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Grid architectures are execution environments that are known to be at the same time distributed, parallel, heterogeneous and dynamic. While current tools focus solutions for hiding distribution, parallelism and heterogeneity, this approach does not t well their dynamic aspect. Indeed, if applications are able to adapt themselves to environmental changes, they can benet from it to achieve better performance. This article presents Afpac, a model extending Dynaco for designing self-adaptable parallel components that can be assembled to build applications for Grid. This model includes the denition of a consistency criterion for the dynamic adaptation of SPMD components. We propose a solution to implement this criterion. It has been evalued using both synthetic and real codes to exhibit the behavior of several proposed strategies.

Introduction.

Grid is an architecture that can be considered as a large-scale federation of pooled resources. Those resources might be processing elements, storage, and so on; they may come from parallel machines, clusters, or any workstation. One of the main properties of Grid architectures is to have variable characteristics even during the lifetime of an application. Resources may come and go; their capacities may vary. Moreover, resources may be allocated then reclaimed and reallocated as applications start and terminate on the Grid. To sum up, Grid is an architecture that is at the same time distributed, parallel, heterogeneous and dynamic. This is why we think distributed assemblies of parallel self-adaptable components is a suitable model for Grid applications.

In our context, we just see the component as a unit that explicitly species the services it provides (provide ports) and the ones it requires (use ports). Required resources are one kind of required services. Service specications can be qualitative (type specication); they can also be quantitative (quality of the provided or used services). A parallel component is simply a component that encapsulates a parallel code. For example, GridCCM [START_REF] Pérez | A parallel corba component model for numerical code coupling[END_REF] extends CORBA Component Model to support parallel components. A self-adaptable component is a component that is able to modify its behavior depending on the changes of the environment: it may use dierent algorithms that use services dierently and provide dierent qualities of services. The choice of the algorithm is a component-dependent problem and cannot be solved in a general way at some middleware level. Nevertheless, some generic mechanisms exist in adaptable components that are independent of the component itself. Our research focuses on the design of an adaptation framework for parallel components that provides all those common mechanisms. One of the main problems consists in providing a mechanism for choosing a point in the execution to perform the adaptation in a consistent manner. This article aims at addressing this problem.

Section 2 presents our model of dynamic adaptation for parallel codes to set the context of this article up. Section 3 gives few mathematical denitions that are useful in the remaining text of this paper. Sections 4 and 5 describe how the future of the execution path is predicted to choose the adaptation point at which the adaptation code is inserted. Section 6 discusses the results obtained from our It also shows similarities with computation steering and fault tolerance. Finally, section 8 concludes this paper and presents some perspectives.

2. Model of self-adaptable components. The dynamic adaptability of a component is its ability to modify itself according to constraints imposed by the execution environment on which it is deployed. It aims at helping the component to give the best performance given its allocated resources. Moreover, it makes the component aware of changes in resource allocation. Resources may be allocated and reclaimed dynamically during the lifetime of the component.

2.1. Structure of a self-adaptable component. With our model of dynamic adaptation [START_REF] André | Dynamic adaptation of parallel codes: toward selfadaptable components for the grid[END_REF], parallel self-adaptable components can split in several functional boxes (some of them being independent of the component itself ). Figure 2.1 shows the architecture of a parallel self-adaptable component. A short description of the boxes follows.

The monitors provide the information service about the environment of the component. They should oer two interfaces: a subscription-based event source and a query interface. Monitors are not restricted to collect information about the outside world of the component: the component itself and its activity can be relevantly monitored (for example for estimating its current service rate). Furthermore, nothing prevents the component from being one of its own monitors.

The service of the component is the functionality it provides. The service can be implemented by several algorithms that might be used to solve a single problem.

Each of these algorithms uses dierently the resources; thus, there is one preferred algorithm for each conguration of the resources allocated to the component.

The actions are the ways to modify the component. They modify the way the service is implemented, replacing the algorithm with another one, adjusting its parameters or anything else. Typically, actions use reective programming techniques to aect the component.

A strategy is an indication of the way the component should behave: it states the algorithm that should be executed and the values that its parameters should adopt.

The decider makes the decisions about adaptability. It decides when the component should adapt itself and which strategy should be adopted. In order to decide, it relies on the policy and on information provided by monitors. The policy describes component-specic information required to make the decisions. For example, the policy can be an explicit set of rules or the collection of the performance models of the algorithms implemented by the component.

