
HAL Id: hal-00498814
https://hal.science/hal-00498814

Submitted on 8 Jul 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Afpac: enforcing consistency during the adaptation of a
parallel component

Jérémy Buisson, Françoise André, Jean-Louis Pazat

To cite this version:
Jérémy Buisson, Françoise André, Jean-Louis Pazat. Afpac: enforcing consistency during the adap-
tation of a parallel component. Scalable Computing : Practice and Experience, 2006, 7 (3), pp.61.
�hal-00498814�

https://hal.science/hal-00498814
https://hal.archives-ouvertes.fr


AFPAC: ENFORCING CONSISTENCY DURING THE ADAPTATION

OF A PARALLEL COMPONENT

JÉRÉMY BUISSON∗, FRANÇOISE ANDRÉ† , AND JEAN-LOUIS PAZAT‡

Abstract. Grid architectures are execution environments that are known to be at the same
time distributed, parallel, heterogeneous and dynamic. While current tools focus solutions for hiding
distribution, parallelism and heterogeneity, this approach does not �t well their dynamic aspect.
Indeed, if applications are able to adapt themselves to environmental changes, they can bene�t from
it to achieve better performance. This article presents Afpac, a model extending Dynaco for designing
self-adaptable parallel components that can be assembled to build applications for Grid. This model
includes the de�nition of a consistency criterion for the dynamic adaptation of SPMD components.
We propose a solution to implement this criterion. It has been evalued using both synthetic and real
codes to exhibit the behavior of several proposed strategies.

Key words. dynamic adaptation, consistency, parallel computing

1. Introduction. Grid is an architecture that can be considered as a large-scale
federation of pooled resources. Those resources might be processing elements, storage,
and so on; they may come from parallel machines, clusters, or any workstation. One
of the main properties of Grid architectures is to have variable characteristics even
during the lifetime of an application. Resources may come and go; their capacities
may vary. Moreover, resources may be allocated then reclaimed and reallocated as
applications start and terminate on the Grid. To sum up, Grid is an architecture that
is at the same time distributed, parallel, heterogeneous and dynamic. This is why we
think distributed assemblies of parallel self-adaptable components is a suitable model
for Grid applications.

In our context, we just see the component as a unit that explicitly speci�es the
services it provides (�provide ports�) and the ones it requires (�use ports�). Required
resources are one kind of required services. Service speci�cations can be qualitative
(type speci�cation); they can also be quantitative (quality of the provided or used
services). A parallel component is simply a component that encapsulates a parallel
code. For example, GridCCM [15] extends CORBA Component Model to support
parallel components. A self-adaptable component is a component that is able to
modify its behavior depending on the changes of the environment: it may use di�erent
algorithms that use services di�erently and provide di�erent qualities of services. The
choice of the algorithm is a component-dependent problem and cannot be solved in
a general way at some middleware level. Nevertheless, some generic mechanisms
exist in adaptable components that are independent of the component itself. Our
research focuses on the design of an adaptation framework for parallel components
that provides all those common mechanisms. One of the main problems consists in
providing a mechanism for choosing a point in the execution to perform the adaptation
in a consistent manner. This article aims at addressing this problem.

Section 2 presents our model of dynamic adaptation for parallel codes to set
the context of this article up. Section 3 gives few mathematical de�nitions that
are useful in the remaining text of this paper. Sections 4 and 5 describe how the
future of the execution path is predicted to choose the adaptation point at which
the adaptation code is inserted. Section 6 discusses the results obtained from our

∗IRISA/INSA de Rennes, Campus de Beaulieu, 35042 Rennes, France (jbuisson@irisa.fr)
†IRISA/Université de Rennes 1, Campus de Beaulieu, 35042 Rennes, France (fandre@irisa.fr)
‡IRISA/INSA de Rennes, Campus de Beaulieu, 35042 Rennes, France (pazat@irisa.fr)

1



2 J. BUISSON, F. ANDRÉ AND J.-L. PAZAT

Figure 2.1. Model of a parallel self-adaptable component

experiments. Section 7 compares our work to others in the area of dynamic adaptation.
It also shows similarities with computation steering and fault tolerance. Finally,
section 8 concludes this paper and presents some perspectives.

2. Model of self-adaptable components. The dynamic adaptability of a
component is its ability to modify itself according to constraints imposed by the
execution environment on which it is deployed. It aims at helping the component
to give the best performance given its allocated resources. Moreover, it makes the
component aware of changes in resource allocation. Resources may be allocated and
reclaimed dynamically during the lifetime of the component.

2.1. Structure of a self-adaptable component. With our model of dynamic
adaptation [3], parallel self-adaptable components can split in several functional boxes
(some of them being independent of the component itself). Figure 2.1 shows the
architecture of a parallel self-adaptable component. A short description of the boxes
follows.

The monitors provide the information service about the environment of the
component. They should o�er two interfaces: a subscription-based event source and
a query interface. Monitors are not restricted to collect information about the out-
side world of the component: the component itself and its activity can be relevantly
monitored (for example for estimating its current service rate). Furthermore, nothing
prevents the component from being one of its own monitors.

The service of the component is the functionality it provides. The service can
be implemented by several algorithms that might be used to solve a single problem.
Each of these algorithms uses di�erently the resources; thus, there is one preferred
algorithm for each con�guration of the resources allocated to the component.

