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On Continuum Modelling the Interphase Layers 
in Certain Two-Phase Elastic Solids 

I n  this paper we propose a continuum model of a moving transition layer smoothly separating two different solid phases 
of a certain elastic material continuum and we investigate some necessary conditions to its existence and propagation. 
A n  application of this model to the analysis of waue propagation in micro-damaged media with open- and closed-micro 
cracked phases is shown. 
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1. Introduction 

In the literature great interest is paid to the study of propagation of discontinuity surfaces in continuous media. Such 
surfaces are introduced as models of a large variety of phenomena (cf. for instance [lo]) including various kind of phase 
transitions. When these phenomena need more detailed description the modelization is improved endowing the discon- 
tinuity surfaces with more sophisticated structure, i.e. introducing suitable surface fields and postulating for them some 
balance equations. Such an approach (for a more careful discussion see [6], [ll], [12]) sometimes leads to some models 
which are questionable from both the logical and physical point of view. On the other hand the passage from one 
phase to the other may be not always abrupt. In this case the interface has to be regarded as a region to be modeled 
as a three-dimensional interphase layer (see [6] and also the review paper [8] on mushy regions arising in phase transi- 
tions) in which we can assume to deal with a certain mixture of both phases. This circumstance occurs also in some 
particular cases of solid-solid phase transitions described for instance in [9]. Hence the question arises about the descrip- 
tion of the properties of the material constituting the interphase layer and about the conditions under which this layer 
can exist and propagate. 

In this paper we propose a continuum model of a moving transition layer smoothly separating two different solid 
phases of a certain elastic material continuum and we investigate some necessary conditions to its existence and propa- 
gation. The term phase means here state of a considered continuum, characterized by a given constitutive equation. 
The differences in material behaviour in different states of the solid body do not arise only because of structural phase 
transitions (e.g. martensitic transformations, described on the micro-level by discrete models in [l-31) but can be also 
caused by the existence of different strain energy functions related to appropriate different classes of local deforma- 
tions. Such a situation occurs, for example, if we consider a damaged medium in which micro-cracks are in different 
regions (phases) all open, all closed or partly open and partly closed (cf. [4]): this last possibility characterizing the 
interfacial region, in which a phase transition takes place. 

The basic idea of our approach is that the phase transition occurs in a certain thin non-material (or following 
the terminology of TRUESDELL [13] non-substantial) mowing layer (the interphase layer), separating different phases of 
the body, in which the strain energy function on a macro-level is not well defined. The main hypothesis is that the 
interphase layer - on a micro-level - is constituted by an arrangement of two different phases forming a definite 
banded quasi-periodic microstructure. After scaling this microstructure down we arrive at the macro-model of the 
interphase layer representing a certain fine mixture of both phases. To this end we adapt the micro-macro modelling 
procedure proposed in [5] for composite materials (the similarity between composite material structure and fine phase 
mixtures was already noted in [ 3 ] ) .  Hence on the macro-level the interphase layer is modelled as a shell-like region of 
the medium, moving independently of the body motion. By means of an averaging procedure of this region over its 
thickness (cf. [6]) this model in special cases can be simplified obtaining as model for the interface a discontinuity 
surface, eventually endowed with material properties. 

Intending to postpone the modelling of more complex phenomena, in this paper we will restrict ourselves to 
describe those in which purely mechanical notions are needed (e.g. diffusion less solid-solid phase transformations): 
non-mechanical notions as temperature or entropy are excluded from the present analysis. 

i) the material behaviour of the interphase layer depends not only on the material properties of both phases but also 
on the propagation speed of the layer, 

ii) not every propagation speed of the interphase layer is possible, 
iii) when the interphase layer does not propagate then the material properties of the interphase layer are similar to the 

The main results of this contribution can be stated as follows: 

macro-properties of a micro-layered two component medium (cf. [7], [14]- [IS]). 
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2. Basic assumptions 

We will assume that a continuum description of the motion of the considered body B is possible, so that it is possible 
to  establish in which phase a substantial particle of B presents itself. 

