
HAL Id: hal-00498790
https://hal.science/hal-00498790v1

Submitted on 8 Jul 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Scheduling malleable applications in multicluster
systems

Jérémy Buisson, Ozan Sonmez, Hashim Mohamed, Wouter Lammers, Dick
Epema

To cite this version:
Jérémy Buisson, Ozan Sonmez, Hashim Mohamed, Wouter Lammers, Dick Epema. Scheduling mal-
leable applications in multicluster systems. IEEE International Conference on Cluster Computing,
Sep 2007, Austin, United States. pp.372, �10.1109/CLUSTR.2007.4629252�. �hal-00498790�

https://hal.science/hal-00498790v1
https://hal.archives-ouvertes.fr


Scheduling Malleable Applications
in Multicluster Systems

Jérémy Buisson #1, Ozan Sonmez ∗2, Hashim Mohamed ∗3, Wouter Lammers ∗4, Dick Epema ∗5

#IRISA/INSA de Rennes
Campus de Beaulieu, 35042 Rennes CEDEX, France

1jbuisson@irisa.fr
∗Delft University of Technology

P.O Box 5031, 2600 GA, Delft, The Netherlands
2O.O.Sonmez@tudelft.nl

3H.H.Mohamed@tudelft.nl
4wouter@w78.nl

5D.H.Epema@tudelft.nl

Abstract— In large-scale distributed execution environments
such as multicluster systems and grids, resource availability
may vary due to resource failures and because resources may
be added to or withdrawn from such environments at any
time. In addition, single sites in such systems may have to
deal with workloads originating from both local users and from
many other sources. As a result, application malleability, that
is, the property of applications to deal with a varying amount
of resources during their execution, may be very beneficial
for performance. In this paper we present the design of the
support of and scheduling policies for malleability in our KOALA
multicluster scheduler with the help of our DYNACO framework
for application malleability. In addition, we show the results of
experiments with scheduling malleable workloads with KOALA
in our DAS multicluster testbed.

I. INTRODUCTION

Application malleability, that is, the property of applications
to use varying amounts of resources such as processors during
their execution, is potentially a very versatile and beneficial
feature. Allowing resource allocation to vary during execu-
tion, malleability gives a scheduler the opportunity to revise
its decisions even after applications have started executing.
Increasing the flexibility of applications by shrinking their
resource allocations, malleability allows new jobs to start
sooner, possibly with resources that are not going to be usable
during their whole execution. Making applications able to ben-
efit from the resources that appear during their execution by
growing their allocations, malleability also helps applications
terminate sooner. In addition to these very general advantages,
malleability makes it easier to deal with the dynamic nature
of large-scale distributed execution environments such as
multicluster systems, and more generally grids. In this paper,
we present the design of the support for malleability in our
KOALA [1] multicluster scheduler by means of the inclusion
of our DYNACO framework [2] for application malleability,
and the design and analysis of two scheduling policies for
malleable applications.

In execution environments such as multiclusters and grids,
the availability of resources varies frequently [3]. In addition to

failures, resources may be allocated (or released) by concurrent
users, and organizations may add or withdraw (parts of)
their resources to/from the resource pool at any time. In
any of these cases, malleability allows applications to benefit
from appearing available resources, while gracefully releasing
resources that are reclaimed by the environment. Malleability
thus holds a great promise in strategies to more performant
execution in multiclusters. Besides, malleable applications give
schedulers the opportunity to increase system utilization.

On the one hand, despite that several approaches have been
proposed to build malleable applications [2], [4], [5], [6], [7],
[8], virtually no existing multicluster and grid infrastructures
are able to benefit from this property. Consequently, many
applications embed their own specific scheduler and submit
bulks of jobs in order to build dynamic resource management
on top of existing infrastructures. On the other hand, most
of the previous work on scheduling malleable applications
does not handle the challenges that appear in the context of
multicluster systems. Specifically, issues such as the selection
of a suitable cluster for each job and resilience to background
load due to local users are often not taken into account.
Furthermore, many proposed approaches have only been tested
with simulations, and an assessment of the overhead due to the
implementation of grow and shrink operations are commonly
omitted.

Our contributions in this paper are the following. First,
we present an architecture and an actual implementation of
the support for malleability in grid schedulers, showing the
benefits of the modular structure of KOALA as a by-product.
Second, we present two policies for managing malleability in
the scheduler, one which hands out any additional processor
to the malleable jobs that have been running the longest, and
one that spreads them equally over all malleable jobs; each of
these policies can be combined with one of two approaches
which either favour running or waiting jobs. Third, we evaluate
these policies and approaches in combination with KOALA’s
worst-fit load-sharing scheduling policy with experiments in
the DAS3 [9] testbed. These experiments show that a higher



utilization and shorter execution times can be achieved when
malleablity is used.

The rest of this paper is structured as follows. Section II
states more precisely the problem addressed in this paper,
and Section III reviews the state of the art of malleability
in resource management in multicluster and grid systems.
Section IV describes the KOALA grid scheduler and the
DYNACO framework, which are the starting points of our
work. Section V describes how we support malleability in
KOALA, and details the malleability management approaches
and policies that we propose. Section VI presents the ex-
perimental setup, and Section VII discusses our experimental
results. Finally, Section VIII makes some concluding remarks
and points to future work.

II. PROBLEM STATEMENT

In multicluster systems and more generally in grids, there
may be various types of parallel applications that can benefit
from being able to change their processor configuration after
they have started execution. Malleability of parallel applica-
tions may yield improved application performance and better
system utilization since it allows more flexible scheduling
policies. In this paper, we propose and compare scheduling ap-
proaches that take into account malleable applications in order
to assess such benefits. In this section, we first classify parallel
applications in order to distinguish malleable applications, and
then we address several aspects of malleable applications that
should be taken into account by a resource management or a
scheduling system.