The actions are the ways to modify the component. They modify the way the
service is implemented, replacing the algorithm with another one, adjusting its pa-
rameters or anything else. Typically, actions use re�ective programming techniques
to a�ect the component.

A strategy is an indication of the way the component should behave: it states the
algorithm that should be executed and the values that its parameters should adopt.
The decider makes the decisions about adaptability. It decides when the component
should adapt itself and which strategy should be adopted. In order to decide, it
relies on the policy and on information provided by monitors. The policy describes
component-speci�c information required to make the decisions. For example, the
policy can be an explicit set of rules or the collection of the performance models of



Afpac: Enforcing consistency during the adaptation of a parallel component 3

the algorithms implemented by the component.
A plan is a program whose instructions are invocations of actions and control

instructions. Thus, plans are programs that modify the component. The planner
establishes an adaptation plan that makes the component adopt a given strategy. To
do so, it relies on the guide. The guide gives component-speci�c information required
to build plans. It can consist in prede�ned plans; or in speci�cations of how actions
can be composed (their preconditions and postconditions for example).

The executor is the virtual machine that interprets plans. In addition to for-
warding invocations to actions, it is responsible for concerns such as atomicity of
plan execution. The executor embeds a coordinator for synchronizing the execution
of the plan with the processes that execute the service. To do so, the coordinator
chooses a point (an instantaneous statement that annotates a special state) within
the execution path of the service in order to insert the action.

In the context of parallel components, the service can be implemented either se-
quentially (exactly one execution thread) or in parallel (several communicating execu-
tion threads). In the latter case, the coordinator must implement a parallel algorithm.

Our parallel adaptable components are split in 3 parts. The decider, planner and
executor form the Dynaco framework (in blue): they provide the general function-
alities of dynamic adaptation. The coordinator is part of the Afpac framework (in
green) that is speci�c to parallel components. Finally, service, actions, policy and
guide are speci�c to the component: they are not included in any framework.

2.2. Contracts between components. Because the quality of the services
used by a component is of greater importance to the adaptation, we attach to each port
link a contract that describes the e�ective quality of the provided service. Moreover,
for the sake of uniformity, our model abstracts resources as �provide ports� of some
component called the environment. The execution environment of a component is
thus completely described by the contracts attached to its �use ports�. Consequently,
any change in the execution environment is re�ected by a change in those contracts,
triggering the adaptation.

Contracts are dynamically negotiated and renegotiated: a component negotiates
su�cient quality of service with its subcontractors in order to respect the contracts
with its clients; it negotiates with its clients the quality of the provided services ac-
cording to the ones contracted with its subcontractors. In that way, any renegotiation
of one contract automatically propagates to the entire assembly of components (the
application) to adjust the quality of all the provided services of all components. Con-
sequently, it propagates the trigger of the adaptation to the components that require
it.

2.3. Performance model. The goal of dynamic adaptation is to help the com-
ponent to give the best performance. Thus, the model assumes that adaptation occurs
when the component runs a non-optimal service given its allocated resources. This
means that the completion time is worse than it could be. In a general way, the
conceptual performance model of a single-threaded component that adapts itself is
shown by �gure 2.2. The x-axis is the execution �ow of the component with adap-
tation points labelled from 1 to 5; the curve gives the expected completion time if
the component adapts itself at the corresponding point in its execution �ow. The
lower the expected completion time is for a given adaptation point, the better that
adaptation point is.

The adaptation can occur in either the future or the past of the current state. In
the case of adapting in the past, it requires the restoration of a checkpoint (that has



4 J. BUISSON, F. ANDRÉ AND J.-L. PAZAT

Figure 2.2. Conceptual performance model of an adapting component

a cost r on the curve). At the extremes, adapting in the future is adapting once the
execution has ended (or equivalently not adapting at all); while adapting in the past
consists in restarting from the begining (purely static adaptation). It appears that
whatever the search direction, the best point will always be the nearest one from the
current state. In �gure 2.2, the best adaptation point is the one labelled 3.

In the case of a parallel component, several curves are superimposed. Because
the threads of the component are not necessarily synchronized, the curves are slightly
shifted (the present time is not at the same distance of adaptation points for all
threads). The global completion time is thus the maximum of the ones for all threads.
In this case, the best point can be in the future for some threads and in the past for
some others.

In this paper, we arbitrarily chose to consider only the search direction towards
the future of the execution. In the case of a parallel component, we look for a global
point that belongs to the future of all threads.

2.4. Consistency model. In the case of a parallel service, the coordinator must
enforce the consistency of the adaptation. We de�ned one consistency model, which
we called the �same state� consistency model. In this model, the adaptation is said to
be consistent if and only if all threads execute the reaction from the same state (this
logical synchronization does not require an e�ective synchronization of the execution
threads).

This model only makes sense in the case of SPMD codes (parallel codes for which
all threads share the same control �ow graph). It has been further discussed in [5].

2.5. Scenario of dynamic adaptation. From time to time, possibly due to
some external event, the decider determines whether the component should adapt
itself according to the policy. It thus orders the planner to �nd a suitable plan for
achieving the decided strategy. This plan is sent to the executor for execution. When
the executor needs to execute an action in the context of the parallel execution of the
service, it orders the coordinator to choose an adaptation point. This point is the
next one in the future of the execution path. When the threads of the service reach
that adaptation point, their control �ow is hooked in order to insert the execution of
the requested action.