A plan is a program whose instructions are invocations of actions and control instructions. Thus, plans are programs that modify the component. The planner establishes an adaptation plan that makes the component adopt a given strategy. To do so, it relies on the guide. The guide gives component-specic information required to build plans. It can consist in predened plans; or in specications of how actions can be composed (their preconditions and postconditions for example).

The executor is the virtual machine that interprets plans. In addition to forwarding invocations to actions, it is responsible for concerns such as atomicity of plan execution. The executor embeds a coordinator for synchronizing the execution of the plan with the processes that execute the service. To do so, the coordinator chooses a point (an instantaneous statement that annotates a special state) within the execution path of the service in order to insert the action.

In the context of parallel components, the service can be implemented either sequentially (exactly one execution thread) or in parallel (several communicating execution threads). In the latter case, the coordinator must implement a parallel algorithm.

Our parallel adaptable components are split in 3 parts. The decider, planner and executor form the Dynaco framework (in blue): they provide the general functionalities of dynamic adaptation. The coordinator is part of the Afpac framework (in green) that is specic to parallel components. Finally, service, actions, policy and guide are specic to the component: they are not included in any framework.

Contracts between components. Because the quality of the services

used by a component is of greater importance to the adaptation, we attach to each port link a contract that describes the eective quality of the provided service. Moreover, for the sake of uniformity, our model abstracts resources as provide ports of some component called the environment. The execution environment of a component is thus completely described by the contracts attached to its use ports. Consequently, any change in the execution environment is reected by a change in those contracts, triggering the adaptation.

Contracts are dynamically negotiated and renegotiated: a component negotiates sucient quality of service with its subcontractors in order to respect the contracts with its clients; it negotiates with its clients the quality of the provided services according to the ones contracted with its subcontractors. In that way, any renegotiation of one contract automatically propagates to the entire assembly of components (the application) to adjust the quality of all the provided services of all components. Consequently, it propagates the trigger of the adaptation to the components that require it.

2.3. Performance model. The goal of dynamic adaptation is to help the component to give the best performance. Thus, the model assumes that adaptation occurs when the component runs a non-optimal service given its allocated resources. This means that the completion time is worse than it could be. In a general way, the conceptual performance model of a single-threaded component that adapts itself is shown by gure 2.2. The x-axis is the execution ow of the component with adaptation points labelled from 1 to 5; the curve gives the expected completion time if the component adapts itself at the corresponding point in its execution ow. The lower the expected completion time is for a given adaptation point, the better that adaptation point is.

The adaptation can occur in either the future or the past of the current state. In the case of adapting in the past, it requires the restoration of a checkpoint (that has a cost r on the curve). At the extremes, adapting in the future is adapting once the execution has ended (or equivalently not adapting at all); while adapting in the past consists in restarting from the begining (purely static adaptation). It appears that whatever the search direction, the best point will always be the nearest one from the current state. In gure 2.2, the best adaptation point is the one labelled 3.

In the case of a parallel component, several curves are superimposed. Because the threads of the component are not necessarily synchronized, the curves are slightly shifted (the present time is not at the same distance of adaptation points for all threads). The global completion time is thus the maximum of the ones for all threads.

In this case, the best point can be in the future for some threads and in the past for some others.

In this paper, we arbitrarily chose to consider only the search direction towards the future of the execution. In the case of a parallel component, we look for a global point that belongs to the future of all threads.

2.4. Consistency model. In the case of a parallel service, the coordinator must enforce the consistency of the adaptation. We dened one consistency model, which we called the same state consistency model. In this model, the adaptation is said to be consistent if and only if all threads execute the reaction from the same state (this logical synchronization does not require an eective synchronization of the execution threads). This model only makes sense in the case of SPMD codes (parallel codes for which all threads share the same control ow graph). It has been further discussed in [START_REF] Buisson | Dynamic adaptation for grid computing[END_REF].

2.5. Scenario of dynamic adaptation. From time to time, possibly due to some external event, the decider determines whether the component should adapt itself according to the policy. It thus orders the planner to nd a suitable plan for achieving the decided strategy. This plan is sent to the executor for execution. When the executor needs to execute an action in the context of the parallel execution of the service, it orders the coordinator to choose an adaptation point. This point is the next one in the future of the execution path. When the threads of the service reach that adaptation point, their control ow is hooked in order to insert the execution of the requested action.