2.1 Motion 

Let 3 be placed in the reference position BR C E where E is the set of places, whose tangent vector space is TE. In 
the time interval I := [ to ,  t f]  a motion p maps BR x I into E. Therefore 

V t E I ,  p ( . ,  t ) : B R + E .  (2.1) 

We will use the following notation: 

pt := p ( .  , t)  , f t  := V p t  E Lin (TE) , Bt := ~ ( B R ,  t )  , 
where Lin (TE) is the set of invertible linear transformations mapping TE into TE. When this will not lead to misun- 
derstanding we will skip the index t in the introduced notations. 

2.2 Strain energy 

We will assume that two strain energy functions WL(X, .) and W,(X, .) defined in disjoined subsets @+, @- of 
Lin (TE), respectively, are assigned to every substantial point X in BR describing the behaviour of the two possible 
phases (denoted by + and -) for the considered continuum. 

We will assume that at the micro-level almost every material point X, X E BR, is present only in one of these 
two phases. This means that either Vpt(X) E @+ or Vpt(X) E @- (but not both) holds throughout the body except 
possibly at some points, lines or surfaces in BR. 

However in certain regions the sets of the substantial points which present themselves in the phase + or - can 
have a very complicated structure, being, for instance, composed by many disjoined connected parts whose length 
dimensions can be neglected on the macro-level. We will refrain from the detailed description of all phenomena occur- 
ring during the change of phase. Therefore we will pass to a macro-description of phase change and we will introduce 
the concept of a certain ideal mixture of both phases constituting what will be called a non-substantial interphase layer 
occupying respectively in the referential and spatial descriptions the regions PR(t) and q. To be more precise we will 
assume that : 
i) The region BR and consequently spatial region Bt can be - on a macro-level and at every time instant t - parti- 

tioned into three mutually disjoint subregions (which in general are non-substantial) @(t) and Bi(t) such that 

In these regions the considered elastic material is present in different phases: the interphase layer occupies the 
region PR(t)  separating the regions B;(t) occupied by the phases + and - respectively. 

ii) Some macro-descriptors can be defined in PR(t) which allow the description of some of the more relevant interfacial 
phenomena in terms of fields smoothly varying from one phase to the other. 

2.3 Transition layer assumptions 

We will assume, rephrasing [6], that: 

2.3.1) The interfacial region PR(t)  can be obtained by shifting along the normal  a given surface &. Referring to 
[6] for more details, for seek of self containment, we recall that this means that if the surface Zt has parametric 
representation r”(8, t),  8 = (@, 8’) = Zi’ there exists a surface scalar field dt, such that 

vx E &(t) g! (8, o’)/x = r”(8, t) + 03n(8, t) ; (2.3) 

where n represents the normal vector field to Zt and O3 E [-dt(8), dt(8)]. The set obtained fixing in (2.3) 8’ and 
letting 8 vary we will call 03-shifted surface from &. 

As a consequence of this assumption we can define a scalar vector field c(X, t) and a unit normal field n(X, t)  in 
PR(t) mapping every X E PR(t) into the unique 8’ and normal (to Zt) vector corresponding to it. We remark that, if 
c, is the field of the normal speed of the surface Zt, then the following equality holds 

x 
- (X, t) = C,(X, t ) .  2% 

2.3.2) The boundary of PR(t)  can be partitioned as follows: 

@(t) = 2; u 2; , 
where Z: and 2; are the respectively &-shifted and (-&)-shifted surfaces from Zt representing the surfaces dividing 
+ and - phases, respectively, from the interphase (transition) layer. 
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2.4 Assumption on the microstructure inside the interphase layer 

2.4.1) F-micro-layers 
In PR(t) coexist the two phases + and -. More precisely we will assume that - on a micro-level - the interfacial 
region is constituted by thin micro-layers of constant thickness E each of which is partitioned into two sub layers of 
varying thickness (denoted respectively E+ and E - )  filled with phase + and - respectively. These micro layers and sub 
layers are assumed to be obtained translating Zt along the normal. We will assume that 

6t 
E = -  with n > l ,  

n 

and hence in our description of the microstructure of the interphase layer all terms of an order higher than E will be 
neglected. 