In this paper, we will concentrate on the coordinator. Section 4 describes how
the point can be computed; section 5 depicts how an algorithm can be built. In the
remaining text of the document, we will call �candidate points� the points at which
a reaction can be executed. The one that has been chosen by the coordinator will be



Afpac: Enforcing consistency during the adaptation of a parallel component 5

called the �adaptation point�.

3. De�nitions. This section recalls few de�nitions about partial orders that are
useful in understanding the remaining text of this paper.

Definition 3.1 (poset). A poset (or partially-ordered set) is a pair (P,R) where
P is a set and R is a binary relation over P that is (1) re�exive, (2) antisymmetric
and (3) transitive.

(1) ∀x · (x ∈ P ⇒ xRx)
(2) ∀x, y ·

(
x, y ∈ P 2 ⇒ ((xRy ∧ yRx)⇒ x = y)

)
(3) ∀x, y, z ·

(
x, y, z ∈ P 3 ⇒ ((xRy ∧ yRz)⇒ xRz)

)
Definition 3.2 (supremum). Given a poset (P,R), the supremum sup (S) of

any subset S ⊂ P of P is the least upper bound u of S in P such that: (1) u succeeds
all elements of S and (2) u precedes any element v of P succeeding all elements of S

(1) ∀x · (x ∈ S ⇒ xRu)
(2) ∀v · (v ∈ P ⇒ ((∀x · (x ∈ S ⇒ xRv))⇒ uRv))

Definition 3.3 (in�mum). Symmetrically to the supremum, given a poset (P,R),
the in�mum inf (S) of any subset S ⊂ P of P is the greater lower bound l of S in P
such that:

∀x · (x ∈ S ⇒ lRx) ∧ ∀v · (v ∈ P ⇒ (∀x · (x ∈ S ⇒ vRx))⇒ vRl)

The in�mum of S in the poset (P,R) is the supremum of S in
(
P,R−1

)
.

Definition 3.4 (lattice). A lattice L is a poset (P,R) such that for any pair
x, y ∈ P 2, both the supremum sup ({x, y}) and the in�mum inf ({x, y}) exist. This
de�nes two internal composition laws:

sup ({x, y}) = x ∨ y (join)
inf ({x, y}) = x ∧ y (meet)

4. Computing the future. The coordinator needs to �nd a global point such
that it represents the same state for all threads. As it restricts consideration to points
in the future of execution paths this point should be the �rst one in the future for all
threads, given the assumption on the performance model depicted in � 2.3.

4.1. Local prediction of the next point. For each thread, the coordinator
needs to �nd the next candidate point in the future of the execution path. This point
would be the one at which the coordinator is going to execute the reaction in the case
of a single-threaded component.

4.1.1. General schema. An execution path can be seen as a path in the control
�ow graph that models the code. If loops are unrolled (for example by tagging nodes
with indices in iteration spaces), the control �ow graph de�nes a �precedes� partial
order between the points of a code. Given this relation, each thread of the parallel
component is able to locally predict its next point at least in trivial cases, when no
conditional instruction is encountered (in this case, nodes in the control �ow graph
have at most one successor).



6 J. BUISSON, F. ANDRÉ AND J.-L. PAZAT

4.1.2. Uncertain predictions. In the general case, predicting the future of an
execution path is undecidable due to conditional instructions: their behavior is unpre-
dictable since it depends on runtime computations. This occurs for both conditions
and loops, which appear as nodes having several successors in the control �ow graph.

Three strategies may be used when such a node is encountered during the com-
putation of the adaptation point.

• Postpone. The computation of the adaptation point can be postponed until
the e�ective behavior of the instruction is known. Once the unpredictable in-
struction has been executed, the computation of the adaptation point resumes
with a new start point (the one that is being entered).

• Skip. The computation of the point can move forward in the control �ow
graph until all control sub�ows merge. In this case, the prediction jumps over
loops and conditions.

• Force. The behavior of the conditional instruction can be guessed when
additional static information is available. With this strategy, one branch
of the conditional instruction is assumed accordingly to some application-
dependent knowledge; then some application-level mechanism enforces that
the execution path respects this assumption.

Two examples that follow illustrate the usage of the �force� strategy. Firstly,
it is possible for some loops to insert unexpected empty iterations; in this case, it
can be guessed that the conditional instruction will execute the branch that stays
in the loop; this behavior can be enforced by making one more empty iteration on-
demand. Secondly, if the code includes assertions to detect error cases, it could be
reasonably assumed that those assertions hold; in this case, it can be guessed that
the corresponding conditional instruction will execute the branch leading to error-
free cases. As mispredictions exactly match detected runtime errors, error handlers
invoked upon assertion failures can be used to handle e�ects of mispredictions.

The above examples exhibit two interpretations of the �force� strategy. In the
�rst example, the coordinator changes the execution behavior of the component in
order to �t its requirements. The coordinator uses the static knowledge about the
component to ensure that this change does not have any semantic impact on produced
results. In the second example, the coordinator let the component execute its normal
behavior and simply exploits static knowledge to make its prediction.

