufficient. Furthermore, in the case of a non-parallel
component, no identification system is required.

B. Computation of the local adaptation point

Because we restricted to candidate points in the future of
the execution path, the local adaptation point is the next point
in the path. Computing this point simply consists in following
the edges of the control flow graph. This corresponds to a
depth-first traversal of the tree from the left to the right. This
traversal begins at a start point that is at least the one being
executed at the time of the computation.

C. Instrumentation of the code

In order to predict the next candidate point in the future
of the execution path, the coordinator must be able to locate
the actual execution progress in the space of the candidate
points. As it must be able to build the sequence identifying the
candidate point that is being executed by the execution thread,
the coordinator requires an instrumentation of the code.

The instrumentation of the code consists in inserting some
pieces of code at each node of the tree view of the hierarchical
task graph as presented at the preceding section. The figure
shows an example of an instrumented algorithm.

Algorithm instrumented_gcd (a, b) :

2) Order on points: The set of edge labels in the tree is
&€ = NUZU{then,else}, whereN is the set of execution order
numbers (natural numbers) afidthe iteration space partially
ordered by an application-specific relatiety. We define the
following partial order over the sef of edge labels of the
tree:

Y,y - (x,y€52:>
(z=ey & ((z,yeN*Az<y
\/(:z:,yEIQ/\:zr =7 y))))

Notably, the two constants “then” and “else” are set not
comparable to other values and values in iteration spaces
(such as(a,b) in the example) are partially ordered by an
application-specific relation.

The edges of the control flow graph (that represent the
“precedes” partial order between points) are (graphically)
transverse to those of the tree. Consequently, the lexico-
graphical partial order<Z on the sequences is equivalent
to the partial order on points defined by the control flow

graph. Thus, with this identification system, deciding whether The process of inserting the instrumentation statements in
a point precedes, succeeds, or is not related to another tiie source code of the component can be largely automated

enter_function (ged (a, b))

enter_loop (a, b)

loop until (leave_loop ((a mod b) = 0))
iteration_loop (a,b)
if (enter_condition (a < b))then

candidate_point (P1)
tmp — a
a+—b
b«— tmp
else
candidate_point (P2)
a — (a modb)
end if
leave_condition ()
end loop
candidate_point (P3)

return (leave_function (b))

Fig. 7. Instrumented version of the algorithin




using aspect-oriented programming (AOP [3]) techniques. ¢mnfronts its proposition with the one of its predecessor and
this case, the join points are the nodes of the tree representatiends it only to its successor in the ring. The end of the
of the code previously described. protocol, namely the reach of the agreement, is detected
using a Dijkstra [4]-like termination algorithm. Our protocol
distinguishes strong propositions (values that can be chosen by
Many trivial protocols might be designed to compute thighe agreement) from weak propositions (values that forbid the
supremum (for example, centralized). Many already exist freement to conclude, previously called clues). The protocol
compute a maximum (in particular for leader election); theyjows threads to retract their proposition. It strictly defines
can easily be modified to compute a supremum instead ofy criteria of the consistency of retraction.
maximum. However, we think that a specific protocol suits our protocol is pessimistic. If an execution thread tries to
better this case. get through a point thought to be the chosen one, the algorithm
1) Motivation for designing a specific protocolthe full - refyses to speculate whether it should allow the execution
set of the local adaptation points is not always necessaffead to continue or execute the reaction. It rather suspends
to compute the supremum. The idea is to superimpose #@ execution thread until it gets certainty. As a result, because
agreement protocol and the local computations of the next cqRa “postpone” strategy eases such situations (as described

didate point in order to exempt some of the execution threagis section IV-C), this strategy tends to increase the risk of
from computing their local adaptation point. In particular, it i%uspending the execution thread.