A. Classification of Parallel Jobs

Following the well-known parallel job classification scheme
presented in [10], we consider three types of jobs, namely,
rigid, moldable, and malleable. A rigid job requires a fixed
number of processors. When the number of processors can be
adapted only at the start of the execution, the job is called
moldable. Similar to rigid jobs, the number of processors
for moldable jobs cannot be changed during runtime. Jobs
that have the flexibility to change the number of assigned
processors during their runtime (i.e., they can grow or shrink)
are called malleable.

B. Specification of Malleable Jobs

A malleable job may specify the minimum and maximum
number of processors it requires. The minimum value is the
minimum number of processors a malleable job needs to be
able to run; the job cannot shrink below this value. The
maximum value is the maximum number of processors a
malleable job can handle; allocating more than the maximum
value would just waste processors. We do not assume that
a stepsize indicating the number of processors by which a
malleable application can grow or shrink is defined. We leave
the determination of the amount of growing and shrinking to
the protocol between the scheduler and the application (see
Section V).

C. Initiative of Change

Another aspect that we consider is party that takes the
initiative of changing the size of a malleable job (shrinking or
growing). Either the application or the scheduler may initiate
grow or shrink requests. An application may do so when
the computation it is performing calls for it. For example, a
computation can be in need of more processors before it can
continue. On the other hand, the scheduler may decide that a
malleable job has to shrink or grow based on the availability of
free processors in the system. For example, the arrival of new
jobs to a system that is heavily loaded may trigger a scheduler
to requests currently running malleable jobs to shrink.

D. The Obligation to Change

Requests for changing the size of a malleable job may or
may not have to be satisfied. A voluntary change means that
the change does not have to succeed or does not necessarily
have to be executed; it is merely a guideline. A mandatory
change, however, has to be accommodated, because either the
application cannot proceed without the change, or because the
system is in direct need of the reclaimed processors.

III. RELATED WORK

Much of the previous research on the problem of scheduling
and allocating resources to malleable jobs has focused on
theoretical aspects [11], [12], [13]. Thus, the results have been
obtained in simulated environments, often neglecting the issues
that arise in real environments such as the effective scalability
of applications and the cost of growing or shrinking. In
this section, we discuss several implementations of malleable
applications and their scheduling in real multicluster systems.

As noted in [14] and in our previous work [2], malleability
helps applications perform better when resource availability
varies. Several approaches have been used to make parallel
and/or multicluster applications malleable. While GRADS [5]
relies on the SRS [15] checkpoint library, APPLES [4] and
ASSIST [6] propose to build applications upon intrinsically
malleable skeletons. With AMPI [7], malleability is ob-
tained by translating MPI applications to a large number of
CHARM++ objects, which can be migrated at runtime. Utrera
et al. [8] propose to make MPI applications malleable by
folding several processes onto each processor.

A couple of works [4], [5] have studied how to sched-
ule such applications in conjunction with building malleable
applications. Among them, APPLES [4] and GRADS [5]
are somewhat specific as they propose that applications are
responsible to schedule themselves on their own. However,
this approach raises the question of how the system behaviour
and performance would be in case several concurrent mal-
leable applications compete for resources. Furthermore, as
those approaches rely on checkpointing, it is unclear how an
application gets its resources back when it accepts to try a
new allocation. System-wide schedulers do not suffer from
these drawbacks.

Other approaches rely on a system-wide scheduler. Corre-
sponding to the underlying execution model, AMPI uses an



equipartition policy, which ensures that all jobs get almost
the same number of processors; while the policy in [8] is
based on folding and unfolding the jobs (i.e., doubling or
halving the number of allocated processors). However, those
two approaches rely on the properties of their underlying
execution model. For instance, equipartition assumes that any
application can be executed efficiently with any number of
processors, as it is the case with AMPI; while folding restricts
the number of processes to be divisible by the number of
processors (often a power of 2 for practical reasons), which
is the only way to fold efficiently non-malleable applications.
A more general approach such as the one we propose is more
appropriate in the context of multiclusters.

McCann and Zahorjan [16] further discuss the folding and
equipartition policies. According to their experiments, folding
preserves well efficiency; while equipartition provides higher
fairness. They have proposed in [16] a rotation policy in order
to increase the fairness of the folding policy. However, rotation
is almost impracticable in the context of multiclusters.

As fairness in terms of allocated processors does not im-
ply efficiency, a biased equipartition policy is proposed in
Hungershöfer et al. [17] such that the cumulative speedup
of the system is maximized. It also considers both malleable
and rigid jobs in a single system in [18], and it guarantees to
allocate a minimum number of processors to each malleable
job, such that they are not ruled out by rigid jobs. However,
in multiclusters, it is common that some of the users bypass
the multicluster-level scheduler. The problem of making the
scheduler take into account that incured background load is
not addressed in the works of Hungershöfer et al.

In addition, most of those previous research works [8], [16],
[17], [18] have not considered the combination of malleability
management and load sharing policies across clusters, which
is an issue specific to multiclusters.

IV. BACKGROUND

In this section, we summarize our previous work on a co-
allocating grid scheduler called KOALA and on the implemen-
tation of malleable applications, which is the starting point
of the work reported in this paper. Section IV-A presents the
KOALA grid scheduler, followed by section IV-B that describes
our DYNACO framework that we use to implement malleable
applications.

A. The KOALA multicluster scheduler

The KOALA [1] grid scheduler has been designed for mul-
ticluster systems such as the DAS [9]. KOALA job submission
tools employ some of the GLOBUS toolkit [19] services for
job submission, file transfer, and security and authentication.
On the other hand, KOALA scheduler has its own mechanisms
for data and processor co-allocation, resource monitoring, and
fault tolerance.