4.2. Characterization of the chosen global point. The point that should
be chosen is the supremum u, if it exists, of the set S of the next local points for each
thread with respect to the �precedes� partial order (noted �). Indeed, the property
∀x ·(x ∈ S ⇒ x � u) guarantees that u is in the future of all threads; the property ∀v ·
(v ∈ P ⇒ ((∀x · (x ∈ S ⇒ x � v))⇒ u � v)) means that u is the �rst point amongst
those in the future of all threads.

Even if loops are unrolled, the control �ow graph is not a lattice as it may
contain patterns such as the one of �gure 4.1(a). In this example, the supremum
sup ({P1, P2}) does not exist. This pattern captures a subset of conditional instruc-
tions. The three strategies that has been identi�ed for locally predicting the next
point can be used to work-around non-existence of the supremum.

• Postpone. Postponing the computation of the adaptation point until the
unpredictable instruction has been executed can be seen as inserting a special
node that models that instruction in the control �ow graph. For example,
in �gure 4.1(b), a node C has been inserted to represent the conditional
instruction. When such a node is chosen, a new round for �nding a satisfying



Afpac: Enforcing consistency during the adaptation of a parallel component 7

(a) Pattern which
prevents the supremum
from existing

(b) Inserting nodes for
conditionals

(c) Removing branches
of conditionals

Figure 4.1. Example of control �ow graph with non-existent supremum

point is started once the corresponding instruction has been executed.
• Skip. Skiping the conditional block is equivalent to compute the supremum
within the subset de�ned by:

{a|∀y · ((∀x · (x ∈ S ⇒ x � y))⇒ (a � y) ∨ (y � a))}

This set contains the points that are related to all successors of all points
in S. Those points are guaranteed to be traversed by any execution thread
starting from any point in S. The de�nition of that set ensures that upper
bounds of S in that set are totally ordered by �. Consequently, the supremum
of S in that set ordered by � exists if at least one upper bound exists. In
the given example, it restricts to compute the supremum sup ({P1, P2}) in
{P1, P2, P5}; this supremum exists.

• Force. Forcing one branch of a conditional instruction removes all out edges
but one of the corresponding node. This is su�cient to make the supremum
exist. For example, on �gure 4.1(c), the conditional instruction that follows
P1 has been forced such that it always leads to P3.

Each conditional instruction may use a distinct strategy. In such a case, several
strategies are combined.

4.3. Comparison of the strategies. These three strategies have their own
drawbacks. The �postpone� one shortens the time between choosing a point and
reaching the chosen point. It may result in an increase of the risk that the execution
thread tries to get through the locally chosen point before it has been globally either
con�rmed or evicted. The �skip� one chooses an adaptation point further in the future
of the execution path (and possibly falls back at the end of the code). The �force�
one modi�es the code of the execution thread.

5. Building an algorithm. In order to solve the problem of �nding a point in
the case of a parallel service, an algorithm has been designed.

5.1. Identi�cation of the candidate points. Having a good identi�cation
system for the points is a key issue. Indeed, as � 4.2 has shown, the case of parallel
self-adaptable components requires the computation of the supremum of a set of



8 J. BUISSON, F. ANDRÉ AND J.-L. PAZAT

points. This requires to be able to compare easily candidate points with respect to the
�precedes� partial order. However, with naive point identi�cation, deciding whether
a candidate point precedes, succeeds, or is not related to another one requires the
computation of the transitive closure of the control �ow graph with unrolled loops.
The same apply for the join composition law. This is why a smarter identi�cation
system for the points is needed.

5.1.1. Description of the identi�cation system. We think that the good
representation to use is a tree view of the hierarchical task graph. Figure 5.1 gives an
example algorithm that has been annotated with candidate points; �gure 5.2 shows
the control �ow graph between annotated points; �gure 5.3 shows the corresponding
tree view. The edges of the tree are labelled as follows:

• out edges of loop nodes are labelled with the value of the indice within the
iteration space of the loop;

• out edges of condition nodes are labelled with either the symbol �then� (the
condition is true) or the symbol �else� (the condition is false);

• other edges (out edges of block nodes) are labelled with the execution order
number in the control �ow.

Algorithm gcd (a, b) :
loop until ((a mod b) = 0)

if (a < b) then
// candidate point P1
tmp← a
a← b
b← tmp

else

// candidate point P2
a← (a mod b)

end if

end loop

// candidate point P3
return (b)

Figure 5.1. An examplary algorithm

Considering the tree view of the hierarchical task graph, one can see that the
nodes of the control �ow graph are the leaves of the tree. Each candidate point is
identi�ed by the sequence composed of the labels of the edges traversed by the path
from the root to the leaf corresponding to it. For example, the node �P3� is identi�ed
by 〈2〉; the node �P1� is identi�ed by the sequence 〈1, (a, b) , 1, else, 1〉.

5.1.2. Order on points. The set of edge labels in the tree is E = N ∪ I ∪
{then, else}, where N is the set of execution order numbers (natural numbers) and I
the iteration space partially ordered by an application-speci�c relation �I . We de�ne
the following partial order over the set E of edge labels of the tree:

∀x, y ·
(
x, y ∈ E2 ⇒

(
x �E y ⇔

((
x, y ∈ N2 ∧ x ≤ y

)
∨

(
x, y ∈ I2 ∧ x �I y

))))
Notably, the two constants �then� and �else� are set not comparable to other values
and values in iteration spaces (such as (a, b) in the example) are partially ordered by
an application-speci�c relation.