In this paper, we will concentrate on the coordinator. Section 4 describes how the point can be computed; section 5 depicts how an algorithm can be built. In the remaining text of the document, we will call candidate points the points at which a reaction can be executed. The one that has been chosen by the coordinator will be called the adaptation point.

3. Denitions. This section recalls few denitions about partial orders that are useful in understanding the remaining text of this paper. Definition 3.1 (poset). A poset (or partially-ordered set) is a pair (P, R) where P is a set and R is a binary relation over P that is (1) reexive, (2) antisymmetric and (3) transitive.

(1

) ∀x • (x ∈ P ⇒ xRx) (2) ∀x, y • x, y ∈ P 2 ⇒ ((xRy ∧ yRx) ⇒ x = y) (3) ∀x, y, z • x, y, z ∈ P 3 ⇒ ((xRy ∧ yRz) ⇒ xRz) Definition 3.2 (supremum).
Given a poset (P, R), the supremum sup (S) of any subset S ⊂ P of P is the least upper bound u of S in P such that: (1) u succeeds all elements of S and (2) u precedes any element v of P succeeding all elements of S (1

) ∀x • (x ∈ S ⇒ xRu) (2) ∀v • (v ∈ P ⇒ ((∀x • (x ∈ S ⇒ xRv)) ⇒ uRv)) Definition 3.3 (inmum).
Symmetrically to the supremum, given a poset (P, R), the inmum inf (S) of any subset S ⊂ P of P is the greater lower bound l of S in P such that:

∀x • (x ∈ S ⇒ lRx) ∧ ∀v • (v ∈ P ⇒ (∀x • (x ∈ S ⇒ vRx)) ⇒ vRl)
The inmum of S in the poset (P, R) is the supremum of S in P, R -1 . Definition 3.4 (lattice). A lattice L is a poset (P, R) such that for any pair x, y ∈ P 2 , both the supremum sup ({x, y}) and the inmum inf ({x, y}) exist. This denes two internal composition laws:

sup ({x, y}) = x ∨ y (join) inf ({x, y}) = x ∧ y (meet)
4. Computing the future. The coordinator needs to nd a global point such that it represents the same state for all threads. As it restricts consideration to points in the future of execution paths this point should be the rst one in the future for all threads, given the assumption on the performance model depicted in 2.3.

Local prediction of the next point.

For each thread, the coordinator needs to nd the next candidate point in the future of the execution path. This point would be the one at which the coordinator is going to execute the reaction in the case of a single-threaded component.

4.1.1. General schema. An execution path can be seen as a path in the control ow graph that models the code. If loops are unrolled (for example by tagging nodes with indices in iteration spaces), the control ow graph denes a precedes partial order between the points of a code. Given this relation, each thread of the parallel component is able to locally predict its next point at least in trivial cases, when no conditional instruction is encountered (in this case, nodes in the control ow graph have at most one successor).

4.1.2. Uncertain predictions. In the general case, predicting the future of an execution path is undecidable due to conditional instructions: their behavior is unpredictable since it depends on runtime computations. This occurs for both conditions and loops, which appear as nodes having several successors in the control ow graph. Three strategies may be used when such a node is encountered during the computation of the adaptation point.

• Postpone. The computation of the adaptation point can be postponed until the eective behavior of the instruction is known. Once the unpredictable instruction has been executed, the computation of the adaptation point resumes with a new start point (the one that is being entered).

• Skip. The computation of the point can move forward in the control ow graph until all control subows merge. In this case, the prediction jumps over loops and conditions.

• Force. The behavior of the conditional instruction can be guessed when additional static information is available. With this strategy, one branch of the conditional instruction is assumed accordingly to some applicationdependent knowledge; then some application-level mechanism enforces that the execution path respects this assumption.

Two examples that follow illustrate the usage of the force strategy. Firstly, it is possible for some loops to insert unexpected empty iterations; in this case, it can be guessed that the conditional instruction will execute the branch that stays in the loop; this behavior can be enforced by making one more empty iteration ondemand. Secondly, if the code includes assertions to detect error cases, it could be reasonably assumed that those assertions hold; in this case, it can be guessed that the corresponding conditional instruction will execute the branch leading to errorfree cases. As mispredictions exactly match detected runtime errors, error handlers invoked upon assertion failures can be used to handle eects of mispredictions.