Figure 1 shows the architecture of KOALA. This architecture
shows auxiliary tools called runners, which provide users with
an interface for submitting jobs and monitoring their progress
for different application types. Runners are built out of a

PCCO

KOALA Runners

Runners Framework

PIPNIP

RLS

KIS

Scheduler

Fig. 1. Overview of the architecture of the KOALA multicluster scheduler.

framework, which serves as a frontend between each runner
and the centralized scheduler. The latter is made of a co-
allocator (CO), which decides of resource allocations, and of a
processor claimer (PC), which ensures that processors will still
be available when the job starts to run. If processor reservation
is supported by local resource managers, the PC can reserve
processors immediately after the placement of the components.
Otherwise, the PC uses KOALA claiming policy [20], [21]
to postpone claiming of processors to a time close to the
estimated job start time. In its tasks, the scheduler is supported
by the KOALA information service (KIS), which monitors
the status of resources thanks to a processor information
provider (PIP), a network information provider (NIP) and
a replica location service (RLS). Providers connect KOALA
with the multicluster monitoring infrastructure, which can
be GLOBUS MDS or whatever else depending on the used
resource managers.

Within the context of KOALA job model, a job comprises
either one or multiple components that each can run on a
separate cluster. Each job component specifies its requirements
and preferences such as the program it wants to run, the
number of processors it needs, and the names of its input
files.

Upon receiving a job request from a runner, the KOALA
scheduler uses one of the placement policies described below,
to try to place job components on clusters. With KOALA,
users are given the option of selecting one of these placement
policies.

• The Worst-Fit (WF) [22] places each component of a job
in the cluster with the largest number of idle processors.
The advantage of WF is its automatic load-balancing
behaviour, the disadvantage is that large (components of)
jobs have less chance of successful placement because
WF tends to reduce the number of idle processors per
cluster.

• The Close-to-Files (CF) policy [20] uses information
about the presence of input files to decide where to
place (components of) jobs. Clusters with the necessary



Fig. 2. Overview of the architecture of the DYNACO framework for
adaptability.

input files already present are favoured as placement
candidates, followed by clusters for which transfer of
those files take the least amount of time.

• The Cluster Minimization (CM) and the Flexible Cluster
Minimization (FCM) policies [23] have been designed
especially for jobs that may use co-allocation in order to
minimize the number of clusters to be combined for a
given parallel job, such that the number of inter-cluster
messages is reduced. The flexible version decreases in
addition the queue time by splitting jobs into components
according to the number of idle processors.

If the placement of the job succeeds and input files are
required, the scheduler informs a runner to initiate the third-
party file transfers from the selected file sites to the execution
sites of the job components. If a placement try fails, KOALA
places the job at the tail of a placement queue. This queue
holds all the jobs that have not yet been successfully placed.
The scheduler regularly scans this queue from head to tail to
see whether any job is able to be placed. For each job in the
queue we record its number of placement tries, and when this
number exceeds a certain threshold value, the submission of
that job fails.

B. The DYNACO framework and its use for malleability

In our previous work [2], we have proposed techniques to
implement malleability as a special case of adaptability. Basi-
cally, adaptability is an approach for addressing the problem
of the dynamicity of large-scale execution environments. It
consists in the ability of applications to modify themselves
during their execution according to constraints imposed by
the execution environment. Our previous work on abstracting
adaptability [24] has resulted in DYNACO 1, a generic frame-
work for building dynamically adaptable applications.

As its architecture shows in Figure 2, DYNACO decomposes
adaptability into four components, similarly to the control
loop suggested in [25]: the observe component monitors
the execution environment in order to detect any relevant
change; relying on this information, the decide component
makes the decision about adaptability. It decides when the
application should adapt itself and which strategy should be
adopted. When the strategy in use has to be changed, the
plan component plans how to make the application adopt the
new strategy; finally, the execute component schedules actions
listed in the plan, taking into account the synchronization with
the application code. Being a framework, DYNACO is expected

1DYNACO is available at the following website:
http://dynaco.gforge.inria.fr

to be specialized for each application. In particular, devel-
opers must provide the decision procedure, the description
of planning problems, and the implementation of adaptation
actions. In addition, we have proposed AFPAC [26] as an
implementation of the execute component that is specific to
SPMD applications. Tools provided in IBIS [27], ASSIST [6],
skeleton-based paradigms and similars can be used as well.

As reported in [2], DYNACO and AFPAC have been success-
fully used to make several existing MPI-based applications
malleable. While not being restricted to this class of applica-
tions, DYNACO contributes to reduce the cost of transforming
existing parallel applications into malleable ones when it is
combined with tools such as AFPAC.

V. DESIGNING SUPPORT FOR MALLEABILITY IN KOALA

In this section, we present our design for supporting mal-
leable applications in KOALA. First, we explain how we
include the DYNACO framework into the KOALA multicluster
scheduler, and then we present our approaches and policies for
managing the execution of malleable applications, respectively.

A. Supporting DYNACO applications in KOALA

In order to support DYNACO-based applications in KOALA,
we have designed a specific runner called the Malleable
Runner (MRunner); its architecture is shown in Figure 3.
In the MRunner, the usual control role of the runner over
the application is extended in order to handle malleability
operations. For that purpose a complete instance of DYNACO
is included in the MRunner on a per-application basis. A
frontend, which is common to all of the runners, interfaces
the MRunner to the scheduler. We add a malleability manager
in the scheduler, which is responsible for triggering changes
of resource allocations.

In the DYNACO framework, the frontend is reflected as a
monitor, which generates events when it receives grow and
shrink messages from the scheduler. Resulting events are
propagated throughout the DYNACO framework and translated
into the appropriate messages to GRAM and to the applica-
tion. The frontend catches the results of adaptations in order
to generate acknowledgments back to the scheduler. It also
notifies the scheduler when the application voluntarily shrinks
below the amount of allocated processors.

