N
N

N

HAL

open science

A framework for dynamic adaptation of parallel
components

Jérémy Buisson, Francgoise André, Jean-Louis Pazat

» To cite this version:

Jérémy Buisson, Frangoise André, Jean-Louis Pazat. A framework for dynamic adaptation of parallel
components. International Conference ParCo, Sep 2005, Malaga, Spain. pp.65. hal-00498836

HAL Id: hal-00498836
https://hal.science/hal-00498836
Submitted on 8 Jul 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00498836
https://hal.archives-ouvertes.fr

A framework for dynamic adaptation of parallel components
Jeremy Buisson, Francoise And®®, Jean-Louis Pazat

2|RISA/INSA de Rennes, Campus universitaire de Beaulieu, avenueeder&@ Leclerc, 35042
Rennes CEDEX, France

PIRISA/Universié de Rennes 1, Campus universitaire de Beaulieu, avenuémnduabLeclerc,
35042 Rennes CEDEX, France

Abstract — The emergence of dynamic execution environments such as Grids forces applications
to take dynamicity into account. Whereas sudden resource disappearance can be handled thanks to
fault-tolerance techniques, these approaches are usually not well suited when resource disappearance
is announced in advance. However, this case occurs in particular for resource preemption due to
resource sharing or maintenance operations. Similarly, fault-tolerance techniques commonly do not
take into account resource appearance. On the other side, dynamic adaptation covers techniques for
handling changes in the execution environment. This article presents a framework intended to help
developers in the task of designing dynamically adaptable (but not fault-tolerant) components. This
article puts the emphasis on an experimental evaluation of the cost of using such a framework.

1. Introduction

The increase of resource consumption by applications is a fact. This is what leads to the introduc-
tion of notions such as meta- then grid-computing. Those approaches, that can be coarsely seen as
resource pooling, permit to increase significantly the number of resources available to applications.
However, increasing the number of resources lowers the mean time between failures. In addition,
resource pooling requires users to share the resources; and it prevents them from controlling mainte-
nance operations as they can with their own resources. This makes execution environments dynamic.
Applications executed on such environments must take into account the dynamicity of the environ-
ment. Otherwise, they would not be able to perform well, and may even not be able to complete.

Dynamic adaptatability is one approach that can be used to tackle the problem of the dynamicity
of execution environments. It consists in the ability of applications to modify themselves during their
execution according to some observations. If the application observes its execution environment, it
thus adapts itself according to its environment.

This article presents a framework for easing building dynamically adaptable components. Sec-
tion 2 provides a description of dynamic adaptation. Section 3 presents the architectural view of an
adaptable component. Section 4 focuses on the problem of coordinating the execution of the adap-
tation with the execution of the component itself. Section 5 describes the experimental results we
obtained with our prototype framework. Section 6 compares our proposal to existing related works.

2. Dynamic adaptation

Dynamic adaptation is an event-based approach for dealing with dynamicity during the execution.
When the component observes a change that is significant enough, it decides to react to this change.
For example, when a component observes that new processors become available, it may increase
its parallel degree by spawning new processes. At an abstract level, dynamic adaptation requires
that the component is able to make observations, take a decision and execute a reaction previously

2

defined. What is exactly observed, how decision is made and which actions must be performed to
execute the reaction are closely related to the component and to the goal given to dynamic adaptation.
In the given example, the component observes processors because it is able to execute a parallel
implementation of itself; the component decides to increase its parallel degree as it aims at executing
as fast as possible; it does so by spawning new processes because it is its way of executing on
a parallel environment. This shows that dynamic adaptation may not be done without the help
of developers. Nevertheless, we can exhibit generic mechanisms and provide developers with a
framework for both designing and programming dynamically adaptable components.

3. Framework for dynamic adaptation

The model for dynamic adaptability of software components we defined is divided into several
functional “boxes” distributed in three levels as shown on figure 1.

At the functional level, the service provides an implementation of what the component is expected
to do. If the component was not dynamically adaptable, it would contain only the service.