The above examples exhibit two interpretations of the force strategy. In the rst example, the coordinator changes the execution behavior of the component in order to t its requirements. The coordinator uses the static knowledge about the component to ensure that this change does not have any semantic impact on produced results. In the second example, the coordinator let the component execute its normal behavior and simply exploits static knowledge to make its prediction.

Characterization of the chosen global point. The point that should

be chosen is the supremum u, if it exists, of the set S of the next local points for each thread with respect to the precedes partial order (noted ). Indeed, the property ∀x • (x ∈ S ⇒ x u) guarantees that u is in the future of all threads; the property ∀v •

(v ∈ P ⇒ ((∀x • (x ∈ S ⇒ x v)) ⇒ u v)
) means that u is the rst point amongst those in the future of all threads.

Even if loops are unrolled, the control ow graph is not a lattice as it may contain patterns such as the one of gure 4.1(a). In this example, the supremum sup ({P 1, P 2}) does not exist. This pattern captures a subset of conditional instructions. The three strategies that has been identied for locally predicting the next point can be used to work-around non-existence of the supremum.

• Postpone. Postponing the computation of the adaptation point until the unpredictable instruction has been executed can be seen as inserting a special node that models that instruction in the control ow graph. For example, in gure 4. • Skip. Skiping the conditional block is equivalent to compute the supremum within the subset dened by:

{a|∀y • ((∀x • (x ∈ S ⇒ x y)) ⇒ (a y) ∨ (y a))}
This set contains the points that are related to all successors of all points in S. Those points are guaranteed to be traversed by any execution thread starting from any point in S. The denition of that set ensures that upper bounds of S in that set are totally ordered by . Consequently, the supremum of S in that set ordered by exists if at least one upper bound exists. In the given example, it restricts to compute the supremum sup ({P 1, P 2}) in {P 1, P 2, P 5}; this supremum exists.

• Force. Forcing one branch of a conditional instruction removes all out edges but one of the corresponding node. This is sucient to make the supremum exist. For example, on gure 4.1(c), the conditional instruction that follows P 1 has been forced such that it always leads to P 3.

Each conditional instruction may use a distinct strategy. In such a case, several strategies are combined. 5. Building an algorithm. In order to solve the problem of nding a point in the case of a parallel service, an algorithm has been designed. [START_REF] Buisson | Dynamic adaptation for grid computing[END_REF].1. Identication of the candidate points. Having a good identication system for the points is a key issue. Indeed, as 4.2 has shown, the case of parallel self-adaptable components requires the computation of the supremum of a set of points. This requires to be able to compare easily candidate points with respect to the precedes partial order. However, with naive point identication, deciding whether a candidate point precedes, succeeds, or is not related to another one requires the computation of the transitive closure of the control ow graph with unrolled loops.

The same apply for the join composition law. This is why a smarter identication system for the points is needed.

5.1.1. Description of the identication system. We think that the good representation to use is a tree view of the hierarchical task graph. • out edges of loop nodes are labelled with the value of the indice within the iteration space of the loop;

• out edges of condition nodes are labelled with either the symbol then (the condition is true) or the symbol else (the condition is false);

• other edges (out edges of block nodes) are labelled with the execution order number in the control ow. 

An examplary algorithm

Considering the tree view of the hierarchical task graph, one can see that the nodes of the control ow graph are the leaves of the tree. Each candidate point is identied by the sequence composed of the labels of the edges traversed by the path from the root to the leaf corresponding to it. For example, the node P 3 is identied by 2 ; the node P 1 is identied by the sequence 1, (a, b) , 1, else, 1 .

Order on points.

The set of edge labels in the tree is E = N ∪ I ∪ {then, else}, where N is the set of execution order numbers (natural numbers) and I the iteration space partially ordered by an application-specic relation I . We dene the following partial order over the set E of edge labels of the tree:

∀x, y • x, y ∈ E 2 ⇒ x E y ⇔ x, y ∈ N 2 ∧ x ≤ y ∨ x, y ∈ I 2 ∧ x I y
Notably, the two constants then and else are set not comparable to other values and values in iteration spaces (such as (a, b) in the example) are partially ordered by an application-specic relation. The edges of the control ow graph (that represent the precedes partial order between points) are (graphically) transverse to those of the tree. Consequently, the lexicographical partial order n E on the sequences is equivalent to the partial order on points dened by the control ow graph. Thus, with this identication system, deciding whether a point precedes, succeeds, or is not related to another one can be computed as a direct lexicographical comparison (not requiring the computation of the transitive closure of the control ow graph anymore). Moreover, this ordering directly takes into account the loop indices in iteration spaces, whereas the control ow graph does not.