GRAM is currently not able to manage malleable jobs. We
further discuss this issue in [28]. In this paper, for the sake
of simplicity and despite the poor reactivity of that solution,
the MRunner manages the malleable job as a collection of
GRAM jobs of size 1. Upon growth, the MRunner submits
new jobs to GRAM. When it receives active messages from
GRAM, it transmits the new collection of active GRAM jobs
(i.e. the collection of held resources) to the application. In
order to reduce the impact on the execution time, interactions
with GRAM overlap with the execution of the application
and suspension of the application does not occur before
all the resources are held. To do so, GRAM submissions
launch an empty stub rather than the application’s program.
The stub is turned into an applicication process during the



Fig. 3. The architecture of the Malleable Runner with DYNACO in the KOALA multicluster scheduler.

process management phase, when resources are recruited by
the application. That latter operation is faster than submitting
a job to GRAM as it is relieved from tasks such as security
enforcement and queue management. Conversely, upon shrink,
the MRunner first reclaims processors from the application;
then when it receives shrunk feedback messages, it releases the
corresponding GRAM jobs. Again, interactions with GRAM
overlap the execution, which resumes immediately.

B. Job Management

Upon submission of an application to KOALA, whether it is
rigid, moldable or malleable, the initial placement is performed
by one of the existing placement policies as described in
Section IV-A. In the placement phase of malleable applica-
tions, the initial number of processors required is determined
considering the number of available processors in the system.
Specifically, given a malleable application, the placement
policies place it if the number of available processors is at
least equal to the minimum processor requirement of the
application.

In the job management context, the malleability manager
is responsible for initiating malleability management policies
that decide on how to grow or shrink malleable applications.
Below, we propose two design choices as to when to initiate
malleable management policies, which give Precedence to
Running Applications over waiting ones (PRA) or vice versa
(PWA), respectively.

In the PRA approach, whenever processors become avail-
able, for instance, when a job finishes execution, first the
running applications are considered. If there are malleable
jobs running, one of the malleability management policies is
initiated in order to grow them; any waiting malleable jobs
are not considered as long as at least one running malleable
job can still be grown.

In PWA approach, when the next job j in the queue
cannot be placed, the scheduler applies one of the malleability
management policies for shrinking running malleable jobs in
order to obtain additional processors. Those shrink operations
are mandatory. If it is however impossible to get enough
available processors in order to place job j taking into account
the minimum sizes of the running jobs, then the running
malleable jobs are considered for growing by one of the
malleable management policies. Whenever processors become
available, the placement queue is scanned in order to find a
job to be placed.

In both approaches, in order to trigger job management, the
scheduler periodically polls the KOALA information service. In
doing so, the scheduler is able to take into account dynamically
the background load due to other users even if they bypass
KOALA. In addition, in order not to stress execution sites when
growing malleable jobs, and therefore, in order to leave always
a minimal number of available processors to local users, a
threshold is set over which KOALA never expands the total
set of the jobs it manages.

C. Malleability Management Policies

The malleability management policies we describe below
determine the means of shrinking and growing of malleable
jobs during their execution. In this paper, we assume that
every application is executed in a single cluster, and so,
no co-allocation takes place. Consequently, the policies are
applied for each cluster separately.

1) Favour Previously Started Malleable Applications
(FPSMA): The FPSMA policy favours previously started
malleable jobs in that whenever the policy is initiated by
the malleability manager, it starts growing from the earliest
started malleable job and starts shrinking from the latest started
malleable job. Figure 4 presents the pseudo-code of the grow
and shrink procedures of the FPSMA policy.

In the grow procedure, first, malleable jobs running on the
considered cluster sorted in the increasing order of their start
time (line 1), then the value of the number of processors to
be allocated on behalf of malleable jobs (i.e. growV alue) is
offered to the subsequent job in the sorted list (line 3). In reply
to this offer (the job itself considers its maximum number of
processors requirement), the accepted number of processors
are allocated (lines 4 − 5) on behalf of that job. Then the
growV alue is updated and checked whether there are more
processors to be offered (lines 6− 8).

The shrink procedure runs in a similar fashion; the differ-
ences with the grow procedure is that the jobs are sorted in
the decreasing order of their start time (line 1), and rather than
allocation, the accepted number of processors are waited to
be released (line 5).

2) Equi-Grow & Shrink (EGS): Our EGS policy attempts
to balance processors over malleable jobs. Figure 5 gives the
pseudo-code of the grow and shrink procedures of that policy.
When it is initiated by the malleability manager, it distributes
available processors (or reclaims needed processors) equally



procedure FPSMA GROW(clusterName, growV alue)
1. List ← malleable jobs running on

clusterName, sorted in the increasing order
of their start time

2. for each (Job in List) do
3. send grow request (growV alue) to Job
4. get accepted number of processors from

Job
5. initiate processor allocation for Job
6. growV alue = growV alue - accepted
7. if growV alue == 0 then
8. break

procedure FPSMA SHRINK(clusterName, shrinkV alue)
1. List ← malleable jobs running on

clusterName, sorted in the decreasing order
of their start time

2. for each (Job in List) do
3. send shrink request (shrinkV alue) to Job
4. get accepted number of processors from

Job
5. wait for Job to release the processors
6. shrinkV alue = shrinkV alue - accepted
7. if shrinkV alue == 0 then
8. break

Fig. 4. Pseudo-code of the FPSMA policy

(line 2) over all of the running malleable jobs. In case
the number of processors to be distributed or reclaimed is
not divisible by the number of running malleable jobs, the
remainder is distributed across the least recently started jobs
as a bonus (line 5), or reclaimed from the most recently started
jobs as a malus (line 5).