Afpac: Enforcing consistency during the adaptation of a parallel component 9

Figure 5.2. Control �ow graph of the

algorithm 5.1

Figure 5.3. Tree view of the hierarchi-

cal task graph of the algorithm 5.1

The edges of the control �ow graph (that represent the �precedes� partial order
between points) are (graphically) transverse to those of the tree. Consequently, the
lexicographical partial order �n

E on the sequences is equivalent to the partial order
on points de�ned by the control �ow graph. Thus, with this identi�cation system,
deciding whether a point precedes, succeeds, or is not related to another one can be
computed as a direct lexicographical comparison (not requiring the computation of
the transitive closure of the control �ow graph anymore). Moreover, this ordering
directly takes into account the loop indices in iteration spaces, whereas the control
�ow graph does not.

5.1.3. Discussion. This identi�cation system makes sense only in the case of a
parallel component in which all threads are allowed to have di�erent dynamic behav-
iors (di�erent behavior of conditionnal instructions and loop indices desynchroniza-
tion). Otherwise, a simple counting identi�cation system is su�cient. Furthermore,
in the case of a non-parallel component, no identi�cation system is required.

In the above description of the identi�cation system, in the tree view of the
hierarchical task graph, leaves are candidate points and internal nodes are �sequence�,
�loop� and �if� control structures. This restricts the expressivity for writing programs.
Function calls can be represented as leaves that connect to the root the target function
tree, as long as the function is bound statically. Thanks to that connection, the
sequence identifying a point includes the complete call stack used to reach that point.
Problems arise with runtime function binding upon calls (for example calls through
pointers) and with �goto� like instructions. In those cases, the proposed order relation
does not respect the control �ow graph. As programs can be rewritten in order to
respect those restrictions, further discussion about control structures is beyond the
scope of this paper.



10 J. BUISSON, F. ANDRÉ AND J.-L. PAZAT

5.2. Computation of the local adaptation point. Because we restricted
consideration to candidate points in the future of the execution path, the local adap-
tation point is the next point in the path. Computing this point simply consists in
following the edges of the control �ow graph. This corresponds to a depth-�rst traver-
sal of the tree from the left to the right. This traversal begins at a start point that is
at least the one being executed at the time of the computation.

5.3. Instrumentation of the code. In order to predict the next candidate
point in the future of the execution path, the coordinator must be able to locate the
actual execution progress in the space of the candidate points. As it must be able
to build the sequence identifying the candidate point that is being executed by the
execution thread, the coordinator requires an instrumentation of the code.

The instrumentation of the code consists in inserting some pieces of code at each
node of the tree view of the hierarchical task graph as presented at the preceding
section. The �gure 5.4 shows an example of an instrumented algorithm.

Algorithm instrumented_gcd (a, b) :
enter_function (gcd (a, b))
enter_loop (a, b)
loop until (leave_loop ((a mod b) = 0))

iteration_loop (a, b)
if (enter_condition (a < b)) then

candidate_point (P1)
tmp← a
a← b
b← tmp

else

candidate_point (P2)
a← (a mod b)

end if

leave_condition ()
end loop

candidate_point (P3)
return (leave_function (b))

Figure 5.4. Instrumented version of the algorithm 5.1

The process of inserting the instrumentation statements in the source code of the
component can be largely automated using aspect-oriented programming (AOP [13])
techniques. We have proposed in [18] a static aspect weaver whose join points are
the control structures. This weaver has been successfully used to insert the instru-
mentation statements. It relies on candidate points, which are placed by hand by
the developer, to detect which control structures need to be instrumented (those that
contain at least one candidate point).

5.4. Protocol for computing the supremum. Many trivial protocols might
be designed to compute this supremum (for example, centralized). Many already exist
to compute a maximum (in particular for leader election); they can easily be modi�ed
to compute a supremum instead of a maximum. However, we think that a speci�c
protocol suits better this case.



Afpac: Enforcing consistency during the adaptation of a parallel component 11

5.4.1. Motivation for designing a speci�c protocol. The full set of the local
adaptation points is not always necessary to compute the supremum. The idea is to
superimpose the agreement protocol and the local computations of the next candidate
point in order to exempt some of the execution threads from computing their local
adaptation point. In particular, it is interesting to exempt those whose prediction
is postponed due to conditional instructions. Indeed, it allows the computation of
the local adaptation point to resume sooner with a start point that is further in the
execution path. Moreover, superimposing the protocol and the computation evicts the
earliest adaptation points sooner than if the whole set of local adaptation points must
be computed. This avoids situations in which the execution thread tries to execute
through a locally chosen point that has not been either con�rmed or evicted yet.

5.4.2. Informal description of the protocol. The key idea of the protocol is
to let the threads negotiate. Each thread can propose to the others its view of what
the common adaptation point is, namely the point it has chosen locally. If it has not
chosen one (because of unpredictable instructions such as conditions), it can give clues
to the other threads. These clues can be for example the root node of the subtree
representing the conditional block. When a thread receives a proposition or a clue, it
may take di�erent actions depending on how it compares to its own proposition.

• If its own proposition is better (that is to say in the future of the received
one), it rejects the received proposition.

• If the received one is better, it is adopted.
• If the two propositions are not comparable, the thread retracts its proposition
and computes a new one that takes into account the two previous ones. The
computation starts at the point at which the control sub�ows merge (the
supremum of the two points).