5.1.3. Discussion. This identication system makes sense only in the case of a parallel component in which all threads are allowed to have dierent dynamic behaviors (dierent behavior of conditionnal instructions and loop indices desynchronization). Otherwise, a simple counting identication system is sucient. Furthermore, in the case of a non-parallel component, no identication system is required.

In the above description of the identication system, in the tree view of the hierarchical task graph, leaves are candidate points and internal nodes are sequence, loop and if control structures. This restricts the expressivity for writing programs.

Function calls can be represented as leaves that connect to the root the target function tree, as long as the function is bound statically. Thanks to that connection, the sequence identifying a point includes the complete call stack used to reach that point.

Problems arise with runtime function binding upon calls (for example calls through pointers) and with goto like instructions. In those cases, the proposed order relation does not respect the control ow graph. As programs can be rewritten in order to respect those restrictions, further discussion about control structures is beyond the scope of this paper.

Computation of the local adaptation point. Because we restricted

consideration to candidate points in the future of the execution path, the local adaptation point is the next point in the path. Computing this point simply consists in following the edges of the control ow graph. This corresponds to a depth-rst traversal of the tree from the left to the right. This traversal begins at a start point that is at least the one being executed at the time of the computation.

5.3. Instrumentation of the code. In order to predict the next candidate point in the future of the execution path, the coordinator must be able to locate the actual execution progress in the space of the candidate points. As it must be able to build the sequence identifying the candidate point that is being executed by the execution thread, the coordinator requires an instrumentation of the code.

The instrumentation of the code consists in inserting some pieces of code at each node of the tree view of the hierarchical task graph as presented at the preceding section. The gure 5.4 shows an example of an instrumented algorithm.

Algorithm instrumented_gcd (a, b) :

enter_f unction (gcd (a, b)) enter_loop (a, b) loop until (leave_loop ((a mod b) = 0)) iteration_loop (a, b) if (enter_condition (a < b)) then candidate_point (P1) tmp ← a a ← b b ← tmp else candidate_point (P2) a ← (a mod b) end if leave_condition () end loop candidate_point (P3)
return (leave_f unction (b)) The process of inserting the instrumentation statements in the source code of the component can be largely automated using aspect-oriented programming (AOP [START_REF] Kiczales | Aspect-oriented programming[END_REF])

techniques. We have proposed in [START_REF] Vaysse | Using aspects for integrating a middleware for dynamic adaptation[END_REF] a static aspect weaver whose join points are the control structures. This weaver has been successfully used to insert the instrumentation statements. It relies on candidate points, which are placed by hand by the developer, to detect which control structures need to be instrumented (those that contain at least one candidate point).

Protocol for computing the supremum. Many trivial protocols might

be designed to compute this supremum (for example, centralized). Many already exist to compute a maximum (in particular for leader election); they can easily be modied to compute a supremum instead of a maximum. However, we think that a specic protocol suits better this case. to the other threads. These clues can be for example the root node of the subtree representing the conditional block. When a thread receives a proposition or a clue, it may take dierent actions depending on how it compares to its own proposition.

• If its own proposition is better (that is to say in the future of the received one), it rejects the received proposition.

• If the received one is better, it is adopted.

• If the two propositions are not comparable, the thread retracts its proposition and computes a new one that takes into account the two previous ones. The computation starts at the point at which the control subows merge (the supremum of the two points).

• If both propositions are the same, the thread agrees with the other one.

The protocol also progresses when an execution thread provides new information. For example when the functional thread executes a conditional instruction, it may retract its clue and propose some new information.

The protocol ends when all threads agree with each other's and when the agreement is on a true proposition (not just a clue). This means that they all have adopted the same point.

5.4.3. Anatomy of the protocol. We have designed a specic protocol to solve this problem. This protocol is based on a unidirectional ring communication scheme.