The EGS policy is similar to the well-known equipartition
one. The two policies however differ in the following points.
While our EGS policy distributes equally available proces-
sors among running jobs, the equipartition policy distributes
equally the whole set of processors among running jobs.
Consequently, EGS is not expected to make at each time all of
the malleable jobs have the same size, while equipartition does.
But equipartition may mix grow and shrink messages, while
EGS consistently either grows or shrinks all of the running
jobs.

VI. EXPERIMENTAL SETUP

In this section we describe the setup of the experiments
we have conducted in order to evaluate the support and the
scheduling policies for malleable jobs in KOALA. We present
the applications that have been used in Section VI-A, our
testbed in Section VI-B, and the details of the workloads in
Section VI-C.

A. Applications

For the experiments, we rely on two applications that
we have previously made malleable with DYNACO. These
applications are the NAS Parallel Benchmark FT [29], which
is a benchmark for parallel machines based on a fast Fourier
transform numerical kernel, and GADGET 2 [30], which is a
legacy n-body simulator. Further details on how we have made

procedure EQUI GROW(clusterName, growV alue)
1. List ← malleable jobs running on

clusterName, sorted in the increasing order
of their start time

2. jobGrowV alue ← bgrowV alue/size (List)c
3. growRemainder ← remainder(growV alue, size (List))
4. for each (Job in List) do
5. bonus ← 1 if i < growRemainder;

0 otherwise
6. send grow request (jobGrowV alue + bonus)

to Job
7. get accepted number of processors from

Job
8. initiate processor allocation for Job

procedure EQUI SHRINK(clusterName, shrinkV alue)
1. List ← malleable jobs running on

clusterName, sorted in the decreasing order
of their start time

2. jobShrinkV alue ← bshrinkV alue/size (List)c
3. shrinkRemainder
← remainder(shrinkV alue, size (List))

4. for each (Job in List) do
5. malus ← 1 if i ≥ growRemainder;

0 otherwise
6. send shrink request (shrinkV alue + malus)

to Job

7. get accepted number of processors from
Job

8. for each (Job in List) do
9. wait for Job to release the processors

Fig. 5. Pseudo-code of the EGS policy

malleable these two applications can be found in [2]. Figure 6
shows how the execution times of the two applications scale
with respect to the number of machines on the Delft cluster
(see table I). With 2 processors, GADGET 2 takes 10 minutes,
while FT lasts 2 minutes. The best execution times are
respectively 4 minutes for GADGET 2 and 1 minute for FT.

While GADGET 2 can execute with an arbitrary number
of processors, FT only accepts powers of 2. As we have
already stated, we propose that the scheduler does not care
about such constraints, in order to avoid to make it implement
an exhaustive collection of possible contraints. Consequently,
when responding to grow and shrink messages, the FT ap-
plication accepts only the highest power of 2 processors that
does not exceed the allocated number. Additional processors
are voluntarily released to the scheduler. In addition, the FT
application assumes processors of equal compute power, while
GADGET 2 includes a load-balancing mechanism.

B. The Testbed

Our testbed is the Distributed ASCI Supercomputer
(DAS3) [9], which is a wide-area computer system in the
Netherlands that is used for research on parallel, distributed,
and grid computing. It consists of five clusters of 272 dual
AMD Opteron compute nodes. The distribution of the nodes
over the clusters is given in Table I. Besides using the 1 and
10 Gigabit/s Ethernet, DAS3 employs the novel local high-



0 10 20 30 40

0
20

0
40

0
60

0
80

0

Number of machines

T
im

e 
(s

)

FT
Gadget 2

Fig. 6. The execution times of the two applications depending on the number
of used machines.

TABLE I
THE DISTRIBUTION OF THE NODES OVER THE DAS CLUSTERS.

Cluster Location Nodes Interconnect

Vrije University 85 Myri-10G & 1/10 GbE
U. of Amsterdam 41 Myri-10G & 1/10 GbE
Delft University 68 1/10 GbE

MultimediaN 46 Myri-10G & 1/10 GbE
Leiden University 32 Myri-10G & 1/10 GbE

speed Myri-10G interconnect technology. On each of the DAS
clusters, the Sun Grid Engine (SGE) [31] is used as the local
resource manager. SGE has been configured to run applications
on the nodes in an exclusive fashion, i.e., in space-shared
mode. The granularity of allocation is the node.

C. The Workloads

The workloads that we employ in our experiments com-
bine the two applications of Section VI-A with a uniform
distribution. Their minimum size is set to 2 processors, while
the maximum size is 46 for GADGET 2 and 32 for FT. In
both cases, 300 jobs are submitted. Jobs are submitted from a
single client site; no staging operation is ordered even when
processors are allocated from remote sites.

Regarding Figure 6, the maximum sizes we have chosen
are greater than the sizes for which we have observed the
minimum execution times. This deliberate choice comes from
the following. Applications are not supposed to scale the same
in all of the clusters, which may be heterogeneous. In addition,
users may not be aware of the speedup behavior of their
applications. Hence, the maximum size of a malleable job
should not be the size that gives to the best execution time
of the application in any particular cluster.

For the PRA-based experiments, we have used two fol-
lowing workloads. Workload Wm is composed exclusively of
malleable jobs, while workload Wmr is randomly composed
of 50% of malleable jobs and 50% rigid jobs. In both cases,
inter-arrival time is 2 minutes. Rigid jobs are submitted with
a size of 2 processors, and malleable jobs with an initial size
of 2. In our experiments, KOALA employs the WF policy.

Apart from workload Wm or Wmr, the only background load
during the experiments is the activity of concurrent users. This
background load does not disturb the measures.

When analysing the PWA approach, we have used two
workloads W ′

m and W ′
mr, which derive respectively from Wm

and Wmr. In these workloads, inter-arrival time is reduced
down to 30 seconds in order to increase the load of the system.