The component-independent level contains all mechanisms that can be defined independently of
the content of the service functional box. The decider box is the start point of any adaptation. It
decides whether the component should be adapted or not. To do so, it relies on incoming events
and on some external probes. The connection to the external probes is modeled by the two ports
exposed by the decider. The actual trigger of the decision-making process may either result from the
reception of an event or be spontaneous. Once the decider has decided that the component should be
adapted, it transmits a reaction to the planner. The reaction describes the kind of the adaptation that
should be performed. Given this reaction, the planner establishes a plan for applying it. This plan is
mostly a collection of action invocations connected by some control flow. This plan is given to the
executor, which executes the invocations with respect to the provided control flow. To do so, it relies
on coordinator which coordinates the invocations with the execution of the service. As section 4
details, several kinds of coordinators may be used.

The component-specific level is a placeholder for the developer to put specializations of the adap-
tation framework. The policy permits the developer to specialize the decider for the needs of its
component. It describes how decisions can be made. The plan templates describe how the planner
can build plans depending on the requested reaction and on the current execution environment. The
actions are the elementary tasks that can be invoked from the plans. In order to simplify its task,
the developer may be provided with a library of predefined actions. Endly, the relation between the
service and the coordinator is weaved thanks to aspect-oriented techniques through the “adaptable”

External
probes m ’ Plan % ’Invocation of actio%

=¥

’ Decider k>—+ Planner k>—+ Executor k>—+ Coordinator ‘

T T Component-independant f >

’ Policy ‘ ’ Plan template ‘ \;Actionv ‘ { Adaptable aspect%

Component-specific

[T i

Functional

Service

Figure 1. Architecture of an adaptable component

aspect. This aspect is parameterized specifically to the component.
An example of specialization of the framework is given in section 5.1 that describes the demon-
strative component used for experiments.

4. Coordination of the invocations of the actions

As it has been previously described in section 3, the purpose of coordinators consists in coordi-
nating the invocations of the actions requested by the plan with the execution of the service. Several
coordination policy can be identified and classified according to several concerns:

e Parallel degree. The action may be invoked in a sequential way. When the service contains
a parallel code, the action may also be invoked with the same parallel degree as the service
functional box.

e Context of execution. The action may be invoked from within the context of the threads of
the service. Alternatively, it may be invoked from the context of the processes of the service.
It may also be invoked from processes distinct from those of the service, possibly hosted by
other machines.

e Synchronization. The action may be invoked asynchronously with regard to the service. It
may alternatively require the service to suspend its execution in a special state.

The main purpose of the synchronization concern consists in ensuring that the adaptation does not
change (at least semantically) the results produced by the component. Indeed, some actions may not
be allowed to be invoked from any state of the service. For example, a matrix redistribution might
not be done while the matrix is being modified.

This is why the notion of “point” has been introduced. We call “points” the special states from
which actions are allowed to be invoked. Points mostly consists in annotations in the source code of
the service functional box; they are instantaneous statements placed by the developer at the locations
at which he considers actions can be safely invoked. Given this context, solving the synchronization
concern for a coordinator consists in choosing one point at which the action will be invoked.

When the service encapsulates a parallel code, the notion of “point” extends to the global dimen-
sion: a “global point” is a collection (one per thread of the service) of points. The choosability
of a global point is restricted by a given consistency model. An example consistency model may
intuitively assume that the parallel code consists in several parallel steps. Such a model would allow
adaptation only between those steps. This model has been described in [2]; a proposal for imple-
menting it has been presented in [3] that restricts the choice to points in the future of the execution
path. To do so, it relies on annotations of the code to track the progress of the execution and on a
representation of the control flow graph to predict future states. Those annotations are the result of
weaving the “adaptable” aspect described in section 3; whereas the points, placed manually by the
developer, are the parameters that specialize this aspect for the component.

5. Experiments

The experiments we have made are based upon the NAS Parallel Benchmark [10] 3.1 FFT code
for MPI. This code computes the fast fourier transform @bé x 256 x 128 matrix from within
an iteration. For the purpose of the experiments, it has been slightly modified to use the framework.
The modifications are exclusively annotations for indicating adaptation points and for tracking the
progress of the execution. Those annotations consist in calls to some functions of the framework.

Experiments have been done using a cluster of dual 2.4 Xeon PC. Each PC hosts at most one
process with exactly one thread of the service. For the communications, the service of the component
uses LAM-MPI [4]; the framework uses OmniORB as an implementation of CORBA.