Each thread confronts its proposition with the one of its predecessor and sends it only to its successor in the ring. The end of the protocol, namely the reach of the agreement, is detected using a Dijkstra [START_REF] Dijkstra | Derivation of a termination detection algorithm for distributed computations[END_REF]-like termination algorithm. Our protocol distinguishes strong propositions (values that can be chosen by the agreement) from weak propositions (values that forbid the agreement to conclude, previously called clues). The protocol allows threads to retract their proposition. It strictly denes the criteria of the consistency of retraction.

Our protocol is pessimistic. If an execution thread tries to get through a point thought to be the chosen one, the algorithm refuses to speculate whether it should allow the execution thread to continue or execute the reaction. It rather suspends the execution thread until it gets certainty. As a result, because the postpone strategy eases such situations (as described in 4.3), this strategy tends to increase the risk of suspending the execution thread.

6. Experiments. The experiments presented here aim at comparing the strategies described at 4.1.2 with regard to functional code suspension and delay before the execution of the reaction. The goal is to exhibit and validate the expected behaviors described in 4.3. This characterization would help developers to choose the right strategy depending on their code.

Three experiments have been made: synthetic loop code, synthetic condition code and NAS Parallel Benchmark 3.1 [START_REF]NAS, Parallel benchmark[END_REF] FFT code. Only the results of the latter will be presented and discussed.

6.1. Experimental protocol. The experimental protocol consists in trigerring adaptation many times at random intervals (with uniform distribution to avoid implicit synchronization between the functional code and the adaptation trigger) while the code is being executed by a 4 processors cluster. Experiments result in two data series: one indicates for each adaptation the time elapsed between the trigger and the eective execution of the reaction; the other gives the time during which the functional thread has been suspended while choosing the point at which to adapt. For each data series, one curve is drawn that gives an approximate measure of the density of samples for each observed value.

6.2. Observations. Figures 6.1 and 6.2 show the results with the FFT code.

This experiment aims at comparing the postpone and skip strategies for conditional instructions within a main loop. The main loop has the force strategy so that the synchronization and communication statements induced by our algorithm are exclusively related to the inner instructions. This prevents distortions of the observations. Figure 6.1 shows that the postpone strategy tends to select an adaptation point that arrives sooner in the execution path than the skip strategy. Conversly, gure 6.2

shows that the postpone strategy tends to suspend the functional code for a longer time than the skip strategy. Indeed, the postpone strategy leads to higher density of samples up to about 0.5 s of functional code suspension. However, this observation has to be balanced as it appears that both strategies do not suspend the functional code in most of the samples. The observations are explained by the fact that the postpone strategy tends to delay the agreement in order to choose a more precise point (closer to the current state), in comparision to the skip strategy. It makes the postpone strategy increase the risk for other threads to reach that point before the agreement is made, and thus to suspend their execution. On the other side, the skip strategy tends to choose a point that is further in the future of the execution path; it results in a lower risk for other threads to reach that point before the agreement is made and thus to suspend their execution.

Consequently, if the time between a conditional instruction and the following point is large enough to balance the delay of the agreement, the postpone strategy should be preferred as it results in a sooner adaptation. Otherwise, the skip strategy should be used in order to avoid the suspension of the execution thread. [START_REF]Derivation of a termination detection algorithm for distributed computations[END_REF]. Related works and domains. 7.1. Other projects on dynamic adaptation of parallel codes. Most of the projects that faced the problem of dynamic adaptation such as DART [START_REF] Raverdy | DART : a reective middleware for adaptive applications[END_REF] do not consider parallelism. Other projects such as SaNS [START_REF] Dongarra | Self-adapting numerical software for next generation application[END_REF] and GrADSolve [START_REF] Vadhiyar | GrADSolve: RPC for high performance computing on the grid[END_REF] build adaptive components for Grid. Those projects target adaptation only at the time of component invocation. This supposes a ne-grain encapsulation in components; otherwise, if methods are too long, adaptation is defeated because it cannot occur during execution. Within the context of Commercial-O-The-Shelf (COTS) component concept, suciently ne-grained encapsulation for the dynamic adaptation to make sense only at invocation level does not appear valuable enough; whereas suciently coarse-grained encapsulation for valuable COTS components are not able to really dynamically adapt themselves if they do so only at each invocation. This is why we think that components should be able to adapt themselves not only at method calls, but also during the execution of methods.