VII. EXPERIMENTAL RESULTS

In this section we will present the results of our experiments
for both the Precedence to Running Applications and the
Precedence to Waiting Applications approaches.

A. Analysis of the PRA approach

Figure 7 compares the FPSMA and EGS policies for mal-
leability management in the context of the PRA approach for
job management, i.e., when jobs are never shrunk. For this
experiment, we have done 4 runs for each combination of a
malleability management policy (one of FPSMA or EGS) and
a workload (either Wm or Wrm).

Figures 7(a) and 7(b) show for each combination how jobs
are distributed with regard to their average and maximum size.
In both figures, with workload Wmr, which has 50% rigid jobs
with only 2 processors, relatively few malleable jobs retain
their initial size of 2 during their execution. In addition, we
observe that among the policies, EGS one tends to give more
processors to the malleable jobs than FPSMA, both in average
and in maximum. Indeed, on the one hand, with FPSMA, short
applications (like FT in our experiments) may terminate before
it is their turn to grow, i.e., before previously started jobs
terminate. They are thus stuck at their minimal size. On the
other hand, EGS makes all jobs grow every time it is initiated.
Hence, even jobs that have been started recently grow, and only
few jobs do not grow beyond their minimal size.

Figures 7(c) and 7(d) show the distributions of the execution
time and the response time, respectively. Two groups of jobs
appear clearly: those with execution times and response times
less than 200 s, and those for which these times are greater
than 400 s. Those two groups correspond to the two appli-
cations in the workloads (respectively FT and GADGET 2).
In both cases, we observe that the Wm workload results in
better performance than the Wmr workload, which means that
malleability makes applications actually perform better.

Figure 7(e) shows the utilization of the DAS3 during a part
of the experiments. With workload Wm with only malleable
jobs, the EGS policy leads to a higher utilization. Indeed, as we
have already observed, this policy tends to make bigger jobs.
For the same reason, the utilization is better with workload
Wm than with Wmr.

Finally, Figure 7(f) shows the activity of the malleability
manager. As can be expected, the number of grow operations
is much higher when all jobs are malleable (workload Wm). It
is also higher with the EGS policy than with FPSMA. Indeed,
each time the policy is triggered, EGS makes all of the running
malleable jobs grow, while FPSMA only does so with the
oldest ones.



0 5 10 15 20 25 30

0
20

40
60

80
10

0

Average number of processors per job

C
um

ul
at

iv
e 

nu
m

be
r 

of
 jo

bs
 (

%
)

FPSMA/Wm
FPSMA/Wmr
EGS/Wm
EGS/Wmr

(a) The cumulative distribution of the number of processors per job averaged
over the execution time of jobs.

0 10 20 30 40

0
20

40
60

80
10

0

Maximum number of processors per job

C
um

ul
at

iv
e 

nu
m

be
r 

of
 jo

bs
 (

%
)

FPSMA/Wm
FPSMA/Wmr
EGS/Wm
EGS/Wmr

(b) The cumulative distribution of the maximal number of processors reached
per job during its execution.

0 200 400 600 800 1000 1200

0
20

40
60

80
10

0

Execution time (s)

C
um

ul
at

iv
e 

nu
m

be
r 

of
 jo

bs
 (

%
)

FPSMA/Wm
FPSMA/Wmr
EGS/Wm
EGS/Wmr

(c) The cumulative distribution of the job execution times.

0 200 400 600 800

0
20

40
60

80
10

0

Response time (s)

C
um

ul
at

iv
e 

nu
m

be
r 

of
 jo

bs
 (

%
)

FPSMA/Wm
FPSMA/Wmr
EGS/Wm
EGS/Wmr

(d) The cumulative distribution of the job response times.

25000 26000 27000 28000 29000 30000

0
20

40
60

80
10

0
12

0

Time (s)

T
ot

al
 n

um
be

r 
of

 u
se

d 
pr

oc
es

so
rs

FPSMA/Wm
FPSMA/Wmr
EGS/Wm
EGS/Wmr

(e) Utilization of the platform during the experiment.

0 10000 20000 30000

0
20

0
40

0
60

0
80

0

Time (s)

N
um

be
r 

of
 g

ro
w

n 
m

es
sa

ge
s

FPSMA/Wm
FPSMA/Wmr
EGS/Wm
EGS/Wmr

(f) Activity of the malleability manager.

Fig. 7. Comparison between FPSMA and EGS with the PRA approach of job management (no shrinking).

B. Analysis of the PWA approach

Figure 8 compares the FPSMA and EGS policies in the
context of the PWA approach for job management, i.e., when
the scheduler can also shrink jobs. With the PWA approach, the
load of the system has a direct impact on the effectiveness of
the malleability manager. Indeed, if on the one hand the system
is overloaded, all of the jobs are stuck at their minimal size
and malleability management becomes ineffective, while if on
the other hand the system load is low, no job is shrunk and
PWA behaves like PRA. We have therefore used workloads

W ′
m and W ′

mr, which increase the load of the system.
Figure 8(f) shows that beyond a certain time, the malleabil-

ity manager becomes unable to trigger any other change than
initial placement of jobs. Similarly, Figures 8(a) and 8(b) show
that many of the jobs are stuck at their minimal size, whatever
the workload and the malleability management policy. This
phenomenon is more pronounced with the EGS policy, which
means that load balancing is achieved as expected.

Figure 8(c) shows that the execution time is almost the
same for the four runs. Most of the GADGET 2 job have
an execution time of 600s, 30% higher than with PRA. This



0 10 20 30 40

0
20

40
60

80
10

0

Average number of processors per job

C
um

ul
at

iv
e 

nu
m

be
r 

of
 jo

bs
 (

%
)

FPSMA/W'm
FPSMA/W'mr
EGS/W'm
EGS/W'mr

(a) The cumulative distribution of the number of processors per job averaged
over the execution time of jobs.