5.1. Specialization of the framework for the experiments

For the experiments, the FFT component has been made able to modify its parallel degree depend-
ing on the number of machines available in the cluster. The policy is given by figure 2. It states that
when new machines become available, the component should spawn new processes; whereas when
some machines are announced to disappear, it should stop the corresponding processes.

Algorithm policy () :
e uponnew_machines_appear (machines):
spawn_process (machines)
e uponmachines_reclaimed (machines) :
terminate_process (machines)

Figure 2. Policy for adaptable FFT

Figures 3 and 4 show the plan templates for both reactions. The prefix of actions in brackets gives
the constraints for each of the coordination concerns listed in section 4.

In order to spawn new processes (reactipiwn _process), the component have to be made avail-
able on the corresponding machines (actieploy_on); then the processes must be created (action
spawn_process_on); endly, the matrices have to be redistributed (actiaftstribute_matrices).

Algorithm spawn_process (new_machines) :
[sequential, in distrinct process, asynchronougbylloy_on (new_machines)
[parallel, in service threads, same poigjthwn_process_on (new_machines)
[parallel, in service threads, same poirtllistribute_matrices ()

Figure 3. Plan template for spawning processes

Similarly, to terminate processes (reactienminate_process), the component have firstly to re-
distribute its matrices (actioredistribute_matrices); then the processes executed by the reclaimed
machines must terminate their execution (actoit); endly, everything that was previously in-
stalled specifically for those machines has to be cleaned up (attiomup).

Actions are implementations of the invocations requested in plans. Those implementations are
dependent on the component and its implementation. For examplé;theg_on action may trans-
fer files and start required daemons; tpewn_process_on action uses of the/ PI_Comm_spawn
function as the FFT component uses the MPI communication library.

5.2. Timeline of an adaptation

This experiment aims at showing the actions of an adaptation and their timing. This would permit
to show how the different phases of dynamic adaptation relates one to each others. This experiment
consists in one run of the demonstration component with one adaptation that increases the number
of processes from two to four. Figure 5 shows the execution trace near this adaptation.

Algorithm terminate_process (reclaimed_machines):
[parallel, in service threads, same poirtllistribute_matrices ()
if (local_machine € reclaimed_machines)then
[parallel, in service threads, asynchronouslydt ()
[parallel, in distrinct process, asynchronousldanup ()
end if

Figure 4. Plan template for terminating processes

> SS ﬁ:::::‘|//////////////////:53% gmg&%

1 second

e 2 e s
' ' spawned processes

spawn

R RRIRREES &W&\E\it::::—|////////////////////Egg BRRREXE

MPI_Comm_spawn _J'/'
initialization

matrix redistribution

> initial processes

choice of the adaptation point ﬂ‘ Dynamic adaptation
A
e N
SRR S N—77777777777%5 555585588
N AN J\ J
one FFT\e/xecution one FFT\e/xecution one FFT\e/xecution

Figure 5. Execution trace of an adaptation that spawns processes

This trace shows that the choice of the adaptation point is done concurrently to the execution of
the service. Then, the effective execution of the reaction is postponed to the chosen adaptation point,
further in the future of the execution.

The plan begins by spawning new processes. Due to the MPI-2 specification, and in order to
be able to stop each process independently of the others, each process has to be spawned individ-
ually. In order to simplify the manipulation of MPI communicators, spawned processes participate
to the creation of the following processes. This is why one of the spawned processes has a call to
M PI_Comm_spawn. Once processes have been spawned, some initialization is performed. This
initialization action computes the values that depends on the set of processes, such as communi-
cator objects. Then, matrices are redistributed among the new collection of processes. Endly, the
execution of the FFT that was in progress resumes.