The Grid.It project [START_REF] Aldinucci | Components for high performance grid programming in the grid.it project[END_REF] also faces the problem of dynamically adapting parallel components. The followed approach is based on structured parallelism provided by high-level languages. The compiler generates code for virtual processes that are mapped to processing elements at run-time. An adaptation consists in dynamically modifying this mapping. This adaptation can be done within language constructs transparently to the developper. In this case, the consistency enforcement mechanism can rely on assumptions on the overall structure of the program as it is generated by a compiler.

PCL [START_REF] Adve | Language and compiler support for adaptive distributed applications[END_REF] focuses on the reective programming tools for the dynamic adaptation of parallel applications. This project considers dynamic adaptation as modications on a static task graph modeling the code and provides at runtime primitive operators on that graph. It gives a full framework for reective programming that is useful to implement reactions. The problem of the coordination of the reaction and the execution threads of the functional code has been studied with PCL in [START_REF] Ensink | Coordinating adaptations in distributed systems[END_REF]. Their approach to the problem of the coordination is similar to ours: the adaptation is scheduled to be executed at an adaptation point in the future of the execution path.

However, the problem of dealing with unpredictable conditional instructions is not addressed. Furthermore, the consistency model is dierent from ours. In PCL, each reaction is triggered at any point of the specied region. For example, on gure 7.1, tasks B and D are not distinguished. According to the consistency model, in a twothreads component, if one is executing A and the other C, a region in reaction targeting region RGN 1 is scheduled at the A → B edge for the rst thread and at the C → D edge for the second one. We think that it is a better consistency . One solution might be to put B and D in two dierent regions; but in this case, PCL fails specifying that the reaction can be scheduled either before B or before D, but at the same edge for all threads. Furthermore, PCL is unable to handle the case of thread desynchronization in loops (one thread doing more iterations than another does) for regions being in such a loop. The simple region counter is not sucient to solve this problem. 7.2. Resource management in Grid infrastructures. The dynamic characteristic of Grid architecture appears well accepted, as reected by the presence of monitoring services such as Globus MDS. On the other side, job management usually considers that the set of resources allocated to one job remains constant for the whole lifetime of the job. Approaches such as AppLeS [START_REF] Berman | Adaptive computing on the grid using apples[END_REF] and GridWay [START_REF] Huedo | The gridway framework for adaptive scheduling and execution on grids[END_REF] show that even Grid applications can benet from non-constant schedules. With those two projects, when the scheduler or the application detects that a better schedule can be found, the application checkpoints itself, then the job is cancelled and resubmitted with new resource constraints. Our approach is slightly dierent. We assume that the resource management system is able to modify job schedules without having to cancel and resubmit jobs. Thanks to this assumption, checkpointing and restarting the application is not required, potentially leading to lower cost for the adaptation in particular when the intersection before and after the rescheduling is not empty. 7.3. Computation steering. The problem of steering a parallel component is very close to our problem of adapting this component. Indeed, in both cases, we need to insert dynamically code at some global state. The EPSN project [10] aims at building a platform for online steering and visualization of numerical simulations.

In [START_REF] Esnard | A time-coherent model for the steering of parallel simulations[END_REF], the authors describe the infrastructure they built to do the steering. Their structured dates is similar to our candidate point identication system. Both systems are based on similar representations of the code. Moreover, steering like dynamic adaptation tries to nd the next candidate point in the future of the execution path. Thus, computation steering and dynamic adaptation may benet from fusionning in a single framework. 7.4. Fault tolerance. Fault tolerance might be seen as a particular case of dynamic adaptation. Indeed, it is the adaptation to the crash of some of the allocated resources. However, things are not that simple. Fault tolerance encompasses two dierent problems: the recovery of the fault and the adaptation to the new situation.

Only the second one really belongs to the problem of dynamic adaptation. Many strategies can be used to recover from faults. The closest one from dynamic adaptation is probably checkpointing in the sense it requires some global points. Whereas dynamic adaptation can look for a point in the future of the execution path, checkpointing requires a point in the past. Nevertheless, mechanisms required by dynamic adaptation may be useful to implement recovery strategies based on checkpointing.