interesting to exempt those whose prediction is postponed due
to conditional instructions. Indeed, it allows the computation VI. EXPERIMENTS

of the local adaptation point to resume sooner with a start pointtpe experiments presented here aim at comparing the strate-

that is further in the execution path. Moreover, superimposir@g;es described at sectioW-A.2 with regard to functional code

the protocol and the computation evicts the earliest adaptatiispension and delay before the execution of the reaction. The

points sooner than if the whole set of local adaptation poingg is to exhibit and validate the expected behaviors described

must be computed. This avoids situations in which the exeGy-sectionIV-C. This characterization would help developers

tion thread tries to execute through a locally chosen point that :hoose the right strategy depending on their code.

has not been either confirmed or evicted yet. _ Three experiments has been made: synthetic loop code,
2) Informal description of the protocolThe key idea of gynthetic condition code and NAS Parallel Benchmark 3.1 [5]

the protocol is to let the threads negotiate. Each thread 8Bt code. Only the results of the latter will be presented and
propose to the others its view of what the common adaptatigRssed.

point is, namely the point it has chosen locally. If it has
not chosen one (because of unpredictable instructions suchAasExperimental protocol

conditions), it can give clues to the other threads. These clqeq—he experimental protocol consists in trigerring adaptation
can be for example the root node of the subtree representiigny times at random intervals (with uniform distribution to
the conditional block. When a thread receives a propositigfyoid implicit synchronization between the functional code
or a clue, it may take different actions depending on how 4ihq the adaptation trigger) while the code is being executed by
compares to its own proposition. a 4 processors cluster. Experiments result in two data series:
» Ifits own proposition is better (that is to say in the futurgne indicates for each adaptation the time elapsed between the
of the received one), it rejects the received propositionirigger and the effective execution of the reaction; the other
« If the received one is better, it is adopted. gives the time during which the functional thread has been
« If both are not comparable, the thread retracts its propgaspended while choosing the point at which to adapt. For
sition and computes a new one that takes into account #&ch data serie, one curve is drawn that gives an approximate
two previous ones. The computation starts at the point@easure of the density of samples for each observed value.
which the control subflows merge (the supremum of the

D. Protocol for computing the supremum

two points). B. Observations
« If both propositions are the same, the thread agrees withFigures8 and 9 show the results with the FFT code. This
the other one. experiment aims at comparing the “postpone” and “skip”

The protocol also progresses when an execution thread pstrategies for conditional instructions within a main loop. The
vides new information. For example when the functionahain loop has the “force” strategy so that the synchronization
thread executes a conditional instruction, it may retract its claad communication statements induced by our algorithm are
and propose a new one. exclusively related to the inner instructions. This prevents
The protocol ends when all threads agree with each othedlistortions of the observations.
and when the agreement is on a true proposition (not just aFigure8 shows that the “postpone” strategy tends to select
clue). This means that they all have adopted the same poian adaptation point that arrives sooner in the execution path
3) Anatomy of the protocolWe have designed a specificthan the “skip” strategy. Conversly, figu@ shows that the
protocol to solve this problem. This protocol is based ofpostpone” strategy tends to suspend the functional code for
a unidirectional ring communication scheme. Each threadlonger time than the “skip” strategy. Indeed, the “postpone”
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strategy leads to higher density of samples up to about 0.5 sadfereas sufficiently coarse-grained encapsulation for valuable
functional code suspension. However, this observation hasG®TS components are not able to really dynamically adapt
be balanced as it appears that both strategies do not susplediselves if they do so only at each invocation. This is why

the functional code in most of the samples. we think that components should be able to adapt themselves
i ) not only at method calls, but also during the execution of
C. Discussion methods.

These results and those we obtained with synthetic codesthe Grid.It project [9] also faces the problem of dynam-
confirm the behaviors we expected at sectigrC. Namely, jcally adapting parallel components. The followed approach
the choice between the “postpone” and the “skip” strategigs,based on structured parallelism provided by high-level lan-
is a trade-off between the precision of the prediction and ti@ages. The compiler generates code for virtual processes that
risk to uselessly suspend the functional code. are mapped to processing elements at run-time. An adaptation