5.3. Overhead of the framework

In order to measure the overhead of the proposed framework, the demonstration component has
been executed without any adaptation. This experiment permits to evaluate the overhead of the
annotations required by the framework. For this experiment, the component executes 2000 iterations
on a 16 machines cluster. Table 6 summerizes the execution time of each call to the framework in
microseconds. The high maximum value for “function enter” appears to correspond to the first calls
for each process. This can be explained by the absence of a complete warmup phase.

function minimum mean maximum calls per iteration

Adaptation point 14. 21.76 138. 6
Enter condition 7. 10.74 68. 3
Enter function 16. 19.63 510. 1
Enter loop 43. 45.94 58. 0
Fastforward 6. 19.09 104. 7
Iterate in loop 10. 14.05 132. 1
Leave condition 7. 17.34 180. 3
Leave function 8. 9.38 93. 1
Leave loop 9. 13.70 90 1

Iteration body 777536. 852310.96 1560923.

Figure 6. Execution times (in microseconds)

0.20
I
20000
I
©000®O0 @O

o

0.15
I
15000

Density of samples
0.10
Il
Time
awon

10000
I

0.05
I

5000

0.00
I

T T T T T
20 40 60 80 100 120 140 5 10 15 20 25 30

Time (us) Number of processes

Figure 7. Distribution of measured execution Figure 8. Scalability of the algorithm for
times for the “adaptation point” function choosing the adaptation point

Figure 7 shows the distribution of the measured times amongst the samples for the “adaptation
point” function. This curves shows that two execution times have a high frequency: the lowest one
corresponds to favorable cache situations; the highest one to defavorable cache situations. The same
phenomenon appears with the other functions.

Given the number of calls per iteration for this sample component, the ratio of time lost because
of the framework is under 0.05%. Given this result, it appears that the overhead of the framework
can be considered as negligible for real world applications.

5.4. Scalability of the choice of the point
As our coordinator solves an agreement problem, the more processes are used, the more time it
takes. In order to evaluate the scalability of the algorithm involved in our coordinator, the demonstra-
tion component has been executed and adapted with a parallel degree ranging from 2 to 32 processes.
Figure 8 shows the time used for choosing the adaptation point at which the reaction is executed.
Care should be taken while interpreting the results. Indeed, the measured time depends not only
on the number of processes, but also on the exact time at which the algorithm is triggered (and the

7

execution time of the service code between adaptation points). Whereas we want to evaluate the
former, the latter can not be controlled and scrambles the measures. Computing the minimum time
for each number of processes eliminates most of the noise caused by the variation of the trigger time
if enough measures are done.

On the figure, dots represent measures; minima for each number of processes are connected by a
line. This line appears to evolve almost linearly with regard to the number of processes. This result
could be expected as the actual implementation relies on a ring communication scheme.

6. Related works

Several works have proposed architectures for dynamic adaptation such as [1,5,7,8,11,12]. De-
spite different architectures and approaches, those projects rely on concepts and functionnalities
similar to the ones of our approach. Whereas many projects have studied dynamic adaptation in the
context of mobile computing, only few are interested in this problem in the area of parallel com-
puting. As the problem described in section 4 of coordinating the execution of the actions appears
mainly in the context of parallel computing, many projects did not study it.

Whereas our approach focuses on building adaptable components by extending standard compo-
nents, the ASSIST [1] approach for dynamic adaptation is based on high-level parallel language
constructs. With this approach, the compiler itself is able to emit code for handling dynamicity.
Whereas our approach gives full control of dynamic adaptation to the developer, the ASSIST ap-
proach permits some dynamic adaptation transparently to the developer. In addition, knowledge of
the generated code can be used to specialize the runtime support for dynamic adaptation.

The PCL project [7] aims at easing the construction of adaptable distributed applications. It fo-
cuses on how the application can be modified for dynamic adaptation thanks to a runtime providing
some reflexive programming support. In order to support reflection, PCL introduces the notion of
“adapt sites”, which are special nodes in the control flow graph that contain collections of unordered
(and potentially concurrent) tasks. Intercession operators allow modifications of the collection of
tasks associated to each adapt site. In addition, PCL defines a language for expressing when and
how the application should be adapted thanks to “adapt methods”. Whereas PCL mixes in a single
function probes query, decision-making and planning of the adaptation, which may ease the global
understanding of the adaptation, our framework separates these concerns in distinct components,
which may simplify the design and reuse of more complex adaptation strategies. Endly, PCL defines
a model for synchronizing the adaptation [6]. A comparison of the PCL model to ours is given in [3].