• If both propositions are the same, the thread agrees with the other one.

The protocol also progresses when an execution thread provides new information. For
example when the functional thread executes a conditional instruction, it may retract
its clue and propose some new information.

The protocol ends when all threads agree with each other's and when the agree-
ment is on a true proposition (not just a clue). This means that they all have adopted
the same point.

5.4.3. Anatomy of the protocol. We have designed a speci�c protocol to solve
this problem. This protocol is based on a unidirectional ring communication scheme.
Each thread confronts its proposition with the one of its predecessor and sends it
only to its successor in the ring. The end of the protocol, namely the reach of the
agreement, is detected using a Dijkstra [6]-like termination algorithm. Our protocol
distinguishes strong propositions (values that can be chosen by the agreement) from
weak propositions (values that forbid the agreement to conclude, previously called
clues). The protocol allows threads to retract their proposition. It strictly de�nes the
criteria of the consistency of retraction.

Our protocol is pessimistic. If an execution thread tries to get through a point
thought to be the chosen one, the algorithm refuses to speculate whether it should
allow the execution thread to continue or execute the reaction. It rather suspends the
execution thread until it gets certainty. As a result, because the �postpone� strategy
eases such situations (as described in � 4.3), this strategy tends to increase the risk
of suspending the execution thread.



12 J. BUISSON, F. ANDRÉ AND J.-L. PAZAT

6. Experiments. The experiments presented here aim at comparing the strate-
gies described at � 4.1.2 with regard to functional code suspension and delay before
the execution of the reaction. The goal is to exhibit and validate the expected be-
haviors described in � 4.3. This characterization would help developers to choose the
right strategy depending on their code.

Three experiments have been made: synthetic loop code, synthetic condition code
and NAS Parallel Benchmark 3.1 [14] FFT code. Only the results of the latter will
be presented and discussed.

6.1. Experimental protocol. The experimental protocol consists in trigerring
adaptation many times at random intervals (with uniform distribution to avoid im-
plicit synchronization between the functional code and the adaptation trigger) while
the code is being executed by a 4 processors cluster. Experiments result in two data
series: one indicates for each adaptation the time elapsed between the trigger and the
e�ective execution of the reaction; the other gives the time during which the func-
tional thread has been suspended while choosing the point at which to adapt. For
each data series, one curve is drawn that gives an approximate measure of the density
of samples for each observed value.

6.2. Observations. Figures 6.1 and 6.2 show the results with the FFT code.
This experiment aims at comparing the �postpone� and �skip� strategies for condi-
tional instructions within a main loop. The main loop has the �force� strategy so
that the synchronization and communication statements induced by our algorithm
are exclusively related to the inner instructions. This prevents distortions of the
observations.

Figure 6.1 shows that the �postpone� strategy tends to select an adaptation point
that arrives sooner in the execution path than the �skip� strategy. Conversly, �gure 6.2
shows that the �postpone� strategy tends to suspend the functional code for a longer
time than the �skip� strategy. Indeed, the �postpone� strategy leads to higher density
of samples up to about 0.5 s of functional code suspension. However, this observation
has to be balanced as it appears that both strategies do not suspend the functional
code in most of the samples.

60

50

40

30

20

10

0 s 5 s 10 s 15 s

D
en

si
ty

Time

Postpone
Skip

Figure 6.1. Density curve for adapta-

tion delay

200

150

100

50

0 s 1 s 2 s 3 s

D
en

si
ty

Time

Postpone
Skip

Figure 6.2. Density curve for suspen-

sion time

6.3. Discussion. These results and those we obtained with synthetic codes con-
�rm the behaviors we expected in section 4.3. Namely, the choice between the �post-
pone� and the �skip� strategies, is a trade-o� between the precision of the prediction
and the risk to uselessly suspend the functional code.



Afpac: Enforcing consistency during the adaptation of a parallel component 13

The observations are explained by the fact that the �postpone� strategy tends
to delay the agreement in order to choose a more precise point (closer to the current
state), in comparision to the �skip� strategy. It makes the �postpone� strategy increase
the risk for other threads to reach that point before the agreement is made, and thus
to suspend their execution. On the other side, the �skip� strategy tends to choose a
point that is further in the future of the execution path; it results in a lower risk for
other threads to reach that point before the agreement is made and thus to suspend
their execution.

Consequently, if the time between a conditional instruction and the following
point is large enough to balance the delay of the agreement, the �postpone� strategy
should be preferred as it results in a sooner adaptation. Otherwise, the �skip� strategy
should be used in order to avoid the suspension of the execution thread.

7. Related works and domains.

7.1. Other projects on dynamic adaptation of parallel codes. Most of
the projects that faced the problem of dynamic adaptation such as DART [16] do
not consider parallelism. Other projects such as SaNS [8] and GrADSolve [17] build
adaptive components for Grid. Those projects target adaptation only at the time
of component invocation. This supposes a �ne-grain encapsulation in components;
otherwise, if methods are too long, adaptation is defeated because it cannot occur
during execution. Within the context of Commercial-O�-The-Shelf (COTS) compo-
nent concept, su�ciently �ne-grained encapsulation for the dynamic adaptation to
make sense only at invocation level does not appear valuable enough; whereas su�-
ciently coarse-grained encapsulation for valuable COTS components are not able to
really dynamically adapt themselves if they do so only at each invocation. This is why
we think that components should be able to adapt themselves not only at method
calls, but also during the execution of methods.