0 10 20 30 40 50 60

0
20

40
60

80
10

0

Maximum number of processors per job

C
um

ul
at

iv
e 

nu
m

be
r 

of
 jo

bs
 (

%
)

FPSMA/W'm
FPSMA/W'mr
EGS/W'm
EGS/W'mr

(b) The cumulative distribution of the maximal number of processors reached
per job during its execution.

0 200 400 600 800 1000

0
20

40
60

80
10

0

Execution time (s)

C
um

ul
at

iv
e 

nu
m

be
r 

of
 jo

bs
 (

%
)

FPSMA/W'm
FPSMA/W'mr
EGS/W'm
EGS/W'mr

(c) The cumulative distribution of the job execution times.

0 200 400 600 800 1000

0
20

40
60

80
10

0

Response time (s)

C
um

ul
at

iv
e 

nu
m

be
r 

of
 jo

bs
 (

%
)

FPSMA/W'm
FPSMA/W'mr
EGS/W'm
EGS/W'mr

(d) The cumulative distribution of the job response times.

0 2000 4000 6000 8000 10000

0
20

40
60

80
10

0

Time (s)

T
ot

al
 n

um
be

r 
of

 u
se

d 
pr

oc
es

so
rs

FPSMA/W'm
FPSMA/W'mr
EGS/W'm
EGS/W'mr

(e) Utilization of the platform during the experiment.

0 2000 4000 6000 8000 10000 12000

0
10

0
20

0
30

0
40

0
50

0

Time (s)

N
um

be
r 

of
 m

al
le

ab
ili

ty
 o

pe
ra

tio
ns

FPSMA/W'm
FPSMA/W'mr
EGS/W'm
EGS/W'mr

(f) Activity of the malleability manager.

Fig. 8. Comparison between FPSMA and EGS with the PWA approach of job management (both growing and shrinking).

difference results from what we observe about the size of the
jobs. Figure 8(d) shows that the response time is far worse
for the combination of the EGS policy and W ′

m workload due
to higher wait time. This result confirms the system overload
observed on Figure 8(e) as a high utilization. Favouring long-
running jobs, FPSMA has reduced enough the execution time
of GADGET 2 jobs to maintain the load sufficiently low.

VIII. CONCLUSION

In this paper we have presented the design and the analysis
with experiments with the KOALA scheduler in our DAS3

testbed of the support and policies for malleability of parallel
applications in multicluster systems. Our experimental results
show that malleability is indeed benficial for performance.

In case of mandatory shrinks as with our PWA policy, we
have considered that it is the responsability of the runner
to enforce shrink operations. We have not experimented the
behavior of the system in case the runner cannot be trusted to
release the reclaimed resources. We plan in addition to study
how to affect malleability management policies in order to
incite applications to react to volunteer shrinks.

In our design, we have not included grow operations that



are initiated by the applications. This feature is mainly useful
in case the parallelism pattern is irregular, unlike with our
applications. Designing it is however not straightforward.
For instance, it raises the design choice whether such grow
operations can be mandatory or only voluntary, and how much
effort the scheduler should do to accommodate mandatory
grow operations, for instance by shrinking (either mandatorily
or voluntarily) concurrent malleable jobs. Another element that
we have not incorporated in our design and implementation
but that we intend to add is malleability of co-allocated
applications.

ACKNOWLEDGMENT

This work was carried out in the context of the Virtual
Laboratory for e-Science project (www.vl-e.nl), which is sup-
ported by a BSIK grant from the Dutch Ministry of Education,
Culture and Science (OC&W), and which is part of the ICT
innovation program of the Dutch Ministry of Economic Affairs
(EZ). Part of this work is also carried out under the FP6
Network of Excellence CoreGRID funded by the European
Commission (Contract IST-2002-004265).

REFERENCES

[1] H. Mohamed and D. Epema, “The design and implementation of the
koala co-allocating grid scheduler,” in European Grid Conference, ser.
Lecture Notes in Computer Science, vol. 3470. Springer-Verlag, 2005,
pp. 640–650.

[2] J. Buisson, F. André, and J.-L. Pazat, “A framework for dynamic
adaptation of parallel components,” in International Conference ParCo,
Málaga, Spain, Sept. 2005, pp. 65–72.

[3] A. Iosup, D. Epema, C. Franke, A. Papaspyrou, L. Schley, B. Song,
and R. Yahyapour, “On grid performance evaluation using synthetic
workloads,” in Proc. of the 12th Workshop on Job Scheduling Strategies
for Parallel Processing (JSSPP),, ser. Lecture Notes in Computer
Science, E. Frachtenberg and U. Schwiegelshohn, Eds. Springer Verlag,
June 2006.

[4] F. Berman, R. Wolski, H. Casanova, W. Cirne, H. Dail, M. Faerman,
S. Figueira, J. Hayes, G. Obertelli, J. Schopf, G. Shao, S. Smallen,
N. Spring, A. Su, and D. Zagorodnov, “Adaptive computing on the grid
using apples,” IEEE Trans. Parallel Distrib. Syst., vol. 14, no. 4, pp.
369–382, Apr. 2003.

[5] S. Vadhiyar and J. Dongarra, “Self adaptability in grid computing,”
Concurrency and Computation: Practice and Experience, vol. 17, no.
2-4, pp. 235–257, Feb. 2005.

[6] M. Aldinucci, M. Coppola, M. Danelutto, M. Vanneschi, and C. Zoccolo,
“Assist as a research framework for high-performance grid programming
environments,” Università di Pisa, Dipartimento di Informatica, Tech.
Rep. TR-04-09, Feb. 2004.