7. Future work

Although several projects address the problem of dynamic adaptation, only few of them provide
developers with an abstract model of dynamic adaptation. Providing tools to design and reason about
dynamically adaptable software is one of the upcoming challenges. A basis for a design methodology
has been proposed in [9]. We are currently working with the team producing ASSIST [1], which
includes facilities for dynamic adaptation, in order to propose a common abstract model that could
be mapped to our frameworks. It could be expected from such a work to provide conceptual tools to
ease the design of dynamic adaptation independently of the concrete platform.

Resource disappearance can be dealt with fault-tolerance mechanisms. However, fault-tolerance
focuses on sudden resource disappearance, whereas maintenance operations for example could be
announced in advance. Such announcements should be used to anticipate resource disappearance
instead of blindly waiting for a fault to occur. Moreover, fault-tolerance approaches fail to make the

8

application benefit from appearing resources. On the other side, the event-based nature of dynamic
adaptation makes it particularly suitable when changes are announced in advance. Fault-tolerance
and our approach to dynamic adaptation are complementary in their way to address the dynamicity
of the execution environment. Convergence of the two approaches within a single framework should
be investigated. In particular, the synchronization concern of the coordinator functional box within
dynamically adaptable components introduces the notion of “point”. This notion can be compared
to checkpoints that can be used to implement fault-tolerance. Although the two notions do not match
exactly, they might rely on the same infrastructure, possibly leading to a unified framework.

References

[1] Marco Aldinucci, Sonia Campa, Massimo Coppola, Marco Danelutto, Domenico Laforenza, Diego Pup-
pin, Luca Scarponi, Marco Vanneschi, and Corrado Zoccolo. Components for high performance grid
programming in the grid.it project. Workshop on Component Models andd Systems for Grid Applica-
tions June 2004.

[2] Jéremy Buisson, Francoise Anglrand Jean-Louis Pazat. Dynamic adaptation for grid computing. In
P.M.A. Sloot, A.G. Hoekstra, T. Priol, A. Reinefeld, and M. Bubak, editdds;ances in Grid Computing
- EGC 2005 (European Grid Conference, Amsterdam, The Netherlands, February 14-16, 2005, Revised
Selected Papersyolume 3470 oLNCS pages 538-547, Amsterdam, February 2005. Springer-Verlag.

[3] Jéeremy Buisson, Francoise Arielrand Jean-Louis Pazat. Enforcing consistency during the adaptation
of a parallel component. Ifhe 4th International Symposium on Parallel and Distributed Computing
July 2005.

[4] Greg Burns, Raja Daoud, and James Vaigl. LAM: An Open Cluster Environment for MPPIrobeed-
ings of Supercomputing Symposiyrages 379-386, 1994.

[5] Pierre-Charles David and Thomas Ledoux. Towards a framework for self-adaptive component-based
applications. IMDAIS’03 volume 2893 of.NCS Springer-Verlag, November 2003.

[6] Brian Ensink and Vikram Adve. Coordinating adaptations in distributed systen®itininternational
Conference on Distributed Computing Systepages 446—-455, March 2004.

[7] Brian Ensink, Joel Stanley, and Vikram Adve. Program control language: a programming language for
adaptive distributed applicationslournal of Parallel and Distributed Computing3(11):1082-1104,
November 2003.

[8] John Keeney and Vinny Cahill. Chisel: a policy-driven, context-aware, dynamic adaptation framework.
In 4th International Workshop on Policies for Distributed Systems and Networks (POLICY &8s
3-14. IEEE, 2003.

[9] Malcolm Mcllhagga, Ann Light, and lan Wakeman. Towards a design methodology for adaptive appli-
cations. InMobile Computing and Networkingages 133-144, May 1998.

[10] NAS. Parallel benchmark. http://www.nas.nasa.gov/Software/NPB/.

[11] Pierre-Guillaume Raverdy, Hubert Le Van Gong, and Rodger Lea. DART : a reflective middleware
for adaptive applications. I®@OPSLA'98 Workshop #13 : Reflective programming in C++ and Java
October 1998.

[12] Maria-Teresa Segarra and Francoise &ndh framework for dynamic adaptation in wireless environ-
ments. InTechnology of Object-Oriented Languages and Systems (TOOL Be#fds 336—347. IEEE,
2000.