2.4.2) Some auxiliary definitions 
For the time being assume t ,  0, and E fixed. When not causing misunderstanding we will simply use the symbol 6 for 
the introduced thickness &(8). 

Let E + ( . ) ,  c ( . )  be linear functions defined on the interval [-6, 61 such that 

&+(-6) = E - ( 6 )  = 0 ;  

w3 E [-6,6], 

&+(6) = &-(-d) = E .  

Obviously we have that 

t+(e3) + &-(03) = E 

Also we define on [-6, 61 the functions 

&+(03)  
; p-(e3) :=-. 

&-(03)  p+(e3) := - 
F E 

We partition the interval [-6, 61 into the n disjoined intervals, of constant length E ,  

Ii := (83 - F C ( @ ) ,  03 + &+(@)). 

We can now define the function h" : [-6, 61 + lR as the real-valued continuous function which 
i) in every subinterval (03 - ~- (0 ; ) ,  83) (83,(33 + ~ ' ( 8 : ) )  of Ii (i = 1,. . . , n) is linear with angular coefficients respec- 

tively -p+('83) and p-("83) (for some '83 and "83 in Ii) 
3 + (33 &-(oil& ( i )  ii) when O3 = 0; it attains the values 

E 

We remark that the choice of '63 and "83 can be made in order to assure the continuity of hE at  points separating the 
intervals Ii. It is easy to see that neglecting terms of an order F we have that 

The function hE will be called micro-shape function and - as will be explained below - plays an important r6le in the 
modelling of the interphase layer. 

In the sequel we shall also use the functions u+, u- defined in [-6, 61 and given by 

+ 83 E- (83) 
U+(83) := - ( ; a-(83) :=- 

E E '  

which for O3 = 03 represent the percentage of the + and - phase inside the layer descibed by the interval I, included 
in [-6, 61. 

2.4.3) Kinematic assumptions 
The motion p of the body B inside the transition layer can be represented as the sum of a macroscopic part (i.e. 
independent of F )  

V t E I ,  P ( . , ~ ) : B R + E ,  

and of a superimposed small disturbance DE 

V t  E I ,  DE(-,  t) : BR --+ T(E) 

caused by the micro-inhomogeneity of the transition layer which has the following form: 

DE(X, t) := hE(X, t) Q(X, t) . VX E @(t), 

In this last equation Q, which we will call descriptor of interfacial layer micro-structure, models the micro-state of 
the considered substantial particle and hE is a suitable micro-shape function constant on every 03-shifted surface 
from &. 
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2.5 Fine phase mixture hypothesis 

The macro-model of the interphase layer will be obtained - after using the kinematic assumption 2.4.3) - by means 
of the limiting passage E -+ 0 in all relations describing the mechanical behaviour of the media constituting the inter- 
phase layer. 

We will call the macro-model of the interphase layer obtained using the hypotheses introduced in this section 
interfacial fane phase mixtures. It has to be emphasized that, due to the properties of function hE, in this model all 
relevant quantities smoothly vary in the passage from one phase to the other. 

The validity of the above formulated modelling hypotheses needs to be tested by means of the comparison of the 
subsequent theoretical predictions with experimental evidence. We are aware of the fact that they restrict the scope of 
applicability of our model, which could be improved in some particular instances introducing more sophisticated micro- 
shape functions and/or more descriptors of micro-structure. 

3. Evolution equations 

As we have stated before, we assume in this section that all quantities infinitesimal of order equal or greater than E are 
negligible. 