The observations are explained by the fact that the “pogbnsists in dynamically modifying this mapping. This adap-
pone” strategy tends to delay the agreement in order fftion can be done within language constructs transparently
choose a more precise point (closer to the current state),ténthe developper. In this case, the consistency enforcement
comparision to the “skip” strategy. It makes the “postpone@nechanism can rely on assumptions on the overall structure
strategy increase the risk for other threads to reach that padfithe program as it is generated by a compiler.

before the agreement is made, and thus to suspend theéipcy 110] focuses on the reflexive programming tools for
execution. On the other side, the "skip” strategy tends i gynamic adaptation of parallel applications. This project
choose a point that is further in the future of the executiqq,giqers dynamic adaptation as modifications on a static task
pth; it results in a lower r|§k for other threads to reach thaPaph modeling the code and provides at runtime primitive
point before the agreement is made and thus to suspend thigik a10rs on that graph. It gives a full framework for reflex-
execution. . . . . _ive programming that is useful to implement reactions. The
Consequently, if the time between a conditional instructigyohjem of the coordination of the reaction and the execution
and the following point is large enough to balance the delgieads of the functional code has been studied with PCL

of the agreement, the “postpone” strategy should be preferigd 1) Their approach to the problem of the coordination is

as it results in a sooner adaptation. Otherwise, the “Skigjiiar to ours: the adaptation is scheduled to be executed at an

strategy should be used in order to avoid the suspension g htation point in the future of the execution path. However,
the execution thread. the problem of dealing with unpredictable conditional instruc-
tions is not addressed. Furthermore, the consistency model is
) ] ) different from ours. In PCL, each reaction is triggered at any
A. Other projects about dynamic adaptation of parallel COde&oint of the specified region. For example, on figlis tasks
Most of the projects that faced the problem of dynami® and D are not distinguished. According to the consistency
adaptation such as DART [6] do not consider parallelisrmodel, in a two-threads component, if one is executingnd
Other projects such as SaNS [7] and GrADSolve [8] builthe otherC', a “region in” reaction targeting regioRGN1 is
adaptive components for Grid. Those projects target adaptatamiheduled at thel — B edge for the first thread and at the
only at the time of component invocation. This supposes@— D edge for the second one. We think that it is a better
fine-grain encapsulation in components; otherwise, if metbensistency model to schedule the reaction at ¢he» D
ods are too long, adaptation is defeated because it canedye for both threads (our “same state” consistency). One
occur during an execution. Within the context of Commerciasolution might be to putB and D in two different regions;
Off-The-Shelf (COTS) component concept, sufficiently finébut in this case, PCL fails specifying that the reaction can
grained encapsulation for the dynamic adaptation to make scheduled either beforB or before D, but at the same
sense only at invocation level does not appear valuable enougtige for all threads. Furthermore, PCL is unable to handle the

VIl. RELATED WORKS AND DOMAINS



case of thread desynchronization in loops (one thread doingMoreover, our coordinator searches adaptation points exclu-
more iterations than another does) for regions being in suclsigely in the future of the execution path. However, this is an
loop. The simple region counter is not sufficient to solve tharbitrary choice that has no other justification than simplifying
problem. algorithms. In the future, it would search in both directions
(future and past) to find the best adaptation point. We will
study how algorithms can be generalized.

The problem of steering a parallel component is very closeEndly, our “same state” consistency model has to be
to our problem of adapting this component. Indeed, in bo#xtended to the case of non-SPMD components: we have
cases, we need to insert dynamically code at some global stateeady thought of another consistency model defined by a
The EPSN project [12] aims at building a platform for onlineustomizable correspondence relation between the candidate
steering and visualization of numerical simulations. In [13hoints of the threads.
the authors describe the infrastructure they built to do theAs a longer term research, we are working on completing
steering. Their structured dates is similar to our candidad@r architecture in order to build a platform. In particular, we
point identification system. Both systems are based on simikme investigating protocols for adaptation within assemblies of
representations of the code. Moreover, steering like dynantiomponents. We are also studying how a resource manager
adaptation tries to find the next candidate point in the future obuld take advantage of applications able to adapt themselves.
the execution path. Thus, computation steering and dynamic
adaptation may benefit from fusionning in a single framework.
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