The Grid.It project [2] also faces the problem of dynamically adapting paral-
lel components. The followed approach is based on structured parallelism provided
by high-level languages. The compiler generates code for virtual processes that are
mapped to processing elements at run-time. An adaptation consists in dynamically
modifying this mapping. This adaptation can be done within language constructs
transparently to the developper. In this case, the consistency enforcement mechanism
can rely on assumptions on the overall structure of the program as it is generated by
a compiler.

PCL [1] focuses on the re�ective programming tools for the dynamic adaptation
of parallel applications. This project considers dynamic adaptation as modi�cations
on a static task graph modeling the code and provides at runtime primitive operators
on that graph. It gives a full framework for re�ective programming that is useful
to implement reactions. The problem of the coordination of the reaction and the
execution threads of the functional code has been studied with PCL in [9]. Their
approach to the problem of the coordination is similar to ours: the adaptation is
scheduled to be executed at an adaptation point in the future of the execution path.
However, the problem of dealing with unpredictable conditional instructions is not
addressed. Furthermore, the consistency model is di�erent from ours. In PCL, each
reaction is triggered at any point of the speci�ed region. For example, on �gure 7.1,
tasks B and D are not distinguished. According to the consistency model, in a two-
threads component, if one is executing A and the other C, a �region in� reaction
targeting region RGN1 is scheduled at the A → B edge for the �rst thread and
at the C → D edge for the second one. We think that it is a better consistency



14 J. BUISSON, F. ANDRÉ AND J.-L. PAZAT

Figure 7.1. Example of a region in a PCL static task graph

model to schedule the reaction at the C → D edge for both threads (our �same state�
consistency). One solution might be to put B and D in two di�erent regions; but in
this case, PCL fails specifying that the reaction can be scheduled either before B or
before D, but at the same edge for all threads. Furthermore, PCL is unable to handle
the case of thread desynchronization in loops (one thread doing more iterations than
another does) for regions being in such a loop. The simple region counter is not
su�cient to solve this problem.

7.2. Resource management in Grid infrastructures. The dynamic char-
acteristic of Grid architecture appears well accepted, as re�ected by the presence of
monitoring services such as Globus MDS. On the other side, job management usually
considers that the set of resources allocated to one job remains constant for the whole
lifetime of the job. Approaches such as AppLeS [4] and GridWay [12] show that even
Grid applications can bene�t from non-constant schedules. With those two projects,
when the scheduler or the application detects that a better schedule can be found,
the application checkpoints itself, then the job is cancelled and resubmitted with new
resource constraints. Our approach is slightly di�erent. We assume that the resource
management system is able to modify job schedules without having to cancel and re-
submit jobs. Thanks to this assumption, checkpointing and restarting the application
is not required, potentially leading to lower cost for the adaptation in particular when
the intersection before and after the rescheduling is not empty.

7.3. Computation steering. The problem of steering a parallel component is
very close to our problem of adapting this component. Indeed, in both cases, we
need to insert dynamically code at some global state. The EPSN project [10] aims
at building a platform for online steering and visualization of numerical simulations.
In [11], the authors describe the infrastructure they built to do the steering. Their
structured dates is similar to our candidate point identi�cation system. Both systems
are based on similar representations of the code. Moreover, steering like dynamic
adaptation tries to �nd the next candidate point in the future of the execution path.
Thus, computation steering and dynamic adaptation may bene�t from fusionning in
a single framework.

7.4. Fault tolerance. Fault tolerance might be seen as a particular case of dy-
namic adaptation. Indeed, it is the adaptation to the �crash� of some of the allocated
resources. However, things are not that simple. Fault tolerance encompasses two
di�erent problems: the recovery of the fault and the adaptation to the new situation.
Only the second one really belongs to the problem of dynamic adaptation. Many
strategies can be used to recover from faults. The closest one from dynamic adapta-
tion is probably checkpointing in the sense it requires some global points. Whereas



Afpac: Enforcing consistency during the adaptation of a parallel component 15

dynamic adaptation can look for a point in the future of the execution path, check-
pointing requires a point in the past. Nevertheless, mechanisms required by dynamic
adaptation may be useful to implement recovery strategies based on checkpointing.
The instrumentation of the code can be used as hooks at which checkpoints can
be taken. Indeed, it implicitly statically coordinates the checkpoints of all threads,
avoiding the problem of computing a global consistent state. Reciprocally, dynamic
adaptation can take advantage of the techniques that have been developped to check-
point and restart computations in the area of fault-tolerance.

8. Conlusion. In this paper, we have brie�y described the overall model we
introduced to build self-adaptable parallel components. This paper essentially focuses
on the coordinator functional box of the Afpac framework. This coordinator is
responsible for scheduling the reaction in the execution path of the several execution
threads.

The protocol we designed follows a pessimistic approach with regard to the fact
that the execution thread may go through a con�rmed point. In the future of our
work, we will study how optimistic approaches can be designed. For example, when
the functional code reaches a point suspected to be chosen but not yet con�rmed,
it may continue its execution instead of waiting for the point to be either con�rmed
or evicted. If at the end that point is con�rmed, the situation may be repaired by
rolling-back the functional code.