This hypothesis restricts our treatment to interfaces for which the hypothesis of fine phase mixture holds. 
Consequently E+ and E -  are negligible. This is not the case for the relative thicknesses G* and for the strain 

modulators p* which remain constant when E tends to zero. 
The model resulting after this limit passage will introduce for the interfacial region PR(t)  a microstructured 

continuum with the internal variable Q. Every substantial macro-particle of this continuum contains both phases + 
and -, in the proportion controlled by the macro-fields G*. The state of every macro-particle is determined by its 
macro-strain tensor F and by the vector Q. 

The evolution equations for macro-displacements and for Q are obtained postulating the principle of stationary 
action for motions belonging to the class specified by the hypotheses of the previous section and neglecting in the 
expression of the action all quantities infinitesimal together with E .  

3.1 The action functional 

We start expressing micro-deformation tensor f and the velocity field v in the referential description in terms of 
macro-deformation tensor F := VP, the descriptor Q, the macro-velocity field V := P and the propagating speed of the 
interfacial layer. Using the Hypotheses of subsection 2.4 and recalling that F and V are the derivatives with respect X 
and time t of the function P, we obtain (quantities infinitesimal with E are neglected) 

where the symbol { } means that the equality holds respectively in the + or - phases. 

the region PR(t)  : 
We can now introduce the action functional d for the interphase layer occupying in the reference configuration 

tf 
d = ( X  - ."P) d t ,  to (3.3) 

the kinetic energy X and the potential 9 being defined - on a micro-level - as follows (dVR and dAR are respectively 
the volume and surface elements in the reference configuration) : 

where the strain energy WR is a function of the material point X and the strain f ,  it is equal to Wi(X,  .) or to 
W,(X, .) if x belongs respectively to phase + or -, @R is the mass density in the referential description and t R  are the 
external contact forces applied on the boundary of the interfacial transition layer, which we assume are independent of 
the micro-structure of the layer. 

Once the hypothesis of fine phase mixture is used neglecting all terms infinitesimal with E ,  with simple algebra 
one obtains the following expression for the action functional 

(3.5) 
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where c, is defined in eq. (2.4), ~ ( 6 ~ )  := 0+(03) 0 - ( 0 3 ) ,  we have assumed that the referential mass densities & of 
phase + and - are equal, and we have used the following denotations: 

@R = @; = &?g ; 
(WR) (X, F, Q) := o+(X) W&(X, f + ( F ,  (2)) + a-(x) Wi(X,  f - ( F ,  (2)). 

(3.6) 

(3.7) 

The evolution equations for macro-placement P and the descriptor Q inside PR(t)  are obtained assuming that the first 
variation of the action d determined by equation (3.5) is vanishing. 

1) Equation of motion 

dV 
dt DivSR -eR -= 0 in @R(t) and SRN = tR on a&(t), ( 3 4  

where the vector field N is the unit normal to a@R(t) and the (Piola-Kirchhoff) macro-stress-tensor SR is determined 
by the macro-constitutive relation 

2) Propagation condition 

+ pRtyc:Q = 0 in &(t) . aQ (3.10) 

We remark that equations (3.8)-(3.10) describe the behaviour of the interfacial continuum if the motion of the inter- 
facial region PR(t) is known a priori. The equations governing the motion of this region has to be found modelling its 
specific physical nature, as is done, in the particular instance treated there, in sect. 4. 

i) 

ii) 

iii) 

iv) 

It has to be emphasized that: 
in the proposed macro-model the properties of the continuum constituting the interphase layer can be easily deter- 
mined once the constitutive properties of phases + and - and the micro-structure functions ai are known; 
since c, is the relative velocity of the interfacial layer with respect to the referential space then the condition (3.10) 
is Galilean invariant; 
equations (3.10) is an algebraic relation among Q, F, and c:. The definition of average strain energy implies that 
using it one can express Q in terms of F and ci  and therefore that the strain energy can be regarded as a function 
(WR) of the macro-strain F and the speed c,. On the other hand the physically admissible domain for a strain 
energy function is included in the set of independent variables for which the energy is positive: in particular this 
implies that some restrictions have to be expected on possible speeds c,. In the next section we find, in the case of 
transition layer in linear elastic solids, an explicit form of such a restriction. 
When we deal with a substantial layer the the speed c, is vanishing. The equations (3.8)-(3.10) reduces to those 
found in [5] where some macro-models of micro-laminated materials are considered. 