[7] L. Kalé, S. Kumar, and J. DeSouza, “A malleable-job system for time-
shared parallel machines,” in 2nd IEEE/ACM International Symposium
on Cluster Computing and the Grid (CCGRID), Berlin, Germany, May
2002, p. 230.

[8] G. Utrera, J. Corbalá, and J. Labarta, “Implementing malleability on
mpi jobs,” in 13th International Conference on Parallel Archtecture and
Compilation Techniques (PACT), Antibes, France, Sept. 2004, pp. 215–
224.

[9] “The Distributed ASCI Supercomputer,” http://www.cs.vu.nl/das3/.
[10] D. G. Feitelson and L. Rudolph, “Toward convergence in job

schedulers for parallel supercomputers,” in Job Scheduling Strategies
for Parallel Processing, D. G. Feitelson and L. Rudolph,
Eds. Springer-Verlag, 1996, pp. 1–26. [Online]. Available:
citeseer.ist.psu.edu/feitelson96toward.html

[11] G. Mounié, C. Rapine, and D. Trystram, “Efficient approximation
algorithms for scheduling malleable tasks,” in 11th ACM symposium on
Parallel Algorithms and Architectures, Saint-Malo, France, June 1999,
pp. 23–32.

[12] J. Blazewicz, M. Machowiak, G. Mounié, and D. Trystram, “Approxi-
mation algorithms for scheduling independent malleable tasks,” in 7th
International Euro-Par Conference, Manchester, UK, Aug. 2001, pp.
191–197.

[13] J. Blazewicz, M. Kovalyov, M. Machowiak, D. Trystram, and J. Weglarz,
“Preemptable malleable task scheduling problem,” vol. 55, no. 4, pp.
486–490, Apr. 2006, brief contribution.

[14] T. Desell, K. E. Maghraoui, and C. Varela, “Malleable components
for scalable high performance computing,” in HPC Grid programming
Environment and COmponents, Paris, France, June 2006.

[15] S. Vadhiyar and J. Dongarra, “Srs: a framework for developing malleable
and migratable parallel applications for distributed systems,” Parallel
Processing Letters, vol. 13, no. 2, pp. 291–312, 2003.

[16] C. McCann and J. Zahojan, “Processor allocation policies for message-
passing parallel computers,” in ACM SIGMETRICS conference on
Measurement and Modeling of Computer Systems, Nashvill, Tennessee,
USA, May 1994, pp. 19–32.

[17] J. Hungershöfer, A. Streit, and J.-M. Wierum, “Efficient resource
management for malleable applications,” Paderborn Center for Parallel
Computing, Tech. Rep. TR-003-01, Dec. 2001.

[18] J. Hungershöfer, “On the combined scheduling of malleable and rigid
jobs,” in 16th Symposium on Computer Architecture and High Perfor-
mance Computing (SBAC-PAD), Foz do Iguaçu, Brazil, Oct. 2004, pp.
206–213.

[19] I. Foster and C. Kesselman, “Globus: a metacomputing infrastructure
toolkit,” International Journal of Supercomputer Applications, vol. 11,
no. 2, pp. 115–128, 1997.

[20] H. Mohamed and D. Epema, “An evaluation of the close-to-files pro-
cessor and data co-allocation policy in multiclusters,” in 2004 IEEE
International Conference on Cluster Computing. IEEE Society Press,
2004, pp. 287–298.

[21] ——, “Experiences with the Koala co-allocating scheduler in multi-
clusters,” in Proceedings of the international symposium on Cluster
Computing and the GRID, Cardiff, UK, May 2005.

[22] A. I. D. Bucur and D. H. J. Epema, “The maximal utilization of
processor co-allocation in multicluster systems,” in IPDPS ’03: Proceed-
ings of the 17th International Symposium on Parallel and Distributed
Processing. Washington, DC, USA: IEEE Computer Society, 2003, p.
60.1.

[23] O. Sonmez, H. Mohamed, and D. Epema, “Communication-aware job
placement policies for the koala grid scheduler,” in E-SCIENCE ’06:
Proceedings of the Second IEEE International Conference on e-Science
and Grid Computing. Washington, DC, USA: IEEE Computer Society,
2006, p. 79.

[24] M. Aldinucci, F. André, J. Buisson, S. Campa, M. Coppola, M. Dane-
lutto, and C. Zoccolo, “An abstract schema modelling adaptivity man-
agement,” in Integrated Research in GRID Computing, S. Gorlatch and
M. Danelutto, Eds. Springer, 2007, proceedings of the CoreGRID
Integration Workshop 2005.

[25] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
Computer, vol. 36, no. 1, pp. 41–50, Jan. 2003.

[26] J. Buisson, F. André, and J.-L. Pazat, “Afpac: Enforcing consistency
during the adaptation of a parallel component,” Scalable Computing:
Practice and Experience (SCPE), vol. 7, no. 3, pp. 83–95, Sept. 2006.

[27] K. van Reeuwijk, R. van Niewpoort, and H. Bal, “Developing Java grid
applications with Ibis,” in International Euro-Par Conference, Lisbon,
Portugal, Sept. 2005, pp. 411–420.

[28] J. Buisson, F. André, and J.-L. Pazat, “Supporting adaptable applications
in grid resource management systems,” in 8th IEEE/ACM International
Conference on Grid Computing, Austin, USA, Sept. 2007.

[29] R. F. van der Wijngaart, “Nas parallel benchmarks version 2.4,” NASA
Advanced Supercomputing division, Tech. Rep. NAS-02-007, Oct. 2002.

[30] V. Springel, “The cosmological simulation code gadget-2,” Monthly
Notices of the Royal Astronomical Society, 2005, submitted astro-
ph/0505010.

[31] “Sun grid engine,” http://gridengine.sunsource.net.