Moreover, our coordinator searches adaptation points exclusively in the future of
the execution path. However, this is an arbitrary choice that has no other justi�cation
than simplifying algorithms. In the future, it would search in both directions (future
and past) to �nd the best adaptation point. We will study how algorithms can be
generalized.

Finally, our �same state� consistency model has to be extended to the case of non-
SPMD components: we have already thought of another consistency model de�ned by
a customizable correspondence relation between the candidate points of the threads.

As a longer term research, we are working on completing our architecture in order
to build a complete platform. In particular, we are studying how generic engines
can be used within our Dynaco framework. We are also investigating protocols for
adaptation within assemblies of components. Endly, we are studying how a resource
manager could take advantage of applications able to adapt themselves.

Acknowledgement. Experiments described in this paper have done with the
Grid 5000 (http://www.grid5000.fr/) French testbed.

REFERENCES

[1] V. Adve, V. V. Lam, and B. Ensink, Language and compiler support for adaptive distributed

applications, in ACM SIGPLANWorkshop on Optimization of Middleware and Distributed
Systems (OM 2001), Snowbird, Utah, June 2001.

[2] M. Aldinucci, S. Campa, M. Coppola, M. Danelutto, D. Laforenza, D. Puppin,

L. Scarponi, M. Vanneschi, and C. Zoccolo, Components for high performance grid

programming in the grid.it project, in Workshop on Component Models andd Systems for
Grid Applications, June 2004.

[3] F. André, J. Buisson, and J.-L. Pazat, Dynamic adaptation of parallel codes: toward self-

adaptable components for the grid, in Workshop on Component Models and Systems for
Grid Applications (Held in conjunction with ICS'04), June 2004.

[4] F. Berman, R. Wolski, H. Casanova, W. Cirne, H. Dail, M. Faerman, S. Figueira,

J. Hayes, G. Obertelli, J. Schopf, G. Shao, S. Smallen, N. Spring, A. Su, and

http://www.grid5000.fr/


16 J. BUISSON, F. ANDRÉ AND J.-L. PAZAT

D. Zagorodnov, Adaptive computing on the grid using apples, IEEE Transactions on
Parallel and Distributed Systems, 14 (2003), pp. 369�382.

[5] J. Buisson, F. André, and J.-L. Pazat, Dynamic adaptation for grid computing, in Ad-
vances in Grid Computing - EGC 2005 (European Grid Conference, Amsterdam, The
Netherlands, February 14-16, 2005, Revised Selected Papers), P. Sloot, A. Hoekstra,
T. Priol, A. Reinefeld, and M. Bubak, eds., vol. 3470 of Lecture Notes in Computer Science,
Amsterdam, Feb. 2005, Springer-Verlag, pp. 538�547.

[6] E. W. Dijkstra, W. H. J. Feijen, and A. J. M. van Gasteren, Derivation of a termi-

nation detection algorithm for distributed computations. retranscription de [7], 1982.
[7] , Derivation of a termination detection algorithm for distributed computations, Informa-

tion Processing Letters, 16 (1983), pp. 217�219.
[8] J. Dongarra and V. Eijkhout, Self-adapting numerical software for next generation appli-

cation, Aug. 2002.
[9] B. Ensink and V. Adve, Coordinating adaptations in distributed systems, in 24th Interna-

tional Conference on Distributed Computing Systems, Mar. 2004, pp. 446�455.
[10] Epsn project.
[11] A. Esnard, M. Dussere, and O. Coulaud, A time-coherent model for the steering of parallel

simulations, in Europar 2004, Sept. 2004.
[12] E. Huedo, R. S. Montero, and I. M. Llorente, The gridway framework for adaptive

scheduling and execution on grids, Scalable Computing: Practice and Experience, 6 (2005),
pp. 1�8.

[13] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier, and

J. Irwin, Aspect-oriented programming, in Proceedins of European Conference on Object-
Oriented Programming, M. Ak³it and S. Matsuoka, eds., vol. 1241, Berlin, Heidelberg and
New-York, 1997, Springer-Verlag, pp. 220�242.

[14] NAS, Parallel benchmark. http://www.nas.nasa.gov/Software/NPB/.
[15] C. Pérez, T. Priol, and A. Ribes, A parallel corba component model for numerical code cou-

pling, in Proc. 3rd International Workshop on Grid Computing, M. Parashar, ed., no. 2536
in Lect. Notes in Comp. Science, Baltimore, Maryland, USA, Nov. 2002, Springer-Verlag,
pp. 88�99. Held in conjunction with SuperComputing 2002 (SC '02).

[16] P.-G. Raverdy, H. L. V. Gong, and R. Lea, DART : a re�ective middleware for adaptive

applications, in OOPSLA'98 Workshop #13 : Re�ective programming in C++ and Java,
Oct. 1998.

[17] S. Vadhiyar and J. Dongarra, GrADSolve: RPC for high performance computing on the

grid, in Euro-Par 2003: Parallel Processing, H. Kosch, L. Böszörményi, and H. Hellwagner,
eds., vol. 2790 of Lecture Notes in Computer Science, Springer-Verlag, Aug. 2003, pp. 394�
403.

[18] G. Vaysse, F. André, and J. Buisson, Using aspects for integrating a middleware for

dynamic adaptation, in The First Workshop on Aspect-Oriented Middleware Development
(AOMD'05), ACM Press, Nov. 2005.