4. An application 

In this section we want to apply the model developed up to now to the study of the propagation of a particular 
interfacial layer. 

More precisely we consider the micro-cracked material investigated in [4]: the considered solid body is assumed 
damaged because of the presence of planar micro-cracks (parallel to the laminae interfaces) whose planes are character- 
ized by a regular field n of unit vectors. 

We assume that the region BR can be partitioned into three regions: i.e. the region in which the micro-cracks are 
open (phase +), that in which the micro-cracks are closed (phase -), and the interphase layer in which the micro- 
cracks are partly closed and partly open. 

In the interphase layer a macro-strain F and one macro-descriptor Q, following the procedure showed in the 
previous section, are introduced. 

In the considered instance the partitioning at the macro-level can be determined by means of the phase defining 
function and thresholds 

y : (X, F) E BR x Lin (TE) ++ yx(F) = n(X) . FTFn(X) - 1 ; ( y - ,  y+)  E R+ x R+ . 
Indeed we have that : 

B;(t):={X E BR/yx(OP(X,t)) > 7,) > 

Bi(t):={X E BR/Yx(vp(X,t)) < - y - } ,  
B: :=pt(Bi:(t)), 

B; :=pt(B;l(t)), 

@ ~ ( t ) : = { ~  E BR/YX(VP(X,t))  E (b-, y + ) )  > @:=pt(PR(t)). 
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The physical interpretation of the function yx and the constants ( y - ,  y+)  is very easy: in the + phase micro-cracks are 
open, in the - phase micro-cracks are closed, and in order to open or to close micro-cracks the stress needs a compo- 
nent along n which respectively corresponds to the thresholds y+ and y- .  In points X in which 

we are in the part of the body where phase transition - on a macro-level - occurs: i.e. in the part of the body where 
the knowledge of the strain F and the normal n is not sufficient to establish whether the micro-cracks are closed or 
open. For the points in HR(t) the knowledge of the values of y does not allow the unique determination of the strain 
energy which in this sense is not well-defined (cf. [4]) at the macro-level until more the detailed description of the 
structure of the interfacial layer allowed by the introduction of the vector field Q is added to our model. Indeed the 
average strain energy (WR) is not only a function of macro-strain F but also a function of the macro-descriptor Q. 

We will limit ourselves to the case of a linear elastic micro-cracked material in which the vector field n is con- 
stant and to the study of interphase layers propagation in the direction of n. 

Therefore we will restrict our consideration to uniaxial strain states. In this case the strain energy functions W i  
and W i  (respectively the strain energy in the medium with open cracks and with closed cracks) and the sets of admis- 
sible local deformations are given, in terms of the infinitesimal strain e, by 

@+ := {e/n. en 2 e+} , 
@- := {e/n. en 5 -e-}, 

Wh(e) = E+(n .  en)’, 

WR(e) = $ E-(n.  en)’, 

where: 
the positive constants e+, which we can call strain thresholds, play the rhle, in the case of linear elasticity, of the phase 
defining thresholds; 
the constants E* are positive and verify the relationship 

E- > Ef , (4.2) 

which is simply physically interpreted recalling that once the cracks are open the stiffness of the material is lower than 
in the case of closed cracks. 

In the model discussed in [4] one can assume that the traction Y required to open (close) all micro-cracks is 
given by Y = E+e+ = E-e-. 