The instrumentation of the code can be used as hooks at which checkpoints can be taken. Indeed, it implicitly statically coordinates the checkpoints of all threads, avoiding the problem of computing a global consistent state. Reciprocally, dynamic adaptation can take advantage of the techniques that have been developped to checkpoint and restart computations in the area of fault-tolerance. [START_REF] Dongarra | Self-adapting numerical software for next generation application[END_REF]. Conlusion. In this paper, we have briey described the overall model we introduced to build self-adaptable parallel components. This paper essentially focuses on the coordinator functional box of the Afpac framework. This coordinator is responsible for scheduling the reaction in the execution path of the several execution threads.

The protocol we designed follows a pessimistic approach with regard to the fact that the execution thread may go through a conrmed point. In the future of our work, we will study how optimistic approaches can be designed. For example, when the functional code reaches a point suspected to be chosen but not yet conrmed, it may continue its execution instead of waiting for the point to be either conrmed or evicted. If at the end that point is conrmed, the situation may be repaired by rolling-back the functional code. Moreover, our coordinator searches adaptation points exclusively in the future of the execution path. However, this is an arbitrary choice that has no other justication than simplifying algorithms. In the future, it would search in both directions (future and past) to nd the best adaptation point. We will study how algorithms can be generalized.

Finally, our same state consistency model has to be extended to the case of non-SPMD components: we have already thought of another consistency model dened by a customizable correspondence relation between the candidate points of the threads.

As a longer term research, we are working on completing our architecture in order to build a complete platform. In particular, we are studying how generic engines can be used within our Dynaco framework. We are also investigating protocols for adaptation within assemblies of components. Endly, we are studying how a resource manager could take advantage of applications able to adapt themselves.
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 21 Figure 2.1. Model of a parallel self-adaptable component
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 22 Figure 2.2. Conceptual performance model of an adapting component

  1(b), a node C has been inserted to represent the conditional instruction. When such a node is chosen, a new round for nding a satisfying (a) Pattern which prevents the supremum from existing (b) Inserting nodes for conditionals (c) Removing branches of conditionals
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 41 Figure 4.1. Example of control ow graph with non-existent supremum
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 3 Comparison of the strategies. These three strategies have their own drawbacks. The postpone one shortens the time between choosing a point and reaching the chosen point. It may result in an increase of the risk that the execution thread tries to get through the locally chosen point before it has been globally either conrmed or evicted. The skip one chooses an adaptation point further in the future of the execution path (and possibly falls back at the end of the code). The force one modies the code of the execution thread.

Figure 5 .

 5 [START_REF] Adve | Language and compiler support for adaptive distributed applications[END_REF] gives an example algorithm that has been annotated with candidate points; gure 5.2 shows the control ow graph between annotated points; gure 5.3 shows the corresponding tree view. The edges of the tree are labelled as follows:

  Algorithm gcd (a, b) : loop until ((a mod b) = 0) if (a < b) then // candidate point P 1 tmp ← a a ← b b ← tmp else //candidate point P 2 a ← (a mod b) end if end loop // candidate point P 3 return (b)
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 51 Figure 5.1. An examplary algorithm
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 52 Figure 5.2. Control ow graph of the algorithm 5.1 Figure 5.3. Tree view of the hierarchical task graph of the algorithm 5.1
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 54 Figure 5.4. Instrumented version of the algorithm 5.1
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 41 Motivation for designing a specic protocol. The full set of the local adaptation points is not always necessary to compute the supremum. The idea is to superimpose the agreement protocol and the local computations of the next candidate point in order to exempt some of the execution threads from computing their local adaptation point. In particular, it is interesting to exempt those whose prediction is postponed due to conditional instructions. Indeed, it allows the computation of the local adaptation point to resume sooner with a start point that is further in the execution path. Moreover, superimposing the protocol and the computation evicts the earliest adaptation points sooner than if the whole set of local adaptation points must be computed. This avoids situations in which the execution thread tries to execute through a locally chosen point that has not been either conrmed or evicted yet. 5.4.2. Informal description of the protocol. The key idea of the protocol is to let the threads negotiate. Each thread can propose to the others its view of what the common adaptation point is, namely the point it has chosen locally. If it has not chosen one (because of unpredictable instructions such as conditions), it can give clues
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 62 Figure 6.1. Density curve for adaptation delay
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 71 Figure 7.1. Example of a region in a PCL static task graph
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