In the sequel we will study the propagation of a disturbance of displacement in the direction of n. In other words we 
will study the propagation of a longitudinal plane wave of displacements, opening (or closing) the micro-cracks, in which 
the phase change occurs inside a thick layer whose micro-structure verifies the hypotheses listed in the previous section. 

i) U is the component of macro-displacement along n, U,, its derivative in the direction of n, 
ii) we introduce only one micro-shape function and one vectorial macro-descriptor, 
iii) Q is the component of the macro-descriptor vector along n, 
iv) the interface layer is the union of planes orthogonal to n, 
v) S is the normal stress n . SRn. 

(3.7) is recalled 

We will use the following denotation and hypotheses: 

The average strain energy for the considered continuum and displacement fields is easily evaluated once equation 

with y := (T+G- and where 

E := E’G’ + E-r- ; 

S = E U f n  + v[E] Q ,  

[El := E- - E+ ; E := E’u- + E-u’. (4.5) 

(4.6) 

Therefore we obtain, using (3.9), the following expression for the normal stress S in terms of Q and Utn: 

while the propagation condition (3.10) becomes 

EQ + [El U,, - QRczQ = 0 .  

Equation (4.7) allows to express Q in terms of Urn and cz 

(4.7) 

so that S can be expressed in terms of Ufn and c? as follows: 
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We will call interphase longitudinal modulus the quantity 

(4.10) 

which depends on the coordinate O3 inside the interfacial layer because in it the fields (see equation (4.5)) o* appear. 

dition implies the following restrictions on the propagation speed c, (recall condition 4.2): 
The interphase longitudinal modulus must be positive everywhere inside the interphase layer. This physical con- 

eR$ < E+ or eRc: > E- . 

The field U has to be found solving the hyperbolic equation which is implied by (3.8), 

(4.11) 

(4.12) 

where the expression (4.9) for S has to be substituted. 
To (4.11) some boundary conditions must be added, together with some free-moving boundary conditions deter- 

mining the position of & and the scalar &. In particular we must assume that the following conditions must hold on 
the surfaces 2: and .X;, which in the considered case are planar, together with -Zt : 

(4.13) 

where ((t) represents the distance of Zlt from a reference plane. 
Moreover the displacements and normal stresses will be assumed to be continuous on 2: and 2;. 

U and S donot jumpon & .  (4.14) 

Concerning condition (4.10) we remark that 
i) interphase longitudinal modulus reduces to the effective modulus found in [4] when c, is vanishing; 
ii) when the speed c, tends to infinity the interphase longitudinal modulus tends to  E; 

7 7 

iii) when llcnll tends to Jy - or to /$ respectively from lower or from higher values then respectively on 2; and on 

Z: the interphase loigitudinal modulus vanishes. 
The free moving boundary problem (4.12)-(4.14) seems to be interesting enough to deserve an accurate mathe- 

matical analysis. In particular it will be interesting to determine the set of initial conditions for which condition (4.11) 
is verified for all subsequent time instant and to examine under which condition the interphase layer initially present 
disappears in a finite time, or when it does not disappear, eventually growing indefinitely. 

5. Conclusions 

In this paper we prove that for the family of interphase layer whose structure is described by the hypotheses listed in 
sect. 3, 
i) the material behaviour of the medium filling the interphase layer depends not only on the material properties of 
both phases but also on the propagation speed of the layer, 
ii) if one assumes that the interphase longitudinal modulus has to be always positive not every propagation speed of 
the interphase layer is possible, 
iii) when the interphase layer does not propagate in the referential description then the material properties of the 
substantial particles belonging to it are similar to  the effective properties of a micro-laminated two component medium 

Moreover we particularize the general model introduced in sect. 3 to study the one dimensional propagation in 

We find a free moving boundary problem for the boundaries delineating the interphase layer and the field of 

(Cf. [ 141 -[IS]). 

the direction of the layering of an interphase layer in the microcracked solid studied in 141. 

longitudinal displacements which seems to deserve mathematical interest. 